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Abstract—In recent years, Vision Transformers (ViTs) have
shown promising classification performance over Convolutional
Neural Networks (CNNs) due to their self-attention mechanism.
Many researchers have incorporated ViTs for Hyperspectral
Image (HSI) classification. HSIs are characterised by narrow
contiguous spectral bands, providing rich spectral data. Although
ViTs excel with sequential data, they cannot extract spectral-
spatial information like CNNs. Furthermore, to have high clas-
sification performance, there should be a strong interaction
between the HSI token and the class (CLS) token. To solve these
issues, we propose a 3D-Convolution guided Spectral-Spatial
Transformer (3D-ConvSST) for HSI classification that utilizes a
3D-Convolution Guided Residual Module (CGRM) in-between
encoders to “fuse” the local spatial and spectral information
and to enhance the feature propagation. Furthermore, we forego
the class token and instead apply Global Average Pooling,
which effectively encodes more discriminative and pertinent high-
level features for classification. Extensive experiments have been
conducted on three public HSI datasets to show the superi-
ority of the proposed model over state-of-the-art traditional,
convolutional, and Transformer models. The code is available
at https://github.com/ShyamVarahagiri/3D-ConvSST.

Index Terms—Classification, Hyperspectral Images, Deep
Learning, Transformer, Remote Sensing, 3D-Convolution, and
Global Average Pooling.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain several spec-

tral bands at each pixel, which enables the recognition

of materials. Particularly those that have minute spectral

discrepancies [1] can be easily identified. In addition, HSIs

also contain 2D spatial information, which is essential for

improving the representation of hyperspectral data [2]. Due

to the rich spectral and spatial information possessed, HSIs

have been employed for earth observation and remote sensing

tasks, like urban planning [3]. crop management [4], and

environmental monitoring [5].

Classical HSI classification techniques involved pixel-wise

classification of the spectral signatures (e.g., support vector

machines (SVMs) [6] and random forest (RF) [7]). Since

spatial contexts are not in consideration, classification maps

produced by these pixel-wise classifiers are frequently in-

adequate [8]. Due to poor representation capabilities and

limited data fitting, traditional methods encounter performance

bottlenecks as the training data becomes more complex.

For HSI classification, deep learning (DL) methods are

prominent [9]. HSI classification has been dominated by

∗Worked as Interns.

convolutional neural network (CNN) based architectures [10].

CNNs apply multiple linear transformations combined with

non-linear activation functions to extract spectral-spatial in-

formation. A 1D-CNN is used to extract the spatial features

of HSIs in [11]. A 2D-CNN is leveraged to encode the spatial

characteristics of HSIs in [12]. Dual branches are employed

in [13] and [14] where the spectral domain is captured using

a 1D-CNN and the spatial domain is captured using a 2D-

CNN. The two features are then fused using multiple fully

connected (FC) layer and passed to classifier. A 3D-CNN is

employed to capture the joint spatial-spectral features from

HSIs in [15]. HSI-CNN [16] also utilizes a 3D-CNN to extract

spectral-spatial features and then uses a standard 2D-CNN

to extract the HSI features. In [17], a hybrid spectral-spatial

CNN (HybridSN) uses a 3D-CNN to learn the joint spatial-

spectral feature representation followed by the encoding of

spatial features using a 2D-CNN. To extract the discriminative

characteristics using CNNs, different methods are proposed

such as integration of additional channel and spatial attention

layers [18] and utilization of pyramidal ResNets [19].

In recent years, Transformers are cutting-edge backbone

networks that excel at processing sequential data by using a

self-attention mechanism. Transformer networks have shown

very promising performance for HSI classification. In [20],

a spatial-spectral Transformer (SST) network is exploited

to construct connections between adjacent spectra using a

modified transformer with a dense connection. SATNet uses

the self-attention and spectral attention mechanisms to ex-

tract features from HSIs [20]. The Vision Transformer (ViT)

[21] has proven highly effective at processing visual data. It

can effectively capture the relationship between distant HSI

spectral patterns. CNN and ViT are combined in the recent

HSI classification techniques. The Convolution Transformer

Mixer (CTMixer) [22] combines the ability of CNNs to

extract local features, and the ability of ViTs to extract global

features by using a group parallel residual block and a dual-

branch structure. In [23], a gaussian-weighted feature tokenizer

Transformer is used to obtain deep semantic features. A group-

aware hierarchical Transformer overcomes over-dispersion of

the multiple HSI bands by using a grouped pixel embedding

module [24]. SpectralFormer [25] uses group-wise spectral

embeddings to learn spectral information. Best architecture

configurations of spectral-spatial Transformer are searched for

HSI classification in [26] using a factorized architecture search

framework. Spectral-spatial transformer not only show better

8

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00011



Fig. 1: Overall framework of the 3D-ConvSST Architecture (left) and the 3D-Convolution Guided Residual Module (right)

results, but is also less noise sensitive [27].
The Transformer models mentioned above exploit the Trans-

former’s ability to process spectral data. Although Transform-

ers excel at capturing sequential spectral data, CNNs are

effective at capturing high-level local features. In this paper,

we propose a 3D-Convolution guided Spatial-Spectral Trans-

former (3D-ConvSST). This model utilizes the Transformer’s

ability to capture global information and spectral features and

also utilizes a 3D-Convolution layer to extract local spatial

features. In the proposed model, a 3D-Convolution layer

followed by a HetConv [28] layer is used to introduce some

inductive bias inherent to CNNs to the Transformer. The CNNs

are also used to control the depth of the spectral features and to

extract robust and discriminative features from the HSI. Inside

the Transformer, a 3D-Convolution is used to fuse information

from the preceding encoder blocks, before being fed to the

next encoder block. This helps in the extraction of valuable

spatial features. Finally, our model foregoes the usage of the

class (CLS) token. Rather, we use global average pooling of

the final features corresponding to each patch. Global average

pooling takes advantage of the spatial data extracted by the

3D-Convolution. At the end, a linear transformation is utilized

followed by softmax to produce the class-wise probabilities.

The main contributions are summarized as:

1) A novel 3D-Convolution Guided Residual Module

(CGRM) is proposed to fuse spectral information and

extract spatial information from the preceding Trans-

former encoder blocks. It utilizes a 3D-Convolution

layer between each encoder block.

2) A global average pooling layer is used rather than a

class token for final representation. This takes advantage

of the spatial information extracted from the CGRM

module to classify HSI images.

3) A 3D-ConvSST Transformer model is introduced by

using the CGRM module with global average pooling.

The evaluations are performed on three public and

benchmark HSI datasets to validate the efficacy.

Rest of this paper contains the architecture of the 3D-

ConvSST in Section II, experimental settings in Section III,

results in Section IV, and conclusion in Section V.

II. PROPOSED 3D-CONVSST ARCHITECTURE

Fig. 1 illustrates the proposed 3D-ConvSST architecture for

HSI classification. It consists of the convolution-based fea-

ture tokenization, transformer encoder, 3D-convolution guided

residual module, global average pooling and classifier.

A. Convolutional Networks for Feature Extraction

The proposed model incorporates CNN-specific inductive

biases into the Transformer and extracts high-level abstract

features using a convolutional neural network (CNN). This

also allows us to control the spectral dimensions of the HSI.

Robust and discriminative characteristics are extracted from

the HSI by the suggested model using a 3D-Conv layer

followed by a HetConv [28] layer. The HSIs are cubic with

shape (H×W ×B). It is reshaped into (1×H×W ×B) and

fed into a 3D-Conv layer with a kernel having (3 × 3 × 3)
dimension. This fully utilises the spectral and spatial infor-

mation of the HSI. Padding of (1 × 1 × 0) is used to keep

the spatial dimensions consistent. The data is then reshaped

and fed into the HetConv layer, which consists of two 2D-

Convolutions working in parallel, one groupwise and one
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pointwise. HetConv utilizes two kernels to extract multiscale

information. The results of the two operations are added

elementwise (⊕). Batch Normalization [29] and the ReLU

activation function is applied after each convolution. These

operations are represented as,

X = Reshape(XHSI)

Xi = Reshape(Conv3D(X, k1, p1, g1))

Xo = HetConv(Xi)

= Conv2D(Xi, k2, p2, g2)⊕ Conv2D(Xi, k3, p3, g3),
(1)

where k1 = 3, p1 = (1, 1, 0), g1 = 1, k2 = 3, p2 = 1, g2 = 8,

k3 = 1, p3 = 0, and g3 = 1. K is the kernel size of the

convolution, p is the padding and g is the number of groups.

The output shape of the 3D-Conv is (8×H ×W × (B− 8))
and that of the HetConv is (H ×W × 64).

B. Tokenization and Positional Embedding

The HSI cube must be embedded into patches before being

fed into the Transformer. Multiple patch tokens having shape

(1× 64) can be obtained by flattening HSI subcubes of shape

((H ×W )× 64) as Xflat = T (Flatten(Xo)), where T(·) is

a transpose function and Xflat ∈ R
n×64, and n is the number

of patches. The sequential information of the patch tokens

are retained using trainable positional embeddings (PE) which

is added to the HSI tokens, followed by a dropout layer as

X = DP (Xflat⊕PE), where DP represents a dropout layer

with value 0.1.

C. Vision Transformer Encoder Module

Vision Transformer (ViT) [30] consists of a transformer

encoder module that receives the features of different patches

as input tokens and transforms them into output tokens. A

multilayer perceptron (MLP) block and a multi-head self-

attention (MSA) block comprise the Transformer encoder. A

Layer Norm (LN) is used prior to the MSA and MLP blocks,

with residual connections following each block. The Gaussian

Error Linear Unit (GELU) is the activation function utilised

for the MLP. The encoder block is represented as:

z′l = MSA(LN(zl−1)) + zl−1

zl = MLP (LN(z′l)) + z′l,
(2)

where z is the feature tokens and l = 1, 2, ..., L. The

performance of the Transformer can be attributed to its self-

attention mechanism in the MSA block which captures the

correlation between sequential tokens. This is achieved by

linearly mapping the tokens to a Query Q, Key K, and Value

V vectors. The attention score measures the strength of the

relationship of a token with other tokens in the sequence. The

self-attention is computed as

Attention(Q,K,V) = softmax

(
QKT

√
dK

)
V, (3)

where dK is the dimension of K. The MSA module uses the

self-attention as multiple heads in parallel and concatenates

the outputs followed by a linear projection as

MSA(Q,K,V) = Concat(A1, A2, ..., AH)W, (4)

where H is the number of attention heads, W ∈ R
H×dk×N

is a learnable parameter matrix and N is the number of

patch tokens. The output obtained by the MSA module is

fed into the MLP module after the residual connection as

z = L(GELU(L(x))), where x is the layer normalized output

of the MSA and L(·) is a linear transformation operation. A

dropout layer and layer normalization are applied after the

MLP layer to reduce the gradient vanishing problem and to

speed up training.

D. 3D-Convolution Guided Residual Module (3D-CGRM)

Although ViTs excel at characterizing spectral signatures,

they lack the encoding of spatial information since patches

are handled as separate tokens. Therefore, we design a 3D-

CGRM layer which uses a 3D-Conv to fuse data across

encoder layers and extract discriminative spectral features. The

proposed CGRM is applied after every Transformer encoder.

Consider {e1, ..., eL} ∈ R
N×dt denote the output of the L

encoders. To implement the CGRM module, we unflatten

the patches back into the original image and add a dimen-

sion to the tensor using the unsqueeze operation to produce

{e′1, ..., e′L−1} ∈ R
1×H×W×64. The tensors e′l and e′l−1 are

concatenated on the new dimension. The resultant tensor of

dimension {2, H,W, 64} is fed into a 3D-Convolution layer

with kernel (2, 3, 3) and padding (0, 1, 1). This merges the

respective spectral bands of the two encoder outputs and

extracts the discriminative spectral features. The 3D-Conv
output e′′l ∈ R

1×H×W×64 is squeezed back to its original

shape and flattened. The process of CGRM can be represented

as

e′l = Unsqueeze(Unflatten(el)),

e′′l = Conv3d(concat[e′l−1, e
′
l]),

el = Flatten(Squeeze(e′′l )),
(5)

where l = 1, ..., L. The output of CGRM is fed into the next

encoder block. Layer normalization is applied to the output

after the Lth encoder block.

E. Global Average Pool Classification

In traditional ViT implementations, a learnable class (CLS)

token is prefixed to the patch tokens and used to compute

the final feature representation. However, we empirically find

that the average pooled visual tokens contain more discrim-

inative information than the single class token. Hence, we

apply the Global Average Pooling on the final output visual

token features as c = L(Pool(eL)), where eL is the layer

normalized output of the Lth encoder layer and L(·) is a linear

transformation. The shape after pooling is (1 × 64) which is

transformed to (1× C), where C is the number of classes.
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TABLE I: The statistics of Houston, MUUFL and Botswana

datasets using category and number of train and test samples.

Class Houston Train Test MUUFL Train Test Botswana Train Test
1 Healthy Grass 198 1053 Trees 1162 22084 Water 14 256
2 Stressed

Grass
190 1064 Mostly

Grass
214 4056 Hippo Grass 5 96

3 Synthetic
Grass

192 505 Mixed
Ground

344 6538 Floodplains
Grasses 1

13 238

4 Trees 188 1056 Dirt and
Sand

91 1735 Floodplains
Grasses 2

11 204

5 Soil 186 1056 Roads 334 6353 Reeds1 13 256
6 Water 182 143 Water 23 443 Riparian 13 256
7 Residential 196 1072 Building

Shadows
112 2121 Firescar2 13 246

8 Commercial 191 1053 Buildings 312 5928 Island Interior 10 193
9 Road 193 1059 Sidewalks 69 1316 Acacia Wood-

lands
16 298

10 Highway 191 1036 Yellow
Curbs

9 174 Acacia Shrub-
lands

12 236

11 Railway 181 1054 Cloth
Panels

14 255 Acacia Grass-
lands

15 290

12 Parking Lot 1 192 1041 Short Moplane 9 172
13 Parking Lot 2 184 285 Mixed

Moplane
13 255

14 Tennis Court 181 247 Exposed Soils 5 90
15 Running

Track
187 473

Total 2832 12197 2684 51003 255 3086

III. EXPERIMENTAL SETTINGS

HSI datasets: We use three benchmark HSI datasets,

namely Houston, MUUFL and Botswana1 as summarized in

Table I. Houston: The Houston 2013 HSI dataset is collected

over the area surrounding the University of Houston. It consists

of 15 classes having 144 spectral bands. It has dimensions of

340×1905 pixels with the spatial resolution being 2.5 metres

per pixel. MUUFL: The MUUFL dataset is collected by

imaging the area over the University of Mississippi Gulfport.

Its original dimensions are 325 × 337 pixels with 72 spatial

bands, with 11 land cover classes. However, 8 spectral bands

are removed due to noise contamination, and dimensions are

reduced to 320 × 220 pixels to account for the lost area.

Botswana: The Botswana dataset was acquired over the area

surrounding the Okavango Delta in Botswana. The images

contain 242 spectral channels and dimensions of 1496 × 256
pixels. After removing the noisy and uncaliberated spectral

bands we have 145 spectral bands. To compensate for the lost

area the spatial resolution is reduced to 1476× 256.

Evaluation Metrics: Overall accuracy (OA), average ac-

curacy (AA), kappa coefficient, and categorical classification

accuracy are used to objectively analyse the classification

performance. Furthermore, the classification maps obtained by

different models are visualised for qualitative comparison.

Experimental Setup: The validation tests are carried out

using a Google Colab environment which has an Intel Xeon

CPU with 13 GB of RAM and a Tesla K80 accelerator. The

batch size is set to 64. The training is performed for 500
epochs with Adam optimizer and initial learning rate 5e−4.

However, the 3D-ConvSST can converge with fewer epochs.

The input image size for the 3D-ConvSST is set to 11×11 and

the patch size is set to 1×1. The Transformer encoder receives

the tokens with 64 dimension. The MLP has the same number

1The Houston and Botswana datasets can be found at:
https://github.com/mhaut/HSI-datasets/

TABLE II: Accuracy (%) comparision on Houston dataset.

Class SVM RF 1D-
CNN

2D-
CNN

3D-
CNN

RNN ViT Morph-
Former

3D-
ConvSST

1 80.44 78.73 80.25 66.48 82.24 78.06 79.20 82.53 82.52
2 82.14 72.74 78.29 81.77 81.02 89.00 74.15 84.77 84.96
3 100.0 97.23 70.50 43.37 68.91 63.37 99.21 94.26 97.42
4 74.81 76.89 91.95 82.10 99.34 54.26 92.80 96.69 98.57
5 96.97 89.96 93.37 86.17 98.01 87.12 93.66 97.54 100.0
6 95.10 88.11 77.62 76.92 81.12 89.51 100.0 95.80 100.0
7 73.13 83.40 67.44 78.64 75.65 27.61 83.68 89.46 96.54
8 56.79 41.60 68.19 55.84 57.55 1.71 67.71 70.09 91.26
9 85.55 75.45 74.22 62.70 74.98 48.44 78.85 86.69 83.66
10 65.25 38.90 52.61 46.81 52.41 10.33 51.93 67.08 68.24
11 84.63 58.16 72.96 48.96 63.38 37.48 90.70 80.27 88.99
12 94.43 80.60 89.72 51.39 81.08 49.95 71.95 96.25 96.63
13 77.19 66.32 79.65 78.60 80.70 34.39 82.11 91.93 92.98
14 91.90 80.16 79.76 79.35 81.38 99.60 100.0 95.55 100.0
15 88.16 94.29 74.21 22.20 74.21 55.60 98.10 93.23 100.0
OA 81.00 72.16 76.67 64.21 76.45 50.55 80.91 86.35 90.37
AA 83.10 74.84 76.72 64.09 76.80 55.10 84.27 88.14 92.12
Kappa 79.46 69.93 74.76 61.17 74.46 46.63 79.28 85.23 89.54

TABLE III: Accuracy (%) comparision on MUUFL dataset.

Class SVM RF 1D-
CNN

2D-
CNN

3D-
CNN

RNN ViT Morph-
Former

3D-
ConvSST

1 93.62 93.34 97.07 97.12 97.61 96.98 97.86 97.83 97.71
2 42.60 64.52 74.46 78.21 71.92 77.37 81.09 89.47 91.69
3 65.31 74.37 80.30 85.50 85.87 85.15 84.06 91.85 92.12
4 40.52 58.44 83.40 86.40 92.68 86.05 87.84 92.51 93.94
5 52.40 82.07 91.59 92.76 95.20 91.42 94.35 93.56 92.58
6 0.00 62.08 83.07 91.65 94.58 69.75 94.58 97.74 97.74
7 44.32 48.33 84.96 85.34 79.87 82.74 87.79 87.08 90.05
8 64.93 81.60 92.34 93.29 88.38 92.16 95.61 96.64 97.52
9 0.00 14.51 52.43 63.98 53.72 55.24 62.01 61.63 62.23
10 0.00 3.45 18.39 30.46 22.41 20.69 21.84 22.99 13.21
11 61.57 70.20 53.73 45.49 45.49 57.65 78.82 80.39 77.64
OA 69.90 80.06 89.16 90.89 90.11 89.92 91.99 93.82 94.10
AA 69.90 59.35 73.79 77.29 75.25 74.11 80.53 82.88 82.40
Kappa 58.96 73.29 85.58 87.92 86.83 86.62 89.38 91.82 92.20

TABLE IV: Accuracy (%) comparision on Botswana dataset.

Class SVM RF 1D-
CNN

2D-
CNN

3D-
CNN

RNN ViT Morph-
Former

3D-
ConvSST

1 99.61 96.09 98.83 100.0 94.14 100.0 97.66 100.0 99.21
2 100.0 93.75 80.21 86.46 40.63 87.50 100.0 100.0 96.87
3 98.32 94.12 100.0 100.0 89.08 76.05 100.0 100.0 100.0
4 97.55 88.73 99.51 100.0 83.82 84.31 100.0 100.0 100.0
5 85.94 58.98 80.86 62.11 70.70 85.55 91.80 95.31 96.09
6 87.89 68.75 80.47 89.84 51.17 81.64 92.58 96.48 95.70
7 100.0 99.59 100.0 100.0 95.53 99.59 100.0 100.0 100.0
8 100.0 93.26 98.45 98.96 69.95 78.24 100.0 100.0 100.0
9 95.30 76.17 96.31 77.85 94.97 87.92 97.32 96.98 99.66
10 99.15 83.05 92.80 91.95 64.83 69.07 100.0 99.58 100.0
11 100.0 98.97 85.52 89.31 83.45 95.52 100.0 100.0 100.0
12 93.60 91.28 91.28 92.44 84.88 95.35 98.84 98.84 100.0
13 93.33 85.88 88.24 92.16 37.65 82.75 97.65 100.0 100.0
14 82.22 82.22 81.11 85.56 0.00 78.89 82.22 82.22 82.22
OA 95.56 85.97 91.67 90.28 73.40 86.36 97.47 98.41 98.60
AA 95.21 86.49 90.97 90.47 68.63 85.88 97.00 97.82 97.84
Kappa 95.19 84.80 90.98 89.47 71.09 85.21 97.26 98.28 98.49

of heads and size as in Morphformer [27]. Each encoder

contains an MLP with two fully connected layers as well as

a GELU activation function after the first layer. Following the

MLPs, a dropout layer drops 10% of the neurons.

Compared Methods: Extensive tests are carried out using

the proposed 3D-ConvSST model and the results are compared

to those of traditional and state-of-the-art models. The base

code used for the compared methods is from [31] GitHub

repository2. Traditional classifiers such as Support Vector

2The source code for the comparitive methods:
https://github.com/AnkurDeria/HSI-Traditional-to-Deep-Models
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(a) Ground Truth (b) Class Labels

(c) SVM (d) Random Forest (RF) (e) 1D-CNN

(f) 2D-CNN (g) 3D-CNN (h) RNN

(i) ViT (j) MorphFormer (k) 3D-ConvSST

Fig. 2: Visualization maps for the University of Houston (UH) HSI Dataset

Machine (SVM) [32] and Random Forest (RF) [33] are com-

pared. The standard deep learning models are also compared,

such as 1D-CNN [11], 2D-CNN [12], 3D-CNN [15], and

RNN [34]. We also compare with cutting-edge Transformer-

based approaches, such as Vision Transformer (ViT) [30] and

MorphFormer [27]. The ViT model uses 8 transformer encoder

blocks and an initial learning rate of 4.95e−4.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Quantitative Results

Tables II, III, and IV present the quantitative evaluation

of classification performance. The best classification results

are highlighted in bold. The results show that our proposed

method outperforms all other techniques in terms of OA,

AA, and Kappa while being superior to other methods when

comparing class-wise accuracy. It is worth mentioning that

CNN-based classifiers perform similarly, with the exception

of 2D-CNN on the Houston dataset and 3D-CNN on the

Botswana dataset which show notably worse metrics. The

SVM classifier performs well on the Houston and Botswana

datasets compared to the Random Forest classifier, but fell

short on the MUUFL dataset, misclassifying three classes.

RNNs performance is on par with the Convolution-based

classifiers, but unable to converge on the Houston dataset. Due

to the attention mechanism, Transformer approaches such as

ViT and MorphFormer function better on all three datasets.

However, incorporating spatial-spectral information into the

proposed 3D-ConvSST improves classification performance in

terms of OA, AA, and Kappa on all the datasets. Table II

demonstrates that the SVM could outperform the conventional

and deep learning-based classifiers on the Houston dataset

and on par with traditional ViT. However, the MorphFormer

and 3D-ConvSST models perform better than other models.

Because of its improved ability to learn spatial and spectral

information, the proposed method outperforms all other mod-

els. Table III displays the MUUFL dataset’s generalisation

ability for fragmented train and test samples. All of the

deep learning techniques outperform the traditional classifiers

in terms of accuracy. The 3D-ConvSST outperforms every

model, including Transformer-based approaches. Table IV

lists the classification results on the Botswana dataset. SVM

outperforms all the conventional and deep learning classifiers.

However, the results of Transformer models are better with the

outstanding performance of the proposed 3D-ConvSST model.

B. Visual Comparison

Figs. 2, 3 and 4 show the obtained classification maps

on Houston, MUUFL, and Botswana datasets respectively.

Conventional classifiers like SVM and RF only utilize spectral

information and generally provide classification maps with

salt and pepper noise around the edges. The same is also

noticeable in the CNN-based classifiers. This is indicative of

the inability of the classifiers to accurately identify the objects.

The Transformer models provide smoother classification maps,

as it can extract more abstract information with sequential

representation. Compared to ViT and MorphFormer, our 3D-

ConvSST model provides the best classification maps due to

its improved spatial-spectral fusion method to characterize the

texture and edge details.

C. Performance over Different Encoder Depths

Fig. 5 shows the classification performance of the 3D-

ConvSST model over different encoder depths on Houston,

MUUFL and Botswana datasets. There is a tradeoff since

deeper Transformer models increase the complexity of the

model, but susceptible to overfitting. In the Houston dataset,

a depth of two encoders achieves the best OA, AA and

Kappa values. MUUFL and Botswana prefer deeper models,

achieving the highest classification performance at encoder

depths of 8 and 7, respectively. However, on the MUUFL

dataset, the difference in classification performance across

each depth is very minuscule compared to that in Houston

and Botswana.
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(a) Ground Truth (b) SVM (c) RF (d) 1D-CNN (e) 2D-CNN (f) 3D-CNN

(g) RNN (h) ViT (i) MorphFormer (j) 3D-ConvSST (k) Class Labels

Fig. 3: Visualization maps for the MUUFL HSI Dataset

(a) Ground Truth (b) Class Labels

(c) SVM (d) Random Forest (RF) (e) 1D-CNN

(f) 2D-CNN (g) 3D-CNN (h) RNN

(i) ViT (j) MorphFormer (k) 3D-ConvSST

Fig. 4: Visualization maps for the Botswana HSI Dataset

Fig. 5: Effect of the 3D-ConvSST encoder depth.

D. Ablation Analysis

Classification performance of the 3D-ConvSST is analysed

by progressively adding CGRM and AvgPool modules to the

architecture on the Houston, MUUFL and Botswana datasets

as showcased in Table V. The model showcases similar

performance when using one or neither of the two modules.

In case of using only the CGRM module, the extracted spatial

characteristics of the Conv3D layer cannot be fully utilized by

the CLS token. In case of using only the AvgPool, the Average

Pooling layer cannot showcase its full potential without the

discriminative spatial characteristics extracted by the CGRM

TABLE V: Ablation analysis on the 3D-ConvSST model.

Dataset Modules Metrics
CGRM AvgPool OA (%) AA (%) Kappa (%)

Houston

� � 87.86 89.21 86.82
� � 87.30 89.61 86.22
� � 87.82 89.63 86.80
� � 90.37 92.12 89.55

MUUFL

� � 93.89 81.06 91.90
� � 93.27 79.39 91.07
� � 93.59 79.31 91.50
� � 94.11 82.41 92.20

Botswana

� � 98.54 97.71 98.42
� � 98.61 98.03 98.49
� � 98.51 97.98 98.38
� � 98.61 97.84 98.49

module. However, using both the modules together showcases

a significant increase in accuracy in Houston and MUUFL.

On the Botswana dataset, the performance using both is equal

to using only AvgPool as this dataset contains more discrimi-

native spectral features compared to spatial features. Overall,

both modules together provide a significant improvement (up

to 9% OA) compared to a traditional ViT.
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V. CONCLUSION

In this paper, we present a novel 3D-ConvSST architecture

based on improved spatial-spectral fusion within the Trans-

former model with 3D-Convolution guided residual module

(CGRM) and global average pooling (AvgPool). The CGRM

encodes the spatial-spectral features of subsequent Trans-

former encoders. However, the AvgPool captures the spatial

discriminative context in the final feature representation. The

use of both CGRM and AvgPool exploits the complimentary

information and showcases superior HSI classification per-

formance compared to other deep learning and conventional

classifiers. The higher encoder depth is preferred on MUUFL

and Botswana datasets and lower on Houston dataset.
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