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Abstract—The workflow scheduling problem is a fundamental
task in cloud computing. This paper addresses the challenge
of workflow scheduling in dynamic and uncertain cloud envi-
ronments, where computing resources may become inaccessible
due to hardware or software failures. To tackle this challenge,
we propose a novel algorithm called the Order Feature Guided
Multi-Population (OFGMP) algorithm for dynamic workflow
scheduling in cloud environments. The OFGMP algorithm utilizes
a multi-population evolutionary framework, incorporating a
knowledge-guided reproduction operator that leverages the order
feature of solutions, as well as repair mechanisms to adapt to
changing environmental conditions. Extensive experiments are
conducted to validate the algorithm’s performance against ex-
isting dynamic scheduling approaches. The experimental results
demonstrate the superiority of our proposed method over others
on a number of test cases.

Index Terms—Workflow Scheduling Problem, Cloud Comput-
ing, Evolutionary Algorithm, Multi-objective Optimization

I. INTRODUCTION

With the rapid development of cloud computing, the work-

flow scheduling problem (WSP) is becoming increasingly

important. The primary objective of WSP is to find the optimal

or multiple viable scheduling schemes for assigning interde-

pendent tasks within a workflow to various virtual machines,

which are also referred to as instances and used hereafter in

this paper. Due to the complexity of the workflow topology and

the dynamics and heterogeneity of cloud computing resource

pools, the WSP in cloud computing is widely recognized as a

NP-complete problem [1].

Traditionally, the WSP is modeled as a static optimization

problem, either as a single objective optimization problem,

which focuses on optimizing a single objective, or a multi-

objective optimization problem (MOP), which aims to provide
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multiple trade-off solutions among different objectives [1].

Makespan and cost are the two most common but conflicting

quality-of-service (QoS) requirements. Makespan signifies the

overall completion time of a workflow, while cost denotes the

total expenses associated with executing the workflow.

In real-world scenarios, the WSP is inherently dynamic [2],

[3] since the performance of the resource pool fluctuates

continuously and occurrences of hardware or software faults

lead to frequent resource inaccessibility. This dynamic nature

renders solutions obtained from static scheduling algorithms

infeasible. Consequently, it is more appropriate to model the

WSP in cloud computing as a dynamic optimization problem.

In contrast to the static WSP [1], in the dynamic WSP,

some solutions may become infeasible after changes occurs

over time. Static scheduling algorithms, which do not account

for resource inaccessibility, are limited in their ability to

handle such situations. Their only option is to restart the

scheduling process. However, this approach not only wastes

computational resources but also discards valuable information

from previous solutions. While there have been efforts to

develop dynamic scheduling algorithms tailored to address

the challenges of changing environments in WSP, the existing

algorithms for dynamic WSP still lack effectiveness.

To address the limitations of current dynamic workflow

scheduling algorithms and tackle dynamic WSP, we propose

the Order Feature Guided Multi-Population (OFGMP) algo-

rithm for dynamic multi-objective WSP in cloud computing.

First, we introduce a similarity-based repair strategy that

replaces inaccessible instances with the most similar ones

based on their attribute values using the Manhattan distance.

Our analysis and experiments demonstrate that this strategy

outperforms other repair strategies and achieves better per-

formance. However, the similarity-based repair strategy may

lead to a loss of diversity as the repaired population becomes

similar to previous ones. To mitigate this issue, we incorporate

newly generated feasible individuals from another population

to maintain diversity by replacing some of the infeasible

individuals. Furthermore, through observation and analysis of
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non-dominated solutions in the Pareto optimal front (POF)

for specific workflows, we discover that certain tasks are

preferably executed in a specific order on the same instance,

which we term “order feature” (OF). We leverage this order

feature knowledge to guide the evolution of inferior solutions.

The performance of our proposed OFGMP algorithm has been

validated through a comprehensive experimental study.

The remainder of this paper is organized as follows. Sec-

tion II describes the background of dynamic WSP, including

the formulation of WSP and the related work for dynamic

multi-objective WSP. Our proposed method, i.e., OFGMP

algorithm, is described in Section III. Section IV presents

the experimental study to validate the performance of the

proposed OFGMP algorithm. Finally, the paper is concluded

in Section V.

II. BACKGROUND

In this section, we first describe the dynamic WSP investi-

gated in this paper. Then, some related work is discussed.

A. Dynamic Workflow Scheduling Problem

A workflow is composed of various tasks or nodes intercon-

nected by dependencies or data flows, which can be depicted

as a directed acyclic graph, denoted as W = (T,E), where

T = {t1, t2, · · · , tn} is the set of tasks and E = {ei,j} =
{(ti, tj)|ti ∈ T, tj ∈ T, i �= j} is a collection of edges where

each edge ei,j denotes the data or control dependency between

tasks ti and tj . The execution time of a task ti ∈ T on an

instance (i.e., a virtual machine) with a single compute unit

is known as the reference time, which is denoted as RT (ti).
The data transfer size from task ti to tj is represented by

data(ti, tj) for (ti, tj) ∈ E. For a task tj , its predecessors are

denoted as pred(tj) = {ti|(ti, tj) ∈ E}, and its successors

are presented by succ(tj) = {tk|(tj , tk) ∈ E}. In a given

workflow W , the task with no predecessor is denoted as tentry,

and the task with no successor is denoted as texit.
A workflow is scheduled and executed in a distributed

computing platform consisting of a cluster of instances (i.e.,

virtual machines) R = {r1, r2, · · · , rm}, where each instance

ri ∈ R involves a set of attributes including the computing

capacity (which describes the CPU capacity of the instance,

i.e., the number of compute units) CU(ri), the bandwidth

B(ri), and the price P (ri). Consequently, given the reference

time RT (ti), the actual execution time of task ti on instance

rk can be calculated as [3],

ET (ti, rk) =
RT (ti)

CU(rk)
. (1)

The transfer time or communication time between task ti and

tj can be computed as [3]:

TT (ti, tj) =

⎧⎨
⎩

data(ti, tj)

min{B(rp), B(rq)} , p �= q

0 , p = q

(2)

where rp and rq are the instances to which ti and tj are

scheduled, respectively.

In our study, the goal of WSP is to minimize both the

makespan and cost. The makespan represents the total time

required to complete a workflow, while the cost corresponds to

the charge incurred from renting instances to finish a workflow

using some pricing model, like Amazon EC2’s on-demand

billing model [4], where usage time of less than one hour is

rounded up to the nearest hour. The usage time of a task tj on

an instance rq is determined by the start time ST (tj , rq) and

finish time FT (tj , rq), which are computed in order as [3]:

ST (tentry, rq) = ready(rq), (3)

ST (tj , rq) = max{ready(rq),max{FT (ti, rp)|ti ∈ pred(tj)}},
(4)

FT (tj , rq) = ST (tj , rq)+ET (tj , rq)+
∑

tk∈succ(tj)

TT (tj , tk),

(5)

where ready(rq) represents when the instance is ready to be

executed. Finally, the makespan and cost are computed as [3],

Makespan = max{FT (ti, rk)|ti ∈ T, rk ∈ R}, (6)

Cost =
∑
rk∈R

P (rk) ·
[
max
ti∈T

FT (ti, rk)− min
tj∈T

ST (tj , rk)

]
.

(7)

In this paper, we take into account the dynamic nature of

computing resources in distributed platforms, as real-world

environments may experience instances becoming inaccessible

due to hardware or software factors. To quantify such environ-

mental changes, we characterize it by the changing frequency

f and severity s. The changing frequency f denotes the rate of

change occurrence, and the severity s represents the percentage

of instances becoming inaccessible at each change. To be

specific, given the available instances that can be allocated

in the cloud platform R = {r1, r2, · · · , rm}, where m is

the number of instances, when the resource inaccessibility

occurs, some instances, denoted as Rinacc = {rj |rj ∈ R}
with |Rinacc| = m · s, become inaccessible. Consequently, the

accessible instances that can be scheduled for a workflow are

Racc = R \ Rinacc = {ri|ri ∈ R and ri /∈ Rinacc}. Thus,

in the dynamic WSP addressed in this work, the accessible

instances Racc dynamically change in the scheduling process.

The dynamic changes in the resource pool have two main

impacts on cloud computing workflow scheduling. Firstly,

solutions found by scheduling algorithms may become infea-

sible as they include inaccessible instances in the scheduling

plans. Secondly, the optimality of the obtained solutions is

affected by the changes in computing resources. Therefore,

it is essential to address these challenges associated with the

dynamic WSP.

B. Related Work

Qiu et al. [5] introduced DMGA, which utilizes the longest

common sequence in the solution set to guide solution evo-

lution, ensuring both rapid convergence and diverse solutions.

Han et al. [6] proposed CMSWC, which employs search trees
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and heuristics to narrow down the solution space. Belgacem et
al. [7] combined ant colony optimization with MOHEFT [8] to

effectively explore extensive solution spaces. Vavak et al. [9]

introduced DNSGA-II-HM, which dynamically adjusts algo-

rithm parameters to direct the search process. However, these

approaches do not consider instances becoming inaccessible

and therefore cannot be directly applied in dynamic WSP.

Although some of them can be adapted by adding a repair

strategy, the convergence of solutions is significantly affected

when the environment changes.

As dynamic WSP gained more attention, several approaches

for dynamic WSP in cloud environments were proposed.

Ismayilov et al. [3] proposed NN-NSGA-II, combined neural

networks with NSGA-II [1] to predict potential solutions in

changing environments. Dong et al. [10] develop a double

deep Q network framework (DDQN) based on reinforcement

learning to adaptively select re-submission and replication

strategy considering fault tolerance. Deb et al. [11] proposed

DNSGA-II-B, which focuses on preserving population diver-

sity to enhance global search capabilities and prevent prema-

ture convergence. Similarly, by maintaining solution diversity,

Carlos et al. [12] proposed DNSGA-II-gIDG by incorporating

both random and mutated immigrants into the population to

ensure diversity in each generation. Rani et al. [13] introduced

an ant-lion colony optimization method, utilizing ant-lions to

capture the characteristics of ants during the search. Koo et al.
[14] developed MB-NSGA-II, which uses a memory archive to

store recent Pareto sets and retrieves them upon environmental

changes. However, these algorithms lack strategies to improve

solution diversity when the environment changes, leading to

the risk of falling into local optima.

III. ORDER FEATURE GUIDED MULTI-POPULATION

(OFGMP) ALGORITHM

In this section, we present our proposed Order Feature

Guided Multi-Population (OFGMP) algorithm for dynamic

WSP. The overall procedure of the algorithm is introduced

first, and our proposed order feature guided reproduction

(OFGR) operator and repair strategies are described.

The OFGMP algorithm utilizes a multi-population frame-

work that incorporates distinct evolutionary and repair strate-

gies to adapt to environmental changes (i.e., changes in

computing resources). We established two distinct populations:

a normal population and a feature population, which are

involved in our proposed OFGR operator. The overall process

of OFGMP is described in Algorithm 1.

Before describing the operators of our algorithm, we first

introduce the representation of individuals in our algorithm.

A scheduling scheme for a workflow usually involves two

aspects, the execution order of tasks and the task-to-instance

mapping. Thus, we use a similar encoding to the one used

in [1], that is, the individual representation contains two se-

quences: ‘order’ and ‘task2ins’. The ‘order’ sequence records

the serial number of tasks and satisfies the topological relation-

ship between tasks of the workflow. The ‘task2ins’ sequence

represents the mapping between each task and the instance.

Algorithm 1: Order feature Guided Multi-Population

(OFGMP) Algorithm

Input : Population size n, Maximal generation g.

Output: Non-dominated solution set S
1 Pn ← Initialize a population with n/2 individuals

2 Pf ← Initialize a population with n/2 individuals

3 for i = 1, 2, · · · , g do
4 while |Pn|+ |Pf | < 2× n do
5 p1, p2 ← Randomly select from Pn

6 p3, p4 ← Randomly select from Pf

7 if rand(0,1) < 0.5 then
// Inter-Population Reproduce

8 (c1, c3) ← Generate offspring of p1, p3
9 (c2, c4) ← Generate offspring of p2, p4

10 else // Intra-Population Reproduce
11 (c1, c2) ← Generate offspring of p1, p2
12 (c3, c4) ← OFGR(p3, p4,Pf )

13 end
14 Pn ← Pn ∪ {c1, c2}
15 Pf ← Pf ∪ {c3, c4}
16 end
17 Pn ← Select best n/2 individuals from Pn

18 Pf ← Select best n/2 individuals from Pf

19 if change occurs then
// Repair strategies in
Section III-B

20 Perform individual substitution for Pn

21 Perform similarity-based repair for Pf

22 end
23 S ← Non-dominated solution set of Pn ∪ Pf

24 end

Besides our proposed OFGR operator, the genetic operators

in [1] are also used to generate offspring as in Lines 8, 9, 11

of Algorithm 1 and in Line 1 of Algorithm 2.

To begin with, the OFGMP algorithm randomly generates

the initial normal population Pn and initial feature population

Pf , together with population size n (Lines 1-2). In this step,

the ‘order’ of all individuals in the population is randomly

generated using a random topological sorting approach. The

‘task2ins’ sequence is initialized differently for each indi-

vidual: half of the individuals have random task-to-instance

mappings, while the other half allocate all tasks to the same

randomly selected instance.

The algorithm then enters the main loop. When generating

individuals, two pairs of parents (p1, p2) and (p3, p4) are

randomly selected from population Pn and Pf , respectively

(Lines 5-6). The inter-population reproduction and intra-

population reproduction approaches are randomly chosen to

generate new offspring (Lines 7-13) and these new individuals

are added to their respective populations (Lines 14-15). Inter-

population reproduction utilizes the crossover and mutation

operators in [1] to create offspring. Intra-population reproduc-

tion incorporates our proposed OFGR (order feature guided

23



reproduction) operator, which is described in Algorithm 2.

After generating new individuals, OFGMP employs fast

non-dominated sorting and fast crowding distance sorting [15]

on Pn and Pf , and updates them by the best n individuals after

sorting (Lines 17-18). If environment change occurs, OFGMP

executes repair strategies (Lines 19-22). For population Pn,

we execute an individual substitution repair strategy, which

means replacing infeasible solutions with randomly generated

ones. For population Pf , OFGMP performs similarity-based

repair. Details on different repair strategies are provided in

Section III-B.

A. Order Feature Guided Reproduction Operator

The individual or chromosome used in this work includes

two parts, that is, the ‘order’ and ‘task2ins’ sequences, where

the ‘order’ sequence is a permutation of all tasks in a work-

flow, and the ‘task2ins’ represents the assignment of tasks to

instances. The order of task execution (task order) is crucial,

especially when tasks are executed in the same instance. Take

the workflow illustrated in Fig. 1 as an example, where tasks

1, 2, and 3 represent completed tasks, and tasks 4, 5, and

6 signify pending tasks. We notice that when tasks 4, 5,

and 6 are on separate instances, their execution order is less

important. However, if they are on the same instance, certain

task order sequences like 4−→5−→6 and 5−→4−→6 are better

than task orders like 6−→4−→5 or 6−→5−→4, because they allow

subsequent tasks 7 and 8 to execute earlier, optimizing overall

performance. This indicates that, in a solution, if multiple tasks

are assigned to an instance, the execution order of these tasks

makes a difference to the quality of the schedule, though the

task-to-instance sequence remains the same. In other words,

keeping the ‘task2ins’ sequence the same, the ‘order’ with

specific features could be better than others. This finding has

motivated us to exploit the order feature (i.e., the feature of

the order of multiple tasks on an instance) to generate good-

quality solutions. Hence, we propose an order feature guided

reproduction (OFGR) operator, which is described below.

The basic idea of OFGR operator is to exploit the knowl-

edge involved in the orders of non-dominant solutions found

so far to guide the generation of new individuals. In OFGP op-

erator, we first generate individuals according to the crossover

and mutation operators in NSGA-II [1], and then the order

feature is utilized to further improve the generated individuals.

The procedure of OFGR operator is described in Algorithm 2.

Firstly, two offspring individuals c3 and c4 are generated

based on the two parents p3 and p4. Then the objective space of

population Pf is divided into five subspaces (regions), denoted

as {Δi}5i=1, and each individual in Pf∪{c3, c4} is assigned to

one of these subspaces. The division of the objective space and

the assignment of individuals to subspaces follow the approach

used in [16], as illustrated in Fig. 2. This division allows us

to group dominating solutions that are close in the objective

space, thus providing stronger guidance for generating new

individuals in each region. Hence, by extracting order features

of dominating solutions in a region, we can use these features

to improve the quality of generated solutions in this region.

If the parent individuals p3 and p4 belong to the same

subspace Δk, the OFGR operator will improve their offspring

individuals c3 and c4 using the order feature (Lines 3-32).

For each individual s ∈ S , where S represents the set of non-

dominated solutions associated with subspace Δk from Pf , we

collect the order features of instances that have been assigned

multiple tasks into a set F (Lines 9-14). To reduce the size,

we only save partial orders whose length is between 1 and 1/4

of the total number of tasks in set Q (Lines 15-19).
Subsequently, one order feature F is randomly selected from

the saved order feature set Q, and the adjacent task pairs in F ,

that is, (F [j−1], F [j]) for j = 1, 2, · · · , |F |−1, are added as

new edges to a copy of the workflow’s Directed Acyclic Graph

(DAG), denoted as G (Line 21-24). The order of the offspring

individual c3 and c4 are updated with randomly topological

sorting on G (Lines 25-26). Finally, to ensure that all the

tasks in order feature are executed in the same instance, we

randomly select two instances r1, r2 from accessible instances

set and assign every task in order feature of c3, c4 to r1, r2,

respectively (Lines 27-31).

1 2

3

5

4

6

8

7 9

Fig. 1. An example of workflow with
9 tasks.

Region 0 Region 1

Region 2

R
egion 3

R
egion 4

Fig. 2. Regions and Individ-
uals in the Feature Popula-
tion.

B. Repair Strategies
When the environment changes, solutions can become infea-

sible and require repairs for adaptation. One common approach

for such repairs is the random repair strategy [3], where

tasks on the inaccessible instance are redistributed randomly

to another accessible one [2], as shown in Fig. 3(a). In this

work, we propose another two repair strategies: similarity-

based repair strategy and individual substitution strategy.
The similarity-based repair strategy, as shown in Fig. 3(b),

aims to generate solutions that are closer to post-convergence

but may reduce population diversity. This strategy evaluates

instance attributes, including computing unit, bandwidth, and

price, using Max-Min normalization and Manhattan distance

to measure similarity. When an instance becomes inaccessible,

the strategy selects the instance with the highest similarity to

substitute it.
The individual substitution strategy (as shown in Fig. 3(c))

focuses on enhancing population diversity. It replaces affected

individuals with randomly generated ones, thereby introducing

new genetic material into the population.
By combining these two repair strategies, we can improve

both the diversity and convergence of the population. The

effectiveness of this combination is reported in Section IV.
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Algorithm 2: OFGR Operator

Input : Parent individual p3 and p4, feature

population Pf

Output: Offspring individual c3 and c4
1 (c3, c4) ← Generate two offspring based on p3 and p4
2 {Δi}5i=1 ← Divide the objective space of Pf into five

subspaces

3 if p1 and p2 belong to same subspace Δk then
4 G ← copy the DAG of the workflow

5 n ← number of tasks in the workflow

6 R ← Solutions in Pf within the subspace Δk

7 S ← Select non-dominated solutions from R
8 Q ← ∅
9 foreach s ∈ S do

10 F ← Initialize an empty dictionary of lists

with keys of instances in s and values of

empty lists

// Extract order features
11 foreach t ∈ s.order do
12 r ← s.task2ins[t]
13 Append t to F [r]
14 end

// Select order features
15 foreach Order sequence F [r] ∈ F do
16 if |F [r]|>1 and |F [r]|<n/4 then
17 Add the task order F [r] to Q
18 end
19 end
20 end
21 F ← Random select one order feature from Q
22 for j = 1, 2, · · · , |F | − 1 do
23 Add edge (F [j − 1], F [j]) to G
24 end

// Adjust c3 and c4 to satisfy the
order feature

25 c3.order ← Random topological sorting of G
26 c4.order ← Random topological sorting of G
27 r1, r2 ← random select two accessible instances

28 foreach t ∈ F do
29 c3.task2ins[t]← r1
30 c4.task2ins[t]← r2
31 end
32 end

IV. EXPERIMENTAL STUDY

In this section, we first provide an overview of the experi-

mental setup. Then, we validate the proposed repair strategies

discussed in Section III-B. Finally, we compare the OFGMP

algorithm with other dynamic scheduling approaches and

analyze the results obtained from these experiments.

A. Experimental Setting

1) Workflow Models: We examined five types of real-world

scientific workflows: Montage (I/O intensive), CyberShake

Solution Space

Current Solutions

Affected
Solutions

(a) Randomly Repair

Solution Space

Current Solutions

Affected
Solutions

(b) Similarity-based Re-
pair

Solution Space

Current Solutions

Affected
Solutions

(c) Individual Substitu-
tion

Fig. 3. Illustration of three different repair strategies.

(data intensive), Epigenomics, Sipht (CPU intensive), and

Inspiral (LIGO), as published in a workflow project [17].

These workflows incorporate diverse structural elements such

as pipelines, data distribution/aggregation, and redistribution,

and thus are commonly used for assessing the scheduling

algorithm’s performance. Table I lists their key characteristics.

TABLE I
SCIENTIFIC WORKFLOWS AND THEIR CHARACTERISTICS. |T | AND |E|

REFER TO THE NUMBER OF TASKS AND EDGES.

Workflow |T | |E| Avg. edge data size Avg. task runtime
(MB) (s)

Montage 100 433 3.23 10.58
CyberShake 100 380 849.60 31.53
Epigenomics 100 322 395.10 3954.90

Sipht 100 335 6.27 194.48
Inspiral 100 319 8.93 206.12

2) IaaS Service Model: Our simulation platform replicates

a data center with eight EC2-based instance types [4], each

offering limited capacity (seen in Table II). The simulation

uses a 60-minute interval on-demand billing model. To mimic

a dynamic environment, we simulated environmental changes

at specific intervals. For evolutionary algorithms spanning 500

generations, low-frequency environmental change occurs at the

250th generation, and high-frequency changes occur in every

100 generations. For list-based scheduling with 100 tasks, low-

frequency change occurs at the 50th task, and high-frequency

changes occur in every 20 tasks. The severity of change is

set at 0.03, 0.08, and 0.15 [2]. This model aims for practical

relevance and allows for repeatable evaluations without the

constraints of actual deployment.
3) Performance Metric: In this comparative study, we uti-

lize the hypervolume (HV) [18] indicator as the performance

metric. The HV is commonly used to evaluate the performance

of algorithms on multi-objective optimization problems. It

measures the volume of the objective space dominated by a

solution set relative to a specific reference point. A higher

HV value indicates better convergence towards the true Pareto

front and increased diversity along this frontier.

To calculate the HV, the objective values of the schedul-

ing solutions are first normalized using the upper bounds

obtained in a specific dynamic case for all the experimental

algorithms. The reference point for each objective is set to

1.1, as suggested in literature [19]. The HV is computed

independently for each of the 20 runs, and the reported value
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represents the mean HV across these runs. By employing the

HV indicator, we can assess and compare the performance of

different algorithms in solving dynamic WSP.

TABLE II
INSTANCE TYPES AND THEIR SPECIFICATIONS.

Type Compute Unit Bandwidth Price ($) Capacity

1 1.7/8 39,321,600 0.06 10
2 3.75/8 85,196,800 0.12 10
3 3.75/8 85,196,800 0.113 10
4 7.5/8 85,196,800 0.24 10
5 7.5/8 85,196,800 0.225 10
6 15/8 131,072,000 0.48 10
7 15/8 131,072,000 0.45 10
8 30/8 131,072,000 0.9 10

4) Comparative Algorithms: In our study, we compared

the performance of OFGMP with several algorithms, includ-

ing DNSGA-II-B [11], DNSGA-II-gIDG [12], MB-NSGA-

II [14], DMGA [5] and CMSWC [6].To ensure a fair com-

parison, the configuration of these algorithms was care-

fully selected based on the optimal settings recommended in

their respective literature. Specifically, for the evolutionary

algorithms—DNSGA-II-B, DNSGA-II-gIDG, MB-NSGA-II,

DMGA, and OFGMP—we standardized the population size

at 200 and set the mutation rate at 0.01, aligning with the best

practices for these methods. Conversely, for CMSWC, which

follows a heuristic approach, we configured the algorithm with

a solution count of 50 and an exploitation rate of 0.3.

B. Results and Analysis

1) Validation of the Effectiveness of Proposed Repair
Strategies: To validate the effectiveness of the proposed

repair strategies, we conducted experiments using NSGA-II

as the base algorithm under a severe dynamic environment

case (f=100, s=0.15). We compared three repair strategies:

individual substitution, random repair, and similarity-based

repair. The experiments were independently performed 20

times using five different workflow models.

The mean HV values were used to evaluate the performance

of each repair strategy. Fig. 4 illustrates the evolution of

the mean HV values. As observed, when the environment

changes, all repair strategies experience a decrease in HV

values to varying degrees. However, the similarity-based repair

strategy exhibited the smallest drop in HV value, indicating

its effectiveness in maintaining population convergence.

In most cases, the final HV value achieved by the individual

substitution strategy was the highest. This suggests that it

contributes to increasing population diversity and escaping

local optima after environmental changes occur. Overall, these

results validate the positive impact of the proposed repair

strategies on the algorithm’s performance in handling envi-

ronmental changes.

2) Comparative Results: We compared the performance of

OFGMP with five state-of-the-art algorithms using the HV

metric, and the results are presented in Table III. Consider-

ing the average HV values of each algorithm, our proposed

(a) Montage (b) CyberShake

(c) Epigenomics (d) Sipht

(e) Inspiral

Fig. 4. Comparison of 3 repair strategies on five workflows.

OFGMP achieved the largest values in 25 out of 30 test cases

and consequently gains the best average ranking. Furthermore,

statistical tests confirmed that OFGMP significantly outper-

formed the compared algorithms in the majority of the test

cases. These findings demonstrate that OFGMP is an effective

method for addressing dynamic WSP.

In particular, OFGMP ranked first in all test cases for

the Epigenomics, Inspiral, and Montage workflows. For the

CyberShake workflow, OFGMP performed the best in all

cases except for the severity 0.03 and frequency 250 scenario,

where it ranked third. However, statistical analysis revealed no

significant differences among the algorithms in this particular

test case, making them statistically equivalent.

It is worth noting that in the Epigenomics test cases,

OFGMP consistently outperformed other algorithms due to

the specific structure of the Epigenomics workflow. Many

tasks in this workflow have only one predecessor and one

successor, indicating that executing all tasks in a single chain

on the same instance can lead to better makespan and cost

by reducing transmission time. The order feature utilized in

OFGMP focuses on tasks executed on the same instance,

which helps restore the excellent characteristics of superior

solutions. By extracting order features from superior solutions

to guide inferior ones, OFGMP improves convergence in the

Epigenomics test cases.

For the Sipht workflow, OFGMP ranked first in two cases
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TABLE III
RESULTS OF OFGMP AND OTHER ALGORITHM ON AVERAGE HV. THE NUMBER IN PARENTHESES INDICATES THE RANKING OF THE ALGORITHM IN

THAT TEST CASE. SYMBOLS “+”,“-”, AND “≈” ARE USED TO INDICATE STATISTICALLY SIGNIFICANT SUPERIORITY, EQUIVALENCE, OR INFERIORITY OF

OFGMP COMPARED TO EACH ALGORITHM RESPECTIVELY, BASED ON STUDENTS’ T TEST (20 REPETITIONS). THE BOLDED NUMBERS IN EACH ROW

REPRESENT THE ALGORITHM THAT ACHIEVED THE BEST RANKING ON THE CORRESPONDING TEST CASE WITH THREE DECIMAL PLACES RETAINED.

Workflow Severity Frequency OFGMP DMGA DNSGAIIB DNSGAIIgIDG MBDNSGAII CMSWC

CyberShake

0.03
100 1.18883(1) 1.18589(5+) 1.18804(3≈) 1.18499(6+) 1.18855(2≈) 1.18690(4≈)
250 1.18823(3) 1.18475(5≈) 1.18838(1≈) 1.18456(6≈) 1.18836(2≈) 1.18674(4≈)

0.08
100 1.18793(1) 1.18171(6+) 1.18605(3≈) 1.18425(4+) 1.18671(2≈) 1.18344(5+)
250 1.18790(1) 1.18266(6+) 1.18723(4≈) 1.18430(5+) 1.18732(3≈) 1.18785(2≈)

0.15
100 1.18653(1) 1.16653(5+) 1.16138(6+) 1.18246(2+) 1.17430(4+) 1.18160(3+)
250 1.19010(1) 1.18470(6+) 1.18648(5+) 1.18664(3+) 1.18652(4≈) 1.18858(2≈)

Epigenomics

0.03
100 0.95535(1) 0.62355(4+) 0.64423(3+) 0.56220(5+) 0.65064(2+) 0.54604(6+)
250 0.98483(1) 0.57061(4+) 0.58683(2+) 0.50186(6+) 0.58637(3+) 0.50776(5+)

0.08
100 1.01088(1) 0.60628(5+) 0.66541(2+) 0.64810(4+) 0.65654(3+) 0.54776(6+)
250 0.96368(1) 0.56135(4+) 0.58109(2+) 0.52083(6+) 0.57916(3+) 0.52757(5+)

0.15
100 1.02278(1) 0.54668(3+) 0.53690(4+) 0.61613(2+) 0.52739(5+) 0.50090(6+)
250 0.97791(1) 0.56454(4+) 0.58193(3+) 0.55396(5+) 0.58527(2+) 0.53637(6+)

Inspiral

0.03
100 1.15999(1) 1.10918(6≈) 1.13905(2≈) 1.11283(5+) 1.13884(3≈) 1.13255(4≈)
250 1.17004(1) 1.15199(4≈) 1.15517(3≈) 1.13426(6+) 1.15519(2≈) 1.14830(5≈)

0.08
100 1.15932(1) 1.03165(5+) 1.09446(4+) 1.11780(2+) 1.02591(6+) 1.10911(3+)
250 1.16839(1) 1.14764(2≈) 1.12095(6≈) 1.13019(4+) 1.12492(5≈) 1.14400(3≈)

0.15
100 1.12922(1) 0.96377(5+) 0.95150(6+) 1.08344(2≈) 0.98620(4+) 1.03992(3+)
250 1.17496(1) 1.14678(3+) 1.12619(5+) 1.13811(4+) 1.11401(6+) 1.15152(2+)

Montage

0.03
100 1.16080(1) 1.15029(5+) 1.15648(3+) 1.14802(6+) 1.15806(2≈) 1.15644(4+)
250 1.16092(1) 1.15337(5+) 1.15894(3≈) 1.14975(6+) 1.15908(2≈) 1.15831(4≈)

0.08
100 1.16157(1) 1.14077(6+) 1.15390(2+) 1.14861(5+) 1.15009(4+) 1.15111(3+)
250 1.16085(1) 1.15169(5+) 1.15768(3≈) 1.15018(6+) 1.15701(4≈) 1.15840(2≈)

0.15
100 1.15755(1) 1.12599(4+) 1.10812(5+) 1.14396(2+) 1.10788(6+) 1.14353(3+)
250 1.16055(1) 1.14945(6+) 1.15378(3+) 1.15049(5+) 1.15352(4+) 1.15782(2≈)

Sipht

0.03
100 1.12287(1) 1.09377(4≈) 1.09501(3≈) 1.08050(5≈) 1.06564(6≈) 1.12284(2≈)
250 1.11959(2) 1.10514(3≈) 1.10430(5≈) 1.08703(6≈) 1.10444(4≈) 1.12930(1≈)

0.08
100 1.12556(2) 1.10278(3≈) 1.06267(5≈) 1.09407(4≈) 1.04275(6≈) 1.13385(1≈)
250 1.11931(2) 1.10888(3≈) 1.10635(4≈) 1.09108(6≈) 1.10557(5≈) 1.13647(1≈)

0.15
100 1.14478(1) 0.99011(4+) 0.97658(5+) 1.11407(3+) 0.89822(6+) 1.14422(2≈)
250 1.13059(2) 1.11908(3≈) 1.11069(4≈) 1.10360(6≈) 1.10921(5≈) 1.14482(1≈)

Average Ranking 1.200 4.433 3.633 4.566 3.833 3.333
# Best 25 0 1 0 0 4

# + - 21 16 23 14 14
# - - 0 0 0 0 0
# ≈ - 9 14 7 16 16

and second in the remaining three, with CMSWC performing

the best. Although OFGMP and CMSWC were statistically

equivalent, the suboptimal performance of our algorithm may

be attributed to the presence of overlapping individuals, which

does not contribute to the growth of HV.

Overall, the results in Table III indicate that OFGMP

consistently outperforms other algorithms in terms of aver-

age HV. Notably, OFGMP achieved the highest number of

best outcomes (#Best), surpassing CMSWC and DNSGAIIB.

Across all test cases, OFGMP was either statistically superior

or comparable to the competing algorithms.

Fig. 5 presents the evolution of average HV values over

generations for some test cases. It is worth noting that the

figures do not include the HV evolution process for CMSWC

since it is not based on an evolutionary framework. From

Fig. 5, it is evident that our algorithm consistently outperforms

the other five algorithms on all test cases after several resource

failures. This demonstrates the strong capability of our algo-

rithm in solving dynamic multi-objective workflow scheduling

problems.

V. CONCLUSION

In this work, we have presented a novel approach, called

the Order Feature Guided Multi-Population (OFGMP) algo-

rithm, to address the dynamic workflow scheduling prob-

lem in scenarios involving resource inaccessibility resulting

from hardware or software issues. Building upon a multi-

population evolutionary framework, our OFGMP algorithm

incorporates a knowledge-guided reproduction operator that

leverages the order feature of solutions, and repair mechanisms

to adapt to changing environmental conditions. To evaluate

the effectiveness of the proposed OFGMP algorithm, we

conducted extensive experiments and compared it with several
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(a) CyberShake s=0.15 (b) Epigenomics s=0.08

(c) Inspiral s=0.03 (d) Inspiral s=0.15

(e) Montage s=0.15 (f) Sipht s=0.15

Fig. 5. Average HV comparison of five algorithms over generations on six
test cases (20 repetitions).

existing approaches. The experimental results demonstrate

that OFGMP outperforms the five comparative algorithms

significantly in the majority of the test cases. Overall, our

study showcases the effectiveness of leveraging order features,

implementing a similarity-based repair strategy, and utilizing

a multi-population approach in addressing the challenges of

dynamic workflow scheduling problems.

In the future, two possible research directions could be

pursued: (1) to expand the idea of knowledge-guided operators

to knowledge-guided evolutionary algorithms in general [20],

[21]; and (2) to tackle dynamic scheduling problems in soft-

ware engineering [22]–[24].
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