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Abstract—3D Object Reconstruction from a single-view 2D
image has become a promising research field. However, it
remains a crucial and unsolved core issue in AI and Computer
Vision research. Many scholars think it is the future of
Artificial Intelligence and is well deserved at the irreplaceable
heart of future Al research. In this paper, the research history
of 3D object reconstruction is introduced, and the current
state-of-the-art research methods and most novel results are
investigated and discussed. A prediction for the best research
methods and reconstruction model for this field is made. This
paper also provided the essential clues and trends in 2D images
or scenes inverse to 3D sceneries by 3D reconstruction. This
interdisciplinary research area requires the researchers to
have rich knowledge in but not limited to Computer graphics
(Such as OpenGL), deep learning, Computer vision (like
OpenCYV), and the neurocognitive logics and principles of the
cerebral cortex.

Keywords—Single-view image 3D reconstruction, 3D Scene
Semantic Understanding, 2D Image 3D reconstruction, Deep
Learning, 3D CNN

I. INTRODUCTION

Artificial Intelligence(Al) has become the centre of
Scientific research, among which the CNN (Convolution
Neural Network) [1] play the most pivotal position.
Furthermore, based on CNN networks, the Deep learning
area has brought us many outstanding performances in
computer vision research and people's everyday life [2], [3],
[4], [5], [6]. All the activities and tasks, such as Object
Detection, Semantic Segmentation, Computer Games Aid,
Pictures and Video recognition and classification, have
progressed to a very advanced level compared with ever
before, which are primarily sponsored and benefited by the
development of deep learning.

However, the prevalent use of Convolutional Neural
Networks (CNNs) [1], such as ResNet [2], trained
predominantly on 2D image datasets like ImageNet [7] and
MS COCO [8], imposes a significant limitation in object
detection tasks: the loss of depth and spatial context when
translating the three-dimensional world to a two-dimensional
image plane. This limitation is particularly acute in
applications requiring a deep understanding of 3D spaces,
such as autonomous driving, robotics vision, Metaverse, and
Medical Imaging, where accurate depth perception is crucial.
While these CNNs excel in parsing detailed pixel
information, they inherently need more capacity to process
and interpret the z-axis data indicative of depth, resulting in a
critical disparity between the machine's perception and the
nuanced spatial awareness akin to human vision.
Furthermore, the low resolution of the point clouds and the
prohibitive costs of high-resolution LiDAR systems [9], [10]
compound these challenges, underscoring the urgent need for
advanced deep learning techniques to reconcile the 2D
training paradigm within the 3D operational context.
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To tackle the above issues, how to make the 3D shape
and semantic reconstruction and estimating from a single
image appears to be the critical and essential part. However,
the 3D Object Reconstruction from a single 2D image is an
ill-posed question [5], [9], [10], [12], [13], [21] because the
in-depth information and distance information is lost during
the photo or image capture process. Also, there is no unique
solution since the viewpoints for the image can exit on too
many possible positions, and the viewpoints can also be
changed simultaneously with the distance between the
camera and the target object. Furthermore, the 3D Object
Reconstruction from a single-view image needs vertical and
horizontal distance information for all the objects in the
scene. Especially when occlusion and noisy complex cases
happen in the image, hallucinating the lost information
becomes even more challenging [11].

Although this area of research can be classified in many
ways, for instance, in [5], it is classified by 3D shape
representation, which is based on whether the 3D
representation is Euclidean or non-Euclidean, and based on
this, they mainly divide all the research in this area into two
groups: Euclidean volumetric approaches and Non-
Euclidean/geometric approaches; however, we classify this
area's most current state-of-the-art research into two main
streams as follows: 1. Based on 3D Ground Truth as the
input. 2. Directly infer from 2D single-view image
approaches (which means not based on 3D ground truth
input). The first kind of research like [12], [13], [14], uses
the 3D Ground Truth as the input, and those 3D ground truth
includes ready-made CAD 3D models, or the ready-made 3D
representations like 3D point cloud, 3D meshes, 3D octrees
or 3D voxels, then based on those 3D ground truth input,
combined with the 2D image, they inference the 3D object
shapes and poses. The second kind of research, like [11],
[15], [16], is directly doing 3D reconstruction from the 2D
single image; they usually use the semantic segment results
from the 2D image and get the Rol (Region of Interest) area
which includes the target object, and then use other methods
and neuronal networks to first convert it into voxels or
meshes and then covert and refine it into 3D triangle meshes,
and finally get the shape, poses and other 3D semantics of
the scene.

It's important to acknowledge that while the outlined
categories provide a structured understanding of the various
methods, they are not exhaustive and may not encapsulate all
the research contexts or scenarios. Some studies may mixture
multiple technologies, and overlaps between categories are
common, especially when applied to specific experiments or
projects. This classification is not rigid but rather a versatile
framework designed to progress in step with ongoing
innovations in 3D reconstruction research. In this paper, we
will analyse the most recent state-of-the-art papers and
research results in both directions in part two and part three;



and then, the best optimal research methodologies and
datasets, as well as a prediction about the future trend, will
be suggested in part four; and the conclusion part will
summarise all the deliverables for this paper.

II. 3D GROUND TRUTH MODEL AS INPUT APPROACHES

Although this group uses different 3D representations in
their research, they depend on the indispensable 3D ground
truth as the input. The 3D ground truth input representations
can be but are not limited to Voxels, Octrees, point clouds,
meshes, primitive shapes, and implicit surfaces. All those
3D ground truths are mainly collected by Lidar sensors, 3D
depth cameras or manually created using software like CAD
(Computer-Aided Design).
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Figure 1. For the Mem3D [17] neural network: the ground truth
shapes are stored in a memory network and used later to help
recover the occluded parts of the 3D shape.

For the research in [17], they proposed a Mem3D deep
learning neural network, as shown in Figure 1, that stores
the 3D ground-truth shape priors' information in the form of
"image-voxel" pairs into the LSTM architecture memory
network, which simulates the human's memory process
when they reconstruct the natural world in their brains. For
the "image-voxel" pair, a key-value pair, the key refers to
the image features collected from the process of 2D CNN in
the image encoder stage. The value part refers to the voxel
representations of the 3D Shapes of the target object. So,
during training, the image features and 3D shapes are stored
in the memory network. For both the training and testing
stage, the LSTM shape encoder would generate the shape
prior vectors for similar 3D shapes, and those shape prior
vectors would finally be used in the shape decoder stage to
generate the final 3D Reconstruction result. For the decoder
part, it uses both the shape prior vectors and the 2D image
feature maps to reconstruct the 3D shapes of the target
object, more importantly, to recover the occluded parts, the
hidden parts, and noisy parts.

By using this Mem3D neural network, they have
effectively solved and alleviated the heavy occlusion issues,
the noisy environment issues, and the complex scene issues.
This approach is inspired and motivated by the human
being's vision; humans can reconstruct the 3D scene
smoothly for a highly complex scene or heavily occluded
objects using their prior knowledge and experiences of the
object's 3D shapes, size and poses.
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Figure 2. SubdivNet [18]: input a coarse 3D mesh, then do
convolutions on vertexes, edges, and surfaces, output a
refined mesh

For the research in [18], they proposed a neuronal
network named SubdivNet, as illustrated in Figure 2; they
firstly imported coarse 3D mesh representations of the 3D
object and then did 3D geometric learning on meshes; they
used a mesh pyramid structure to do mesh convolution,
which includes Vertex-based convolution, Edge-based
convolution, and Face-based convolution, which is inspired
by computer graphics. This method gives us a good way how
to do 3D convolution. Instead of doing a convolution on a
2D plane, 3D convolution usually needs to do convolution on
every surface of the cubic object. The way of dealing with
3D convolution and 3D reconstruction is not only flexible,
accurate and efficient but also makes sense; when we do
computer graphics, we usually draw the vertexes, edges and
faces, respectively, and from OpenGL Computer Graphics,
we know that every 3D graphics or model can be denoted as
a combination of polygons. Those polygons then can be
decomposed into a series of triangles. More importantly, they
used the Multi-resolution modelling methods to refine the
original mesh to make it have subdivision sequence
connectivity and refine the original coarse mesh by
convolutions.

Method Accuracy
PointNet++[Qi et al. 2017b] 64.3%
MeshCNN[Hanocka et al. 2019] 92.2%
PD-MeshNet [Milano et al. 2020] | 94.4%
MeshWalker [Lahav and Tal | 98.6%
2020]

SubdivNet (w/o majority voting) 98.9%
SubdivNet 100.0%

Table 1. SubdivNet [18]: Classification accuracy on the Cube
Engraving dataset. SubdivNet is the first method to classify all test
meshes correctly.

Although it achieved the state-of-the-art evaluation
results on the Cube Engraving dataset depicted and
illustrated in Table 1, the SubdivNet neural network is the
first to classify all the test meshes correctly. However, this
SubdivNet needs a 3D ground truth coarse Mesh as the input
instead of inference the 3D shape and poses from a simple
2D image, which leads to SubdivNet's poor generalisation
ability. So, when people want to use this method to convert
their 2D images to reconstruct 3D objects and sceneries, they
need to finish converting their 2D images into a 3D mesh
first, and those 3D meshes also need to meet their
requirements, and then those 3D meshes can be used as the
input, then in the SubdivNet, all those 3D meshes, would be
re-meshed, and do all the convolutions and pooling, and then



generate the results. Moreover, the flaw also lies in need to
ensure the convolution is ordering-invariant before they do
the iterate convolution refinement stages, which makes this
SubdivNet not very user-friendly. Nevertheless, first thing
first, this approach avoided the most challenging part of the
3D reconstruction process, and essentially, the proposed
neural network cannot be directly used in inversing the 2D
images to 3D shape and pose results, which did not solve the
most challenging part of the Single-View 3D Object
Reconstruction.

Pose Prediction®

I RE
NAARA w'-'" Ly

A t
R, Kby e Stpe i

Kmﬁmx

DeRender

Figure 3. 3D-RCNN [19] network architecture for instance-level
3D object reconstruction

For the research in [19], they made a neural network
named: 3D-RCNN, as shown in Figure 3, which uses the
ResNet as backbone feature map extraction. In this 3D-
RCNN, they proposed a way to do the 2D to 3D inverse
graphics by firstly loading in the specified category of 3D
objects' ground truth models, which are generated by CAD
software; for those 3D CAD models, they have the real-
world object's priors' pieces of knowledge. This team
exploited the traditional research method of the Rol (Region
of Interest) method; since the final pose and shape will be
predicted based on the Rol area, which is a segmentation part
from the image that includes the target object, they suggest
re-parameterise the object from egocentric pose to the
allocentric pose, since allocentric orientation is a better
representation for learning object orientation as vividly
illustrated in Figure 4.
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Figure 4. [19]:(a) the egocentric representation needs to predict the
same angle for different image appearances. In (b), all cars in the
image have the same allocentric orientation, and we do not see any
appearance change. Thus, allocentric orientation is a better
representation of learning object orientation. (c) Furthermore, (d)
shows the calculation of the camera viewpoint position, the center
point of the projection bounding box, the principal point, the
amodal bounding box, and the detector box.

Furthermore, they point out that it is essentially and
crucially not to ask the network to forecast or calculate the
absolute location (Z index or distance) or deep information
for the object since it is a fundamentally ill-posed problem;

alternatively, instead, they suggest to use their network to
estimate the 2D projection of the canonical object centre ¢ =
[xc, yc, 1], and the 2D amodal bounding box of the object a
= [xa, ya, wa, ha] where (xa, ya) is the centre of the box and
(wa, ha) denotes the size of the box. Furthermore, finally, use
the network to get a compact 3D parametrisation model of
the scene. In this paper, the idea of using the viewpoint
concept of computer graphics to analyse, and the idea for the
analysis of object relative pose and position part, are both
novel and innovative, which is potentially a correct direction
for solving the 3D reconstruction issue. However, using the
CAD to generate the 3D model prior knowledge part, while
impressive, has a fundamental flaw: since it uses the ground
truth 3D shape and layout, it relies on 3d solid supervision
for training. However, to generate significant, valid, verified,
and category-varied training data sets of this kind is
impractical, which fundamentally limits the generalisation,
scalability, availability and usability of this approach.

III. DIRECTLY INFER FROM 2D IMAGES APPROACHES (NOT
BASED ON 3D GROUND TRUTH INPUT)

This group of research directly predicted the 3D
reconstruction outcome from the single 2D image; in other
words, they did not use the 3D ground truth in their research,
but alternatively, they used other methods, for example,
using Multiview images of the object which from different
viewing angles to get the photo of the object and then
combine that information to do the 3D reconstruction and
estimation inference.
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Figure 5. [11]: The overview of Mesh R-CNN.

The research in [11] made a neuronal network named
"Mesh R-CNN", which is based on the neuronal network of
"Mask R-CNN". They firstly use a voxel branch to predict
coarse voxel representations from the region proposal
network (RPN) proposals from the Mask R-CNN network,
analyse the coarse voxel and convert it into an initial triangle
mesh; for the second stage, they use a mesh refinement
branch to refine the initial triangle mesh, then output the final
3D mesh representation of the object. Inspired by Mask R-
CNN's mask prediction branch, they composed this voxel
branch, which predicts a G x G x G grid that gives the
object's full 3D shape instead of a 2D M x M bounding box
grid of Mask R-CNN.

However, the voxel prediction usually costs too much
calculation [11], [20], [21]; even for applying the small fully-
convolutional network between the predicted voxels and the
input feature map, this fully-convolutional network would
take up too much overhead. They use "cubify" tools to
convert the coarse voxel into a coarse mesh by analysing the
probabilities of voxel occupancy and the binarizing voxel
occupancy threshold. After that, they do "graph convolution"
on the coarse mesh to refine it and finally get the output 3D
object model. During the graph convolution, they only make
convolution on vertexes and mesh edges, but they did not do



the convolution on mesh triangle faces. As we discussed
before, the SubdivNet’s convolution method on mesh
triangle vertexes, edges, and faces is effective and efficient
and made an excellent example of how to do 3D Mesh
convolution. If this Georgia's Facebook team could exploit
the SubdivNet’s 3D Mesh convolution [18], their final
refined 3D mesh output would potentially improve.

Furthermore, as is known to all, there exist two ways of
object detection: one-stage object detection, like the YOLO
(You only look once) [10] series, and the second one is two
stages object detection, for example, like Mask R-CNN
series. So, for Mask R-CNN, the detection speed is
prolonged as a 2-stage object detection method since it needs
to generate too many redundant proposals in the first
detection stage, retrieve the proposals, and get the best
proposal. So, for Mesh R-CNN, built based on the Mask R-
CNN, the detection speed would be much slower since it first
generates the coarse voxel and uses the small fully-
convolutional network to do the mapping. Those operations
would consume too much overhead, potentially implying that
it is not suitable for applying for 3D real-time scenarios or
applications, such as Autonomous driving, Robotics vision.
As is known to all, Autonomous driving has an extremely
high standard for latency, and only the YOLO series
algorithms can almost meet such low latency requirements
[10], [15], [18], [21], [22]. However, through human cars-
driving behaviours and other daily activities, the speed for
human beings of processing 3D object detection and
recognition is breakneck and accurate compared to current
machine learning, so we infer that there do have a high-
speed, efficient and optimal algorithm that can convert the
2D image or scene into 3D model and scene. So, for Mesh R-
CNN, it does provide us with thinking of how to convert the
2D image into 3D Scene Estimation; however, it is not the
final and optimal solution for 3D Reconstruction and
Estimation of a single 2D image.

Backbone

Figure 6. [15]: it takes as input an RGB image, detects all objects
in 2D and predicts their 3D location and shape via layout and
shape heads, respectively. The output is a scene composed of all
detected 3D objects. During training, the scene is differentiable
rendered from other views and compared with the 2D ground truth.

For another most recent paper[15], they built the new
network based on the previous work of Mesh R-CNN. They
firstly pointed out the significant meaning of this area of
research, and they stated that it is a fundamental long-last
problem in computer vision for the inference of the 3D
estimation (including shape and layout) directly from 2D
images. Furthermore, the research result has extensive
applications as but are not limited to the visions of robotics,
autonomous driving, computer graphics, and AR/VR. They
admitted that most current research work in this area is only
based on the 3D ground truth input of the object, but
collecting those 3D ground truth is complex and expensive.

Hence, to break the limitations of this dependency, they
formed a method of collecting a bunch of 2D images for the
specified object from multiple viewpoints using 2D
supervision; the proposed neural networks' architect is
illustrated in detail in Figure 6. More importantly, their target
is to handle and reconstruct many 3D models simultaneously
for many individual objects in complex scenes in the realistic
world, instead of only dealing with such simple images with
only one single object. Consequently, their task is much
more challenging and meaningful. The most recent state-of-
the-art technology, differentiable rendering, is used in the
loss function to learn from multiple views.
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Figure 7. [15] improves the RolAlign method by using the RoIMap
method to extract the features to keep the aspect ratio invariant.

Most excitingly, when computing the vertex-aligned
features, they invent a concept of "RolMap", which can
preserve the object's aspect ratio and improve its 3D shape
prediction. It is a sagacious and brilliant way to preserve the
aspect ratio since, as we all know, in computer graphics,
when the images scale up or down, the pixel-wise change
can be drastic and dramatic; however, the "aspect ratio" keep
unchanged during these scenarios, and it is the most
essentially invariant feature when doing the 3D inverse
process from a 2D image, and it is also most crucial in all
kinds of data augmentation solutions. Although the
"RoIMap" approach is very innovative for their research and
keeps the aspect ratio of the original object, it does not do the
edges and surface convolution for the triangle meshes, and it
only provides a vertex alignment and mapping
correspondence between the triangle mesh and the original
2D image. Consequently, it caused the designated
reconstructed 3D objects to lack sufficient information for a
smooth mesh representation, and consequently, their output
shapes are of deficient quality. Moreover, as discussed
before, this research is based on Mask R-CNN, a two stages
object detection algorithm, which implies it would have too
big a latency to apply it for scenarios like autonomous
driving [22], [23], [24], [25], [26].

IV. DISCUSSION

Remember when humans reconstruct the 3D real world
in human brains or when they start to do object detection and
recognition; the human cortex mostly learns and processes
from their prior 3D objects experiences [12], [13], [14].
Two-dimensional objects take a relatively smaller proportion
or rare cases in the real world. Even when humans see the
pictures or images when they learn or read or infer from
those images, they not only do the pixels wise feature
extraction, which is far from sufficient but also, more
importantly, the human cortex would reconstruct the 3D
representation of the objects and scenes captured in the
image by using prior experience, knowledge or imagination.
Furthermore, they would try to understand and learn from



these images. By analogy, for machine learning or deep
learning, when the machines do the object detection task,
they should not only extract the pixel-wise feature maps but
also have a stage where the machine needs to think about the
object's 3D structure and 3D representation from their
memory as well. Here, we call it "Machine Imagine" or "3D
Scene Semantic Reconstruction" instead of "Machine
Learning". So, via this machine imagine, the machine would
reconstruct the 3D model for the objects and scenes in the
image and then do the inference and mapping of the object in
this image to the category in the real world.

Dataset Image Type | No. of | No. of | Total No.
images | categories | of models

KITTI[27] Real 12919 | 11 93,000+

Tkea Dataset[28] | Real 759 7 219

Pascal3D+[29, Real 30,899 | 12 79

p-3]

ShapeNetCore Synthetic - 55 51,300
(rendered)

ModelNet Synthetic - 662 127,915
(rendered)

ObjectNet3D Real 90,127 | 100 44,147

Pix3D[30] Real 10,069 | 9 395

ABC Synthetic - NA 1,000,000+
(rendered)

Table 2. Standard datasets are used in single-view 3D
reconstruction models.

For 2D computer vision, such as object detection and
recognition, the most famous and dominant datasets are
ImageNet [7] and Microsoft COCO [8]; those two datasets
have significant scale and volume of annotated data that
accelerate the development and advance of the 2D
perception. There is no such dominant dataset for the 3D
shape and pose prediction dataset due to the extreme
difficulty in collecting 3D annotations [11], [15]. For
standard datasets used in single-view 3D reconstruction
models are listed in table 1. It seems that the datasets most
usually used in the 3D evaluation are: KITTI [27], Pix3D
[30], and PASCAL3D+ [29] are the most popular datasets in
this area. Other datasets like ShapeNet [31], IKEA [28]
dataset, PASCAL3D and, Scene-Shapes, Hypersim [32] and
ScanNet [33], and NYUDV2 [34]. For KITTI it has more
than 93k out-door street scenes photos which are captured by
driving cars; KITTI data have 3D bounding boxes, which
have depth maps with a resolution of around 1240%374;
however, they do not have annotations for the shapes of the
vehicles which makes it very hard to use it for the shape
training and prediction. For Pix3D, although it provides a
large amount of data, all those objects in the data are indoor
objects, mainly IKEA furniture like desks and chairs, which
makes it very difficult to use it in other real-world scenarios.
For this 3D research area, the lack of highly standardised and
high-quality datasets handicaps the research development in
this area, all of the datasets in this area have their different
standards and benchmarks, which makes it relatively difficult
to train and test the data. So, in the future, building a 3D
high-quality dataset (like ImageNet or MS COCO in the 2D
research area) would be highly recommended and should be
the most priority.

From the most recent researches deliverables in this area,
it seems there are no most efficient, enjoyable, dominant, and
optimal approaches yet for solving the 3D reconstruction and
estimation for single-view 2D images; most of the
approaches and methods need a 3D ground truth as an input;
however, the 3D ground truth fully supervised and annotated
data is difficult to collect in large scales, and it is a very
challenging task to generate a 3D large scale annotated
datasets like the kind of 2D datasets like ImageNet, which
made their research no considerable generalisation ability
and cannot work in the wild. Some other researchers tried to
do the 3D reconstruction and estimation directly without the
3D ground truth; although the idea is innovative and creative,
the 3D shapes they generated are too coarse and not very like
the original object's silhouettes. Moreover, the model
processing time for their method is time-consuming for the
step from 2D image segmentation to the coarse 3D voxels
representation, which makes it not suitable and feasible for
real-time applications like Autonomous driving. However,
during the analysis and literature review of the most recent
searches, it seems that for the 3D mesh convolution part, the
method used in [18] is an efficient way to do the 3D
convolution, which involves vertex-based convolution,
edges-based convolution and surface-based convolution,
which generated a smooth state-of-the-art experiment result
of 3D object shape and pose. However, for the 2D Image
graphically-reverse to the 3D voxel or mesh stage, it seems
that using the computer graphics knowledge and methods to
set the viewpoint positions and use the aspect ratio concept
to reverse the image becomes the most promising way. The
Multiview images approach can be instrumental in getting
information from all kinds of viewing angles of the object;
however, when fusing those images to generate the 3D
models, it needs heavy calculation and is not that efficient.
Moreover, inspired by [6], [35], [36], [37], [38] and much
other autonomous driving research, we believe that when
using the Multiview of 2D images approach, it is
recommended that the 2D images firstly map to the Birds-
Eye-View (BEV) representations space and then do the 3D
reconstruction on the BEV space, since the Birds-Eye-View
space vector is much easier to mapping to final 3D
Reconstruction vector space, and which would potentially
make it easier to reconstruction and estimation the 3D shapes
and poses.

From the inspirations of Computer Graphics (like
OpenGL principles), there exists an observer for every image
when the image is captured; it can be a camera, a person, or a
video recorder. Furthermore, it is no arguing that a
photograph's formation must have a viewpoint and a distance
from the observer to the real object. So, when the camera
zooms in or out, the object in the image scales up or down
correspondingly. So, when we want to do the 3D
reconstruction from a single 2D image, we must consider the
viewpoint's position, the object's silhouettes and the distance
between the observer and the object. However, currently 2D
object detection and recognition, the computer or machine
cannot retrieve such features or information from the 2D
feature map to detect the same target object when the image
size scales up or down. For the machine to have a unified
cognition of objects at different scales, it needs to consider
the invariant characteristics, like scale invariant and
translation invariant characteristics and features of images at
different scales.
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Figure 8. [39]: (a) Standard conv; (b) Proposed PyConv.

On this occasion, we believe that The SIFT [40](Scale
Invariant Feature Transform) algorithm can help to solve this
difficulty. In SIFT algorithm it has a module named
"Gaussian Pyramid", which can retrieve different resolutions
features of the same image at different scales that simulates
the principles of the human visual system because the
Gaussian Pyramid has many layers; the bottom layers of the
pyramid, it denotes the high resolution and large size and
scale of the image, which is mapping to the case of the short
distance between the viewpoint and the object; while in the
upper layers, it denotes the low resolution and small size of
the image, which is mapping to the case of the far distance
between the viewpoint and the target object. So, when using
Gaussian Pyramid to extract the feature map of the image, it
will extract more information than the traditional 2D CNN
convolution process, which will give us the depth of
information concept of the object, and that will help us a lot
in the 3D reconstruction process of the object and the scene.
A similar concept has already been used in the pyramidal
convolution [39] (PyConv) neural network, so in PyConv
neural network, they use a similar concept to Gaussian
Pyramid, illustrated in figure 8. When doing the convolution,
they made a Pyramid structure that includes several layers;
during each layer, it extracts the feature map by different
kernel sizes, so in the bottom layers, they use the smallest
kernel size, and in the upper layer, they use different
increasing kernel sizes. Simultaneously, the kernel depth
decreases from the bottom to the top of the pyramid. To do
the convolution for different depths of features, the input
features are split into the different groups based on the
different kernel depths and then do the convolution
respectively and correspondingly. For the Standard
convolution process, we can see that there is only one feature
map extraction process, and it lost too much depth and
relative location information, which are necessities for 3D
reconstruction. To make accurate 3D Reconstruction results
from 2D images, the SIFT algorithm and the Gaussian
Pyramid can retrieve much more useful scale invariant and
translation invariant information than the current 2D CNN
feature map extraction process [39] and consequently would
be very promising in generating better results.

V. CONCLUSION

In this comprehensive survey paper, we analysed the
issues in 3D reconstruction and estimation from single 2D
images and emphasised the importance of 3D object
reconstruction and scene understanding for real-world
applications. The information loss during 2D image camera
captures and 2D CNN convolutions have also been
discussed. All the methods in this research area are divided
into two categories: the first category is based on the 3D
ground truth input, and the second category does not base on
the 3D ground truth. Alternatively, they use other methods to
reconstruct the 3D shape directly and pose from the 2D
image. Although the first category may generate the state of
art results, the requirement of 3D ground truth input has
limited their generalisation ability for their approach. The
second category would become the future trend for this
research field; however, apparently, there is still too much
improvement space for it; for instance, the calculation takes
too much latency and the experiment's 3D shape and pose
results are too coarse, which makes it unrealistic to apply it
into the real world and real-time applications, like
autonomous driving. Moreover, the standard datasets in this
area are discussed, and a large-scale, unified, high quality
and highly standardised dataset, among which 3D shape and
pose are fully annotated, needs to be built to accelerate the
development of this area of research. Last but not the least,
the Birds-Eye-View (BEV) representations and SIFT
algorithms are discussed and suggested as the methodology
and inspirations for the future trend of research in this area.
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