
A Division Based Neuron for Neural Networks

Jaelen Dixon
Dept. of EECS, Howard University

Washington, DC, United States

jaelen.dixon@bison.howard.edu

Jiang Li
Dept. of EECS, Howard University

Washington, DC, United States

jli@howard.edu

Abstract—We propose an alternative neuron design for artifi-
cial neural networks that replaces wx+b in a typical neuron with
w1x/w2x. The design allows more complex calculations, such as
division, to be performed efficiently within a neural network,
and thus more efficient and specialized prediction models to be
made. Along with the new design, we developed an algorithm
to dynamically adjust the learning rate for model training.
The algorithms were tested in the training of single-layer and
single-neuron models to predict the outcome of various division-
based operations. The initial test results showed that the average
prediction errors are between 0.0241% and 0.898%. That is
significantly more accurate than traditional neural networks with
more layers.

I. INTRODUCTION

The prevailing design of neurons in artificial neural net-

works typically involves a two-phase process: the neuron

computes the dot product of the input and a weight vector,

then an activation function is applied to this product. This

configuration allows neurons to perform basic arithmetic op-

erations like addition, subtraction, and scalar multiplication.

However, it struggles to effectively model other operations like

division. While large neural networks with numerous layers

theoretically can represent any function within a closed range

[1], modeling even simple functions could require excessive

layers.

To address this limitation, a novel class of neurons is

needed. These neurons would be able to handle diverse op-

erations more efficiently, potentially reducing the overall size

and enhancing the performance of neural networks. In this

paper, we introduce a new neuron model that diverges from

the traditional dot product approach, focusing instead on an

operation that is specially tailored for division calculations.

II. RELATED WORK

The field of neural network architecture has seen several

innovative developments aimed at enhancing the capability of

networks to learn and perform a diverse array of numerical

operations. One notable contribution is the Neural Arithmetic

Logic Unit (NALU) [2], which was designed to augment tra-

ditional neurons. Each NALU consists of multiple traditional

neurons and specializes in learning numerical computations. It

can perform a broad range of operations, including multiplica-

tion, division, and power functions, but it can only perform one

type of operation per unit after training. In comparison, our

This work was funded in part by NSF grant 1924092.

design provides a more versatile way of combining features.

It is an alternative to the traditional design, and may be used

in conjunction with traditional neurons or independently.

Additionally, a type of neuron has been proposed [3] with

the purpose of performing more complex operations within

an individual neuron in order to simplify the structure of

neural networks. By multiplying two sets of dot products,

the approach creates a ”second order neuron”, similar to a

second order quadratic function. As such, inputs are able to

be multiplied by themselves and by other inputs, and the

traditional neuron design becomes a special case. Our neuron

design takes a similar approach, but instead of multiplying two

dot products, we divide two dot products. Therefore, it can be

expected that our neuron will perform better for different sets

of operations and tasks such as those involving division.

III. METHODOLOGY

The new neuron in our design performs the following

calculation:

(w1 · x+ b1)/(w2 · x+ b2) (1)

where w1 · x is the dot product between the weight vector

w1 and the input vector x, and w1 · x is similar. The values

b1 and b2 are bias parameters added to their respective dot

products. It should be noted that the prevailing neuron design

is a special case of our design when w2 is the zero vector and

b2 = 1.

The loss function used in the model for testing is as follows,

where y[i] is the sample value and f(x[i]) is the predicted

value.

if y[i] and f(x[i]) are of different signs:

loss = (ln(σ(y[i]) + 1)− ln(σ(f(x[i])) + 1))2

else:

loss = (ln((y[i])2+10−32)− ln((f(x[i]))2+10−32))2

Since our neuron design involves division, it has infinitely

many sets of optimal weights. This may prevent the model

from converging. To circumvent this issue, we apply a com-

bined L1/L2 regularizer to each of the weights, since using

both performed slightly better than using them individually.

During training, we determined that the learning rate re-

quired for different test cases needs to begin at greatly varying

values, needs to decrease as the loss value converges closer to

0, and sometimes leads to very slow convergence. In response

to this, we developed an algorithm to update the learning

rate dynamically during training. Specifically, the learning rate

19

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00013

is decreased if the loss value fluctuates or keeps increasing

while below a certain threshold, and it is increased if the

loss value fluctuates above a certain threshold or is stagnant.

The algorithm has a patience parameter and will only update

the learning rate after these conditions are met for the given

number of times. The algorithm is as follows, with wait 0,

wait 1, reset patience 0, and reset patience 1 initialized

as 0:

if current loss < best loss
best loss = current loss

reset patience 0 += 1, reset patience 1 = 0

else if current loss > best loss and current < 0.1
reset patience 0+ = 1, wait 1+ = 1
if wait 1 > patience

if best loss < loss threshold
Stop training

else
Decrease learning rate by 50%

else
reset patience 1+ = +1, wait 0+ = 1
if wait 0 > patience

if best loss < loss threshold
Stop training

else
Increase learning rate by 50%

if reset patience 0 >= patience× 5
wait 0 = 0, reset patience 0 = 0

if reset patience 1 >= patience× 5
wait 1 = 0, reset patience 1 = 0

This algorithm has its parameters initialized at the beginning

of training and is executed once after every training epoch. The

best loss parameter is initialized to a large value such that it

will be replaced by the first loss value once the algorithm runs.

The loss threshold and patience parameters are adjustable

for different scenarios. In our testing, these values were set to

10−3 and 5 respectively. Additionally, the size that the learning

rate increases and decreases by is also tunable. In our testing,

the learning rate is increased and decreased by 50% each time.

The optimal values of these parameters can be explored in

future research.

IV. RESULTS

As an initial test of our design, we focused primarily on

training a simple model consisting of one layer with one

neuron. Various formulas involving divisions were used to

generate training sets and test sets. The weights of the neuron

are expected to converge to the values in the formula while

training. Each sample of the training and test sets contained

two inputs, x1 and x2, both in the range [1, 230]. Each training

set has 167,000 samples, and each test set has 82,500 samples.

The table below shows the loss and the mean absolute error

of the model for both the training set and the test set. The

percent error values show how much the predicted values

deviate from the true values on average for the test set. Due to

space constraints, the results for a number of other formulas

were omitted and can be provided upon request.

TABLE I

Expected Training Training Test Test Percent
Formula Loss MAE Loss MAE Error
x1/x2 8.800E-4 0.8287 7.410E-4 0.3036 0.049%

3x1/-x2 5.804E-4 2.6569 7.120E-4 1.6912 0.053%
x1/3x2 6.229E-4 0.0251 6.971E-4 0.8422 0.0241%

(3x1+2x2)/ 9.375E-4 0.0089 9.424E-4 0.0092 0.898%
(-2x1-3x2)

It should be noted that for each test, the training was set

to stop once the loss value went below 10−3. Additionally, in

our tests, the training stopped after no more than 100 epochs.

It is possible that better results could be obtained if training

had continued.
For comparison, we also attempted to model the formula

x1/x2 using a substantially larger neural network consisting

only of the traditional neurons. The model consists of 5 layers,

each with 16, 8, 4, 2, and 1 neurons, respectively, and was

run for a similar number of epochs. The results of this test are

shown below.

TABLE II

Expected Training Training Test Test Percent
Formula Loss MAE Loss MAE Error
x1/x2 6636.015 6.3564 17978.752 7.0408 3043.458%

It can be seen that a single one of our neurons performs sub-

stantially better than a moderately sized network of traditional

neurons for the simple division operation.

V. CONCLUSION AND FUTURE WORK

In this paper, we did an initial exploration of a novel neuron

design that replaces the dot product in the prevailing neuron

design with a more versatile operation involving division, with

the intent of creating neurons that are capable of handling more

diverse types of operations efficiently. Along with the neuron

design, we developed a loss function for the models based on

the neuron, as well as an algorithm to dynamically adjust the

learning rate during training. Initial experiments show that the

new neuron is capable of handling division-based calculations

far more efficiently than the traditional ones.
While the initial results are promising, we understand that

the exploration is very limited — much more study is nec-

essary. For example, other loss functions can be explored,

the neuron design can be expanded to involve more inputs,

and the parameters need more careful analysis. The additional

computational cost of performing division must also be ex-

plored. Ultimately, the neurons need to be tested in much

larger models for real applications.

REFERENCES

[1] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works”, Neural Networks, vol. 4, pp. 251-257, 1991.

[2] A. Task, et. al, “Neural Arithmetic Logic Units”, Advances in Neural
Information Processing Systems, August 2018, 31.

[3] F. Fan, W. Cong and Ge. Wang, “A new type of neurons for machine
learning”, Numerical Methods in Biomedical Engineering, vol. 34, issue
2, 27 July 2017.

20

