
A Model-Free Deep Reinforcement Learning
Approach to Piano Fingering Generation

Ananda Phan Iman
AI Graduate School

Gwangju Insitute of Science and Technology
Gwangju, Korea

anandaphan@gm.gist.ac.kr

Chang Wook Ahn*

AI Graduate School
Gwangju Institute of Science and Technology

Gwangju, Korea

cwan@gist.ac.kr

Abstract—Piano fingering is a personal process for pianists
to determine the appropriate finger one should use to play a
musical note. In this paper, we propose a novel reinforcement
learning framework with deep reinforcement learning with music
score as the environment. Four environments are constructed
from different right-hand monophonic music scores from various
eras, types, and forms of classical music. Given current hand
position information as the state, the pianist agent has to learn
to choose the optimum action finger. We also propose a reward
function that uses the fingering difficulty rules and reformulates
them to compute the maximum negative difficulty of a fingering
combination. We aim to explore how each approach method
performs in the piano fingering generation and to identify the
optimum approach between off-policy and on-policy model-
free deep reinforcement learning. The results demonstrated that
the off-policy method outperformed the other in training and
evaluation while solving the problem using the DQN agent. In
addition, the experiment showed a promising result for the future
fingering generation without human supervision.

Index Terms—piano fingering, symbolic music processing, deep
q-network, reinforcement learning

I. INTRODUCTION

Piano fingerings are often added to indicate the finger a

pianist should use to play each note. Fingering of a musical

piece has often been claimed as a major concern for the pianist.

It may and does determine important technical and expressive

elements of a performance [1]. Hence, determining fingering

strategies has always been an intense interest of keyboard

players because it is believed that fingering can significantly

affect the technical and expressive qualities of a performance

[2], [3]. Moreover, the process of fingering a piece is highly

personal for each pianist [4] and depends on several factors

such as the configuration of the keyboard and the physiology

of the pianist’s hand [1].
Finding the best fingering for piano pieces can be classified

as learning by trial and error, [5]. This process allows the

discovery of new skills and ways of doing things repetitively

with various attempts. In this case, fingering skills are acquired

by eliminating the unsatisfactory solution and continuously

repeating to find the appropriate fingering for a piano passage.
Several methods in automatic piano fingering have been

proposed to solve the piano fingering generation problem, in-

cluding dynamic programming [6], local search algorithm [7],

* Corresponding author: Chang Wook Ahn

hidden markov model [8], [9]. However, this paper formulates

the problem as a fully markov decision process(MDP) and

approach with model-free deep RL.
The concept of reinforcement learning is that given an

environment, an agent has to interact and try a variety of

actions to progressively adapt and maximize the rewards [10].

In particular, it is concerned with how agents take sequential

action and learn from the feedback from the environment. A

reinforcement learning environment can be described with a

markov decision process(MDP) consisting of a set of states,

actions, a transition matrix, and rewards. Moreover, a model

is referred to as a model of the environment that mimics the

behavior of the environment, and model-free is the method

that does not need any environment’s model.

Fig. 1. Piano fingering of first 4 bar of Chopin waltz op.64 no.1 with DQN

The approach lets the agent practice the piano repeatedly

from the environment and learn how to use the finger by

following the rules. then the fingering is evaluated with our

reward process called negative fingering difficulty where the

agent has to find the most efficient fingering combination.

Furthermore, this method enables reinforcement learning to

approach piano fingering. Therefore in this paper, we aim to

investigate how each basic method of RL behaves in our for-

mulation and find out the best approach between off-policy and

on-policy model-free deep reinforcement learning on solving

piano fingering generation. The significant contributions of this

work are threefold:

1) We create a framework for approaching piano fingering

with deep reinforcement learning by using hand position

information as a state.

2) We formulate the reward function by calculating the

maximum negative-difficulty of a fingering combination.

3) We investigate the behavior of off-policy and on-policy

methods. Our experiments show the off-policy performs

better and the complex architecture of DDQN does not

significantly improve the result of fingering.

31

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00016

II. BACKGROUND

A. Deep Reinforcement Learning

The action-value Qπ(s, a) = E[Rt | s, a] is defined as

the expected return for selecting action a on state s under

π [10]. The optimal action-value is denoted as Q∗(s, a) =
maxπQπ(s, a). Then, the optimal policy π∗ can be derived

by selecting the highest valued action in each state. Simi-

larly, the state-value function s for policy π is defined as

Vπ(s) = E[Rt | s] which represents the expected return

of following π from state s. In the off-policy method, [11]

firstly demonstrate the approach of deep q-network(DQN)

algorithm to approximate Q value using neural network, which

later stabilized in [12] using experience replay and the target

network. Double deep q-network(DDQN) was later proposed

by [13] to reduce overestimation of the DQN by decomposing

max operation to action selection and action evaluation.

In contrast, the on-policy directly parameterized the policy

π(a | s; θ) and updated the parameter θ by performing gradient

ascend on expected return E(Rt). A baseline bt(st) is any

function that reduces the variance by subtracting the expected

return, called REINFORCE with baseline. [14]. One natural

choice for the baseline is an estimate of the state value

bt(st) ≈ V (st;w) proposed by [15]. The update of parameter

θ then defined as ∇θ log π(at | st; θ)(Gt − V (st;w)). When

the bootstrapping is implemented, the return of Gt−V (st;w)
can be seen as the advantage function A(st, at) = Q(st, at)−
V (st;w) where Q(st, at) is critic that approximate action-

state Q(st, at) ≈ Qπ(s, a). This approach is defined as the

advantage actor-critic method (A2C) where the policy π is

the actor and the baseline bt is the critic. [16]

B. Piano Fingering Difficulty

Piano fingering difficulty was introduced in [17]. The fin-

gering difficulty score is based on anatomic distance and finger

motor constraints, where each finger pair has six different

types of distance, namely MaxPrac, MinPrac, MaxComf, Min-

Comf, MaxRel, MinRel.

TABLE I
DISTANCE MATRIX OF RIGHT-HAND FINGER PAIR BASED ON [17]

Pair MinPrac MinComf MinRel MaxRel MaxComf MaxPrac

1-2 -5 -3 1 5 8 10
1-3 -4 -2 3 7 10 12
1-4 -3 -1 5 9 12 14
1-5 -1 1 7 10 13 15
2-3 1 1 1 2 3 5
2-4 1 1 3 4 5 7
2-5 2 2 5 6 8 10
3-4 1 1 1 2 2 4
3-5 1 1 3 4 5 7
4-5 1 1 1 4 3 5

MaxPrac defined the maximum practical distance for two

finger pairs to be stretched. MaxComf is the maximum stretch

between two fingers that may be played without any noticeable

effort. MaxRel is the maximum distance between two fingers

when the finger is completely relaxed. MinPrac, MinComf, and

MinRel can be defined similarly. Then the fingering difficulty

score is given by summing the difficulty scores obtained

by applying each of the 12 fingering rules specified. Lower

fingering difficulty means easier to play.

C. Related Work

[8] proposed a hidden markov model (HMM) on right-

hand only piano pieces. They represent the position of hand

as one of the HMM states. [18] and [9] further extend the

HMM model to deal with both fingering hands. They also

constructed two feedforward networks and LSTM using pitch

sequence and fingering with a sequence of integer pitches as

the input and fingering number as the output. The result shows

lower performance in match rate than HMM approach.

Ergonomic constraint-based method [17] was proposed to

estimate piano fingering difficulty using the rules defined

based on the finger distance. The approach is tested on the

right hand only 7 opening fragments of Czerny pieces. They

discovered that the fingering generated by this method is often

similar to human-annotated fingering. The early experiment of

the piano fingering difficulty model is applied by [19]. They

conduct experiments to find out the determinant finger usage

between beginner, intermediate, and advanced human pianists

on the same piano pieces. [20] further extend the constraint-

based method to estimate polyphonic music on both hands

using the tabu search algorithm. They further proposed the

variable neighborhood search(VNS) algorithm to handle the

no improvement in the local optimum solution. [7].

The first method of approaching piano fingering generation

as a fully markov decision process problem was proposed by

[6]. They proposed a dynamic programming (DP) approach

to monophonic piano pieces with the cost-based method. The

cost of fingering is formulated as the sum of local costs for

playing a pitch pair defined for each finger pair. Then, [21] use

the DP approach to search the space of all possible fingering

by proposing horizontal and vertical cost functions of [17] to

solve polyphonic pieces.

III. PROPOSED METHOD

A. Pianist Agent

The goal of a pianist agent is to find the optimum finger

given a specific piano piece. The agent is designed to learn

how to choose the appropriate finger based on the current state

of the music score. The fingers agent has to learn is numbered

from 1 to 5. The thumb is denoted as 1, the index finger is

2, the middle finger is 3, the ring finger is 4, and the little

finger is 5, as shown in figure 2. The finger chosen by the

agent at each state must be the most comfortable, efficient,

and well-compatible with the current hand position.

B. Environment Definition

We developed a custom environment called PianoFingering
using gym library to learn the right-hand fingering of a

music sheet. PianoFingering environment consists of four

different pieces. Specifically, we chose one piece from Beyer

32

Fig. 2. Piano finger numbers

Op.101 [22] and 3 pieces from Piano Fingering Dataset [9].

We considered three things in choosing the pieces: the era

of classical music, the musical form, consists only of the

monophonic right hand.

PianoFingering-V0 was created based on Beyer Op 101 No

12. Vorschule im Klavierspiel. Since it has a major influence

on piano pedagogy as the manual for teaching students in the

beginning stage, we adopt a similar concept by making version

0 the basic environment. The purpose of this environment is

to check whether the designed algorithm performs well in the

beginner piece. PianoFingering-V1 was constructed based on

Chopin Waltz Op.64 No. 1. This environment represents music

from the romantic era, waltz form, and 3/4 time signature,

PianoFingering-V2 based on Beethoven For Elise, represent-

ing the classical era, rondo form, and 4/4 time signature, and

PianoFingering-V3 developed based on Scarlatti Sonata in A

Major K.208, representing the baroque era, sonata form, and,

4/4 time signature.

Given a state st from the environment at time t, an agent has

to select an action finger at. The quality of the chosen finger

will be evaluated by the environment according to the reward

function Rt(s, a), and the agent will obtain the information

of the next state st+1. The details of these components are

described below.

1) State and Action: We defined the state space by the hand

position information. The hand position can retrieved with the

finger-action set of the past two notes and the current note,

Let nt be the MIDI number of a note played at t, and at is

the action finger taken at time t, then the state st is defined

as

st = (nt−2, at−2, nt−1, at−1, nt) (1)

with nt ∈ [0, 127], nt ∈ N. We then defined the action at as

choosing a single action finger given the current state of hand,

at ∈ [1, 5], at ∈ N. Figure 3 illustrates the hand position of a

bar of music. From the music sheet, D4 played with finger 1,

F#4 played with finger 2, and B4 fingering is unknown. Then,

the state st at time t can be defined as (62, 1, 66, 2, 71)
and agent has to choose the action finger at to play on B4.

2) Reward Function: Using the distance matrix described

in Table I, the quality of an action is measured with the set

of 12 fingering rules defined by [17]. These rules are:

1) Stretch Rule: add 2 points of difficulty for each consec-

utive semitone that is lower than MinComf or exceeded

MaxComf.

Fig. 3. Illustration of piano fingering as a reinforcement learning problem

2) Small-span rule: for finger pairs including thumb, add

1 difficulty point for each consecutive semitone lower

than MinRel. For other finger pairs, add 2 points for

each semitone.

3) Large-span rule: for finger pairs including thumb, add

1 difficulty point for each consecutive semitone that

exceeds MaxRel. For other finger pairs, add 2 points

per each semitone.

4) Position-Change-count rule: add 1 point if the distance

between the first and third notes is lower than Min-

Comf or exceeds MaxComf. In addition, add 1 more

point if the second note is between the first and third

notes, played with thumb, and the distance between the

first and third notes is lower than MinPrac or exceeds

MaxPrac.

5) Position-Change size rule: add 1 point of difficulty for

the distance between the first and third note semitone

that is lower than MinComf or exceeds MaxComf.

6) Weak finger rule: add 1 difficulty point when finger 4

or finger 5 is used.

7) Three-Four-Five rule: add 1 difficulty point if fingers

3,4,5 and their combination occurs consecutively.

8) Three to four rule: add 1 difficulty point if finger 4 is

used right after finger 3

9) Four on black rule: add 1 difficulty point if fingers 3

and 4 occur consecutively in any order with finger 3 on

the white key and finger 4 on the black keys

10) Thumb on black rule: add 1 difficulty point if the black

key is played with finger 1. Then if the next note is

white, add 2 more difficulty points. Moreover, if the

previous note is white, add 2 more difficulty points

11) Five on black rule: add 2 difficulty points if finger

5 is in black key and the previous note is white key.

Furthermore, if the next note is a white key, add 2 more

points to the difficulty point

12) Thumb passing rule: add 1 difficulty point if the thumb

passes on the same level, i.e. white key to white keys.

Moreover, add 3 more points if the lower note is a white

key played with a finger other than finger 1 and the upper

33

note is a black key played with finger 1.

We then define the difficulty of the selected finger at
evaluated on rule k as dk(st, at). Then the total difficulty score

at time t, Dt(st, at) can be defined as the total of all rules k,

k ∈ 1, 2..M

Dt(st, at) =

M∑

k=1

dk(st, at) (2)

with dk(st, at) ≥ 0. The total fingering difficulty of a full

score D(s, a) is the sum of all the difficulty score Dt(st, at)
in equation 2 obtained at all time t ∈ 1, 2, ..N .

min D(s, a) =

N∑

t=1

Dt(st, at)

=

N∑

t=1

M∑

k=1

dk(st, at)

(3)

The function D(s, a) is considered a minimization problem

where the goal is to find the least difficult fingering combina-

tion. However, since the goal of reinforcement learning is to

maximize the reward, we modify the calculation of equation

3 to be a maximization problem by multiplying Dt with −1
as shown in equation 4.

max D(s, a) =

N∑

t=1

−Dt(st, at) (4)

Therefore, the problem becomes a maximization problem and

we then defined it as a reward function Rt+1(st, at).

Rt+1(st, at) = −Dt(st, at) = −
M∑

k=1

dk(st, at) (5)

Since dk ≥ 0, the reward agent receives will always be

a negative number, Rt+1 ≤ 0. Hence as a maximization

problem, the agent goal is to find the combination that can

maximize the negative fingering difficulty or find the most

efficient fingering combination. The proof can be derived

from the identity of two negative numbers. The algorithm is

described in algorithm 1

C. Neural Network Architecture

For each step, each information in st is transformed into a

1x273 vector since there are only 88 playable notes in piano

from A0 to C8, the note information is converted into 1x88,

and the action finger into a 1x5 vector. Then we combine the

vectors by concatenating them into one single vector. Hence,

the input for the neural network is a 1x273 vector. We define

this process as a state encoding process. The component for

each network is described below.

The state-action value Q(st, at; θ) network for DQN and

DDQN components are: The network takes in 1x273 vector

size input, three hidden layers consisting of a fully connected

layer with 512,256, and 64 nodes and ReLU activation per

Algorithm 1 Negative Fingering Difficulty Reward Process

Input: current state st, action taken at

1: function STEP(st, at)
2: Initiate Dt = 0

3: Extract nt−2, at−2, nt−1, at−1, nt from st
4: for k = 1,M do
5: calculate the difficulty dk(st, at) and to Dt

6: end for
7: Rt+1 = −Dt

8: if nt+1 �= ∅ then
9: Set st+1 as (nt−1, at−1, nt, at, nt+1)

10: else
11: Set st+1 as None

12: end if
13: end function
Output: next state st+1, reward Rt

layer, one output layer with 5 output node. The output is the

approximation of the Q-value of taking an action.

The state value network V (st;w) for Policy Gradient and

the critic network for A2C method will accept the 1x273 state

encoding vectors as inputs, three hidden layers consisting of a

fully connected layer with 512,256, and 64 nodes and ReLU

activation per layer, one output layer with 1 node. The policy

network πθ(st, at) component for PG and Actor are: The

network takes in 1x273 vector size input, three hidden layers

consisting of a fully connected layer with 512,256, and 64

nodes and ReLU activation per layer, one output layer with 5

output node, and finally a softmax activation at the last layer.

D. Evaluation Measurement

We use two matrices to evaluate the quality of the agent

network, namely fingering difficulty level and match rate.

We define fingering difficulty level L(s, a) as the average

difficulty of a hand movement at one time as one piece

consists of N time step from t = 1. The number of hand

movements can be associated with the total number of steps

in the environment, which is N movement.

L(s, a) =
1

N
D(s, a)

=
1

N

N∑

t=1

M∑

k=1

dk(st, at)
(6)

the function can also be understood as how difficult the

movement of the hand with the finger combination is in

general. One of the advantages of using this equation is we can

compare the difficulty level generated for any piece without

considering the length of the pieces.

We also use the Match Rate evaluation matrix defined

by [9]. General match rate Mgen is defined as an average

value of the match rate from each human-annotated fingering,

indicating how closely the generated output agrees with all

the human-annotated fingering. Highest match rate Mhigh

focuses on the human-annotated fingering that has the highest

34

match rate. Soft match rate Msoft calculates the number of

a generated finger that matches at least one of the human-

annotated fingering, and recombination match rate Mrec is the

match rate of the generated fingering with the recombination

of the multiple human-annotated fingering. Then, for the piece

that contains only one human-annotated fingering, we only

calculate the general match rate Mgen. For the piece that has

multiple human-annotated fingering, we calculate the Mgen,

Mhigh, Msoft, and Mrec values.

IV. EXPERIMENTS & RESULTS

The training was run on a single Nvidia RTX 2080 GPU

with 8GB memory. We trained each agent model for 500

episodes with a discount factor γ of 0.99, Adam optimizer

with a learning rate α of 0.001, and mean squared error (MSE)

as the loss function. In addition, for DQN and DDQN agents,

the replay memory was set to store data of the latest 10000

agent steps, the sampling size or batch size of 32, and the

target model updated every 100 steps.

TABLE II
RESULTS: COMPARATIVE EVALUATION OF PIANO FINGERING

GENERATION, THE LEAST DIFFICULT RESULT OVER 10 RUNS

Difficulty Level L(s, a) ↓
Method V0 V1 V2 V3

DQN 0.6207 1.3721 3.1814 2.5441
DDQN 0.6207 2.5163 5.2647 3.25
PG 8.1034 10.712 14.478 11.294
A2C 2.7586 3.8930 7.0441 6.6176

FHMM11 1.0697 2.3349 3.6029 2.8320

FHMM21 0.6207 1.8884 3.3235 2.8028

FHMM31 0.6207 2.2512 3.2941 2.9859

Human2 0.6207 1.8419 4.0441 2.9155

1 HMMs model from [9]
2 fingering evaluated with the rules specified.

We analyze the agent behavior during the training and the

time comparison of each method. We also compare the result

by comparing the difficulty level with previous work on the

same pieces. The difficulty evaluation is presented in table II

and IV. Match rate evaluation is presented in table V. The

result of each piece is presented visually in figure 5, 6, 7, 8.

A. Agent Training

We first trained all models on PianoFingering-V0 to check

the behavior of each agent on the beginner pieces. This piece

has one optimal fingering solution set by the composer. The

maximum reward gained in one episode is -18 points or the

difficulty level minimum is 0.6207. The total training time was

around 27 minutes in total.

Despite the fastest training time for this environment of PG

agents, its performance does not match that of the other. Both

DQN and DDQN agents can reach the optimal solution with

DDQN more stable in general.

As shown in figure 4, all methods start with a similar reward

at the beginning of the training process. As the episodes begin,

the PG agent fails to learn the policy of the environment,

TABLE III
TRAINING DETAILS ON PIANOFINGERING-V0

Method Run Time (s) L̂(s, a) ↓ Best ↓
DQN 51.6 ± 0.84 1.2552 ± 0.905 0.6207
DDQN 55.7 ± 0.95 0.7000 ± 0.238 0.6207
PG 9.8 ± 0.42 9.7138 ± 1.267 8.1034
A2C 45.1 ± 0.57 3.7448 ± 2.759 2.7586

Fig. 4. Agent Training on Beginner Pieces

A2C agent shows a great learning process in the first hundred

episodes but tends to achieve the local maximum at every run.

In contrast, DQN and DDQN agents successfully learn the

environment by getting the maximum reward of -18 points.

Moreover, DQN agent could reach a maximum faster than

DDQN in episodes 124 and 202, respectively.

In regards to the stability of the agent’s learning process,

the reward obtained per episode exhibits similar behavior as

shown in Figure 4. The average rewards per episode of PG ex-

periments resemble the initial prediction and tend to decrease

with each run. However, the range for each episode remains

consistent, indicating that the agent struggles to learn the

policy and makes random predictions without improvement.

A2C agent performances show a fast learning process with

a low standard deviation at early episodes. However, the

learning stopped after reaching a certain point of the local

maximum where the agent tries to do some exploration but

fails to enhance the reward. On the other hand, both DQN and

TABLE IV
TRAINING DETAILS OF ENVIRONMENT V1, V2, AND V3

V1 V2 V3

Method Time(s) L̂(s, a) ↓ Time(s) L̂(s, a) ↓ Time(s) L̂(s, a) ↓
DQN 424 1.51 ± 0.17 294 3.78 ± 0.30 136 3.14 ± 0.53
DDQN 458 2.92 ± 0.21 288 6.05 ± 0.78 146 3.76 ± 0.35
PG 60 11.61 ± 0.39 43 16.5 ± 0.98 21 13.38 ± 1.05
A2C 345 5.08 ± 0.83 237 8.94 ± 1.33 115 7.75 ± 0.56

35

DDQN agents show stable performance in every environment.

Their mean rewards per episode are increasing with a low

standard deviation. It indicates both agents successfully learn

the environment at every experiment.

Fig. 5. Piano Fingering Result on Beyer Op.101 No.12.

B. Evaluation

Table IV shows the average difficulty level generated by the

agent. The result indicates that the DQN agent can achieve a

lower difficulty level than the other network. Even though the

DDQN agent achieves more stability results in Environment

V0, the result in the other version shows differently. Moreover,

the on-policy approaches give relatively low maximum reward

compared to off-policy approaches, with DQN outperforming

the DDQN in every experiment. It implies that the complex

architecture of DDQN does not provide any significant im-

provement for solving the formulated problem.

In Table II, we compare our best output of each agent with

the previous work using HMMs [9]. The result shows that

the reinforcement learning approach can get easier fingering

difficulty than HMMs generally. We also evaluate our approach

with match rate analysis detailed in table V.

TABLE V
MATCH RATE EVALUATION WITH HUMAN-ANNOTATED FINGERING

Method
Match Rate ↑

Mgen Mhigh Msoft Mrec

DQN 66.50% 68.97% 78.52% 72.55%
DDQN 58.23% 61.10% 70.27% 62.29%
PG 24.20% 26.97% 34.60% 28.16%
A2C 43.08% 46.30% 54.18% 47.02%
FHMM1 63.50% 66.11% 79.47% 74.22%
FHMM2 61.32% 63.96% 76.61% 70.41%
FHMM3 60.62% 61.34% 75.42% 70.17%

The result in the table II, IV, and V shows that the PG and

A2C agents have a high difficulty level and lower match rate

with the human, indicating that the problem of piano fingering

cannot be solved with on-policy reinforcement learning.

As shown in Table V, the DQN agent can get a higher

general match rate and the highest match rate than the other

method. It can be understood that DQN can generate more

human-likely than the other method. Then, even though the

soft match rate recombination match rate from DQN is lower

than HMM order 1(FHMM1), the DQN agent can get a similar

result to HMM order 1. This implies the DQN agent can

Fig. 6. Piano Fingering Result on Beethoven For Elise, shown only bar 81-85

capture the sequential consistency of fingering likewise the

HMM order 1. It should be noted that reinforcement learning

does not require any data from the ground truth.

Fig. 7. Piano Fingering Result on first four bar of Chopin Waltz Op.64

C. Analysis of Fingering Generated

Figure 5 shows that the finger generated by DDQN and

DQN agents can have an exact match as the optimal fingering.

The fingering in the PG agent is random and A2C tends to

avoid using Finger 4 and 5. In figure 6, the PG agent always

randomly generates piano fingering. Similarly, the A2C agent

avoids using weak fingers(Finger 4 and 5). while the DDQN

agent uses 2-2-2-1-2-1-2 in E5-D#5-E5-D#5-B4 in bar 2, the

DQN agent could use easier hand movement with 3-2-3-1-5-

4-2. However, the usage of 1-5-4-2 is also considered hard

given the short note distance from B4 to D5.

Notice that in figure 7, the result of the first four bars

of DQN matches with human-annotated fingering. At the

sequence of G4-Ab4-Bb4-Ab4-C5-Bb4, the DQN agent can

learn to use 1-2-3-2-4-3, while FHMM1 avoids using finger 4

and use 1-2-5-3-5-3 instead, which is considered a relatively

hard hand movement considering the note distance.

DQN and FHMM1 have relatively similar results in the first

four bars of Scarlatti Sonata in figure 8,. Both can get similar

results with the human-annotated fingering shown in the first

and last bars. However, the use of fingering 5-4-3-2-1 in the

second bar by FHMM1 is matched with human-annotated,

which is easier to play than 4-3-1-3-2-1 by the DQN agent.

36

Fig. 8. Comparison on first four bars of Scarlatti Sonata in A Major K.208

D. Discussion and limitation

Our result demonstrates the potential of the model-free

reinforcement learning approach on piano fingering problems.

It should be noted that the method used in this experiment is

the baseline DQN proposed by [12]. Thus, further off-policy

or value-based reinforcement learning can be investigated in

future experiments to solve the piano-fingering problem.

However, as our experiment is bound to right-hand only

monophonic piano pieces, the formulation in solving poly-

phonic piano fingering can also be explored and the framework

for solving both hands can be studied further. Moreover, as

reinforcement learning relies on the reward function to give

a good signal when the agent acts correctly, formulating a

good indicator for piano fingering is still an open problem.

Thus, our formulation of reward function as a maximization

of negative difficulty can be used for exploring various rules

of hand fingering to measure the difficulty level in the future.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we constructed an approach to solving the

piano fingering generation problem using the model-free deep

reinforcement learning method. We trained pianist agents to

learn how to choose an optimum finger given a hand position

in the music passage. we compared the performance of off-

policy and on-policy methods, where DQN outperformed the

other method. It showed that the complex architecture of

DDQN does not provide a significant improvement to solve

the problem. We compared it with the previous work and DQN

could generate a relatively lower difficulty level than the other.

When we evaluated with match rate analysis, DQN achieved

a slightly better general match rate and high match rate than

the other and predicted a similar result with HMM without

any ground truth supervision.

In general, the off-policy methods performed better than

the on-policy methods in solving piano fingering generation.

It also indicated that finding the value of using one finger is

more important than finding the probability of using a certain

finger given a hand position. Additionally, as reinforcement

learning depends on the reward function to provide a signal

when the agent behaves appropriately, our proposed reward

and evaluation calculation can be used to explore this topic

with reinforcement learning in the future.

ACKNOWLEDGEMENT

This work was partly supported by Institute of Information

& communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) (No.2019-

0-01842, Artificial Intelligence Graduate School Program

(GIST)) and the GIST Research Project grant funded by the

GIST in 2024.

REFERENCES

[1] A. Telles, Piano fingering strategies as expressive and analytical tools
for the performer. Cambridge Scholars Publishing, 2021.

[2] J. Bamberger, “The musical significance of beethoven’s fingerings in the
piano sonatas,” in Music forum, vol. 4, 1976, pp. 237–280.

[3] E. Clarke, R. Parncutt, M. Raekallio, and J. A. Sloboda, “Talking fingers:
An interview study of pianists’ views on fingering,” Musicae Scientiae,
vol. 1, pp. 107 – 87, 1997.

[4] L. Descaves, Un Nouvel art du piano: exposés et documentation de
pédagogie pianistique. Fayard, 1966.

[5] K. Popper and W. W. Bartley III, Realism and the aim of science: From
the postscript to the logic of scientific discovery. Routledge, 2013.

[6] M. Hart, R. Bosch, and E. Tsai, “Finding optimal piano fingerings,” The
UMAP Journal, vol. 21, no. 2, pp. 167–177, 2000.

[7] M. Balliauw, D. Herremans, D. P. Cuervo, and K. Sörensen, “A
variable neighborhood search algorithm to generate piano fingerings for
polyphonic sheet music,” Int. Trans. Oper. Res., vol. 24, pp. 509–535,
2017.

[8] Y. Yonebayashi, H. Kameoka, and S. Sagayama, “Automatic decision
of piano fingering based on hidden markov models,” in Proceedings of
the 20th International Joint Conference on Artifical Intelligence, ser.
IJCAI’07. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007, p. 2915–2921.

[9] E. Nakamura, Y. Saito, and K. Yoshii, “Statistical learning and estima-
tion of piano fingering,” ArXiv, vol. abs/1904.10237, 2020.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/abs/1312.5602

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].
Available: http://arxiv.org/abs/1509.06461

[14] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradi-
ent methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[15] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no.
3-4, p. 229–256, 1992.

[16] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in 2012 American Control
Conference (ACC), 2012, pp. 2177–2182.

[17] R. Parncutt, J. Sloboda, E. Clarke, M. Raekallio, and P. Desain, “An
ergonomic model of keyboard fingering for melodic fragments,” Music
Perception - MUSIC PERCEPT, vol. 14, pp. 341–381, 07 1997.

[18] E. Nakamura, N. Ono, and S. Sagayama, “Merged-output hmm for piano
fingering of both hands,” in ISMIR, 2014.

[19] J. Sloboda, E. Clarke, R. Parncutt, and M. Raekallio, “Determinants
of finger choice in piano sight-reading,” Journal of Experimental Psy-
chology: Human Perception and Performance, vol. 24, pp. 185–203, 02
1998.

[20] M. Balliauw, D. Herremans, D. P. Cuervo, and K. Sörensen, “A tabu
search algorithm to generate piano fingerings for polyphonic sheet
music,” in Proceedings of the International Conference on Mathematics
and Computation in Music (MCM), London, 2015.

[21] A. Kasimi, E. Nichols, and C. Raphael, “A simple algorithm for
automatic generation of polyphonic piano fingerings.” in ISMIR, 01
2007, pp. 355–356.

[22] F. Beyer, Vorschule im Klavierspiel Op.101: Elementary method for the
piano, op. 101. Reprint in Alfred Publisher 2015, 1850.

37

