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Abstract— The efficacy of reinforcement learning has been 
substantiated in the development of intelligent modules for 
achieving autonomous collision avoidance in maritime 
autonomous surface ships (MASS). However, the performance 
of reinforcement learning algorithms with different 
configurations varies for making decisions. The evaluation and 
comparison of different configurations of reinforcement 
learning algorithms in this application remain challenging due 
to the absence of standardized or consensually adopted testing 
methodologies. In light of this, we proposed a simulation-based 
evaluation framework with three hierarchical metrics, namely, 
collision-free achievement, deviation angle for path-following, 
and avoidance time consumed, to enable the evaluation of 
reinforcement learning-based collision avoidance approaches. 
Comparative experimental analyses were conducted on six 
configurations of reinforcement learning algorithms with 
distinct reward designs across three typical vessel encounter 
scenarios in a simulated environment. Results indicated that by 
employing a potential-based design in intermediate rewards, 
specifically through the calculation of the course deviation, a 
notable enhancement in path-following can be achieved. 
Additionally, the weighted sum approach in the final reward 
design has also been demonstrated to effectively enhance the 
respective performance. The evaluation framework proposed, 
and our comparative experiments provided valuable insights 
and reference for evaluating collision avoidance algorithms in 
unmanned ship navigation and the reward designs employed in 
reinforcement learning within this specific application scenario. 

Keywords—Reinforcement Learning, Collision Avoidance, 
Simulated Testing, Maritime Autonomous Surface Ships 

I. INTRODUCTION  

The need  for heightened efficiency and operational safety 
has driven the evolution of diverse levels of automation 
implemented in maritime sector. Given that human factors 
remain the predominant contributors to collision incidents in 
maritime traffic, the development of autonomous ship 
navigation systems, capable of reducing the probability of 
human errors and lowering labor costs, emerges as a typical 
technological focus within the industry. Integrated with other 
onboard sensors, autonomous ship navigation systems is 
designed to autonomously control or assist vessels in safely 
reaching their destinations in a manner that is relatively more 
accurate and efficient. Ships equipped with such systems that 
can operate, to varying degrees, independently of human 
interaction are referred to as Maritime Autonomous Surface 

Ships (MASS) by the International Maritime Organization 
(IMO)[1]. 

The navigation control of maritime vessels is a multi-
objective complex decision-making process. Its automated 
solutions not only need to address the trade-offs between path 
tracking and collision avoidance but also consider the intricate 
kinematic characteristics of ships. Differing from other 
conventional methods that require extensive calculations 
involving ship dynamics models, Reinforcement Learning 
(RL) emerges as an effective alternative for autonomous 
control[2]. The RL agent directly acquires the end-to-end 
connection between observations and actions through the 
principle of trial and error. In recent years, various scholars 
have proposed different RL-based methods to demonstrate its 
effectiveness in autonomous navigation for maritime vessels. 
For example, the Proximal Policy Optimization (PPO) RL 
algorithms[3] has been adopted by Meyer[4] and Zhao[5] in 
their solution for vessel  collision avoidance. The 
implementation was successful in their respective simulation 
environments. Additionally, Deep Q-Network (DQN) has 
been employed by Woo[6] to design the collision avoidance 
decision module for unmanned surface vehicle, and they have 
successfully conducted real ship experiments involving 
multiple encounters.  

However, the performance of reinforcement learning 
algorithms with different configurations varies and the 
evaluation and comparison of   reinforcement learning 
algorithms in autonomous ship navigation remain challenging 
due to the absence of standardized or consensually adopted 
testing methodologies[7]. Larsen [8] conducted a detailed 
comparison of various difficulty levels in simulated 
environments to evaluate the performance of different RL 
algorithms in autonomous navigation. The conclusion drawn 
was that the PPO algorithm demonstrated superior robustness 
to changes in the complexity of the environment. Their 
comprehensive study focuses on the performance of 
unmanned vessels in tracking known paths. The evaluation 
perspective is more inclined towards the goal of overall 
navigation. The main evaluation metrics adopted include 
average progress for path-following, cross-track error-based 
path adherence, and others. For the performance in short-term 
collision avoidance scenarios encountered during the process, 
there is a lack of more fine-grained evaluation. To address 
this, we proposed a simulation-based evaluation framework to 
further assess and compare the performance of different 
reinforcement learning configurations in the autonomous 
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navigation of maritime vessels, particularly regarding 
collision avoidance capabilities. We conducted comparative 
experiments as part of our contribution, providing valuable 
insights and references for evaluating collision avoidance 
algorithms in autonomous navigation and understanding the 
reward designs employed in reinforcement learning within 
this specific context. 

II. COMPARATIVE EVALUATION EXPERIMENT 

A. Overview of the evaluation framework for autonomous 
collision avoidance 
Collision avoidance, as a crucial stage in the autonomous 

navigation process of unmanned ships, is defined as the 
process wherein a vessel safely restores itself to the navigation 
state along the predefined route after encountering collision 
risks within a certain timeframe. The collision avoidance 
algorithms still have the dual primary goals of collision 
avoidance and path tracking recovery, alongside the 
secondary goal of optimizing strategies during the avoidance 
process. Therefore, recognizing the distinct priorities among 
them, this study proposes an evaluation framework based on 
three hierarchical metrics through simulation, namely, 
collision-free achievement, deviation angle for path-
following, and avoidance time consumed, as shown in Fig. 1. 
It is worth noting that the evaluation of avoidance strategies 
could be multifaceted, considering factors such as adherence 
to the collision regulations (COLREGs) or good seamanship 
practices. we only utilizes avoidance time consumed as a 
demonstration for quantitative assessment in efficiency. 

 

Fig. 1. Evaluation framework. 

Our evaluation framework is established based on 
simulated ship encounter scenarios. The own ship under test 
in this scenario have two primary objectives. The first one to 
safely return to the predefined route without collision within a 
specified timeframe. The representation of the destination is a 

specific transverse segment on the predefined route. The 
length of the transverse segment depends on the target 
threshold setting for the deviation distance of route. The 
second objective is to maintain alignment with the predefined 
direction as closely as possible when returning to the route, ie. 
minimizing the course deviation angle. Two metrics, named 
Collison-free achievement and deviation angle of course, are 
utilized to evaluate the performance of these two primary 
objectives.  

Besides, a designated range for the deviation angle 
threshold can be set to qualitatively evaluate whether the 
objective of path-following is achieved. When the collision 
avoidance algorithm guides the own ship to achieve the two 
aforementioned objectives in a test scenario, the time 
consumed during the avoidance process is considered as an 
evaluation metric for the avoidance efficiency. 

B. Basic Configuation of Evaluation Experiment 
The basic configurations for constructing the evaluation 

experiment are as follows. 

� Own Ship. In our simulation environment, a three-
degree-of-freedom (3-DOF) mathematical model is 
used to simulate the ship maneuvering motion of the 
own ship according to the selected action. The 
parameters utilized are derived from a validated 330-
meter oil tanker. 

� Navigation Environment. The test scenarios include 
three kinds of typical encounters between two vessels, 
namely overtaking, head-on and crossing, based on the 
angle between the course of ship, as shown in Fig. 2. 

� Navigation Objectives. In all test scenarios, the own 
vessels start navigating along a straight predefined 
route, and the objectives is to safely return to the 
original route within 10 minutes and a distance of 1.75 
kilometer traveled on the route. The decision interval 
is 10 seconds. The threshold for determining the 
achievement of arrival and path-following is set at 200 
meters (deviation distance) and 15° (deviation  angle),  
as shown in Fig. 2. 

C. RL-based ship collision avoidance  
In this study, the decision-making unit RL algorithm, 

with its different configurations, is the subject we need to 
compare and evaluate. Although various types of 
reinforcement learning algorithms, such as DQN, PPO, 
TD3, and SAC, have been proposed for ship avoidance 
decision-making, PPO is the most widely adopted 
algorithm. A comparative study [8] also demonstrated its 
advantages in terms of implementation robustness and 
decision performance. The deployment experience of RL 
in our simulation environment also demonstrated the 
advantages of PPO. Compared to other algorithms, PPO 
can achieve relatively stable and successful convergence 
in various scenarios. Therefore, In our comparative 
experiments, we selected PPO as the RL algorithm, 
placing particular emphasis on performances with 
different reward designs.  

In addition, regarding the design of the state vector for 
short-term encounter situation between two vessels, the 
indicators employed in this study include basic dynamic 
information of the own ship and other ships in the 
environment (such as coordinates, speed, direction), the 
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own ship's relative relationship to the predefined route and 
destination (such as cross-track error, deviation angle 
error), and the own ship's relative relationship to other 
ships in the environment (such as relative bearing, relative 
position, relative speed). Besides, in this study, the action 
space is simplified into three strategies of rudder 
acceleration, namely, steering to port, steering to 
starboard, and not steering. 

D. Reward Design of RL for comparison 
The reward signal is the driving force behind RL 

algorithms, directly influencing the learning outcomes and 
behavior of the intelligent agent. In the context of ship 
collision avoidance, this paper summarizes six fundamental 
scoring methods for achieving goals and combines them into 
six different reward designs through weighted sum for 
comparative evaluation, as shown in the tables below. 

TABLE I.  SCORING METHOD FOR GOALS 

Stage Goals Scoring method e. 

End of the 
navigation 

 

Collision-
free arrival 
(Gcf) 

if arrival

if collision

 

  

cf

cf
cf
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w

G
�
�

� �
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Optimal 
Course when 
arrival 
(Gpf) 

path-following is achievedif   

0 otherwise  

pf
pfG

w�
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�

  

Arrival 
effiency 
(Gef) 

cost

max

(1 )ef ef
TG w
T

� �

a. 

Process of 
navigation 
 

To be near 
the route 
(Gxte) 

intermediate 

( )
( )

max

(1 )
t

t
xte

XTEG w
XTE

� �
b. 

To follow the 
heading of 
the route 
(Gcd) 

� 	
intermediate 

( )1 cos( )
( )
2 2

t
t

cdG w 

� �

c. 

Avoid 
collision  
(Gcr) 

( ) cr if collision risk exits 

0 otherwise

t
cr

w
G

��
� �
�

 d. 

a. Tcost is the time consumed. Tmax is the threshold of maximum time. 

b. XTE is the cross-track error to route. XTE max is the threshold of maximum cross-track error.  

c.  is the course deviation angle to route.  
d. collision risk exits when DCPA (distance at closest point of approach) index less than 200 meters 

and relative distance less than 900 meters. 

e.  Wcf =10, Wpf =5, Wef =5, Wintermediate=0.125 

TABLE II.  REWARD DESIGNS 

Type Design  
Scoring method 

Gcf Gpf Gef Gxte
(t) Gcd

(t) Gcr
(t) 

Final Reward 

Fr-Cf       

Fr-CfPf       

Fr-CfPfEf       

Final Reward  
+ 
Intermediate 
Reward 

Fr-Cf_Ir-Xte       

Fr-Cf_Ir-XteCd       

Fr-CfEf_Ir-XteCd       

  

III. RESULTS AND DISCUSSION 

Using all the setups mentioned above, we train RL agents 
based on Gymnasium python library in three simulated 
scenarios. It is worth mentioning that the model training is 
conducted using unseen simulated scenarios of the 
corresponding encountering types. The test scenarios are 

demonstrated in Fig 2. And we calculate averages of metrics 
from 100 tests conducted after 10,000 episodes to evaluate 
performance, as shown in tables and figures below. The 
trajectory in blue was made by own ship. And the red 
trajectory represents the path of the other ship, which would 
result in a collision if own ship doesn't make an avoidance 
maneuver. 

 

Fig. 2. Example of RL-based ship avoidance (black arrow and line 
segment is the navigation objectives) 

Firstly, in our experiments, all the RL algorithms 
consistently achieve the fundamental goal of avoiding 
collisions and reaching to the target destination with a success 
rate exceeding 90%. These results clearly demonstrate the 
effectiveness of directly setting the target score in the final 
reward, i.e., Gcf, in this testing environment. Secondly from 
Tab. III and Fig. 3, it can be observed that the two below 
reward designs have proven to be effective in enhancing the 
performance of path-following. 

� Directly incorporating the score of deviation angle at 
arrival into the final reward, i.e. Gpf. 

� Adding the scores for course deviation during the 
process in intermediate reward, i.e. Gcd. 

Besides, from Tab. IV and Fig. 4, it is can be observed that 
incorporating reward scores for minimizing the total time into 
the final reward effectively enhances the performance in 
avoidance efficiency, i.e. Gef.  

 

Fig. 3. Comparision of avoidance performance in Path-following 
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TABLE III.  PERFORMANCE RESULT IN PATH-FOLLOWING 

Scenarios Reward 
design 

Average 
achieving rate 
of collision-

free 

Average 
achieving rate 

of path-
following 
(w.r.t. 15°) 

Average time 
consumed 
(second) 

Crossing Fr-Cf 0.89 0.90 351.35 

Fr-CfPfEf 0.96 0.93 350.10 

Fr-Cf_Ir-Xte 0.92 0.91 354.60 

Fr-CfEf_Ir-
XteCd 

0.93 0.94 351.05 

Head-on Fr-Cf 0.90 0.90 352.96 

Fr-CfPfEf 0.93 0.93 352.39 

Fr-Cf_Ir-Xte 0.96 0.93 351.52 

Fr-CfEf_Ir-
XteCd 

0.94 0.94 349.17 

Overtaking Fr-Cf 0.95 0.93 349.77 

Fr-CfPfEf 0.94 0.94 349.74 

Fr-Cf_Ir-Xte 0.98 0.96 354.25 

Fr-CfEf_Ir-
XteCd 

0.93 0.94 350.31 

TABLE IV.  PERFORMANCE RESULT IN EFFCIENCY 

Scenarios Reward design Average 
achieving rate 
of collision-

free 

Average 
deviation 

angle ( ) 

Average 
achieving rate 

of path-
following 

(w.r.t. 15 ) 

Crossing Fr-Cf 0.88 14.96 0.59 

Fr-CfPf 0.89 6.59 0.90 

Fr-Cf_Ir-Xte 0.92 19.17 0.44 

Fr-Cf_Ir-XteCd 0.92 6.96 0.91 

Head-on Fr-Cf 0.91 18.46 0.46 

Fr-CfPf 0.90 6.96 0.90 

Fr-Cf_Ir-Xte 0.87 24.12 0.36 

Fr-Cf_Ir-XteCd 0.96 6.17 0.93 

Overtaking Fr-Cf 0.95 12.72 0.66 

Fr-CfPf 0.95 6.24 0.93 

Fr-Cf_Ir-Xte 0.94 17.77 0.47 

Fr-Cf_Ir-XteCd 0.98 5.14 0.96 

 

 

 

 

Fig. 4. Comparision of avoidance performance in efficiency 

IV. CONCLUSION 

Based on the evaluation framework we proposed, 
experiments comparing RL agent with different reward 
designs revealed that, by employing a potential-based design 
in intermediate rewards, particularly through the score of 
course deviation, a significant improvement in path-following 
performance can be achieved. Additionally, the weighted sum 
approach in the final reward design has also been 
demonstrated to effectively enhance the respective 
performance.  

Considering more complex and diverse scenarios, such as 
encounters involving multiple vessels, in the testing 
framework will be one of the key aspects for further 
evaluating the generalization ability and robustness of RL-
based collision avoidance algorithms in the future. 
Additionally, exploring how to train more effective RL agent 
and comparing their strengths and weaknesses with traditional 
collision avoidance algorithms will be the subsequent focus of 
this research. 
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