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Abstract—Interleaved practice enhances the memory and
problem-solving ability of students in undergraduate courses. We
introduce a personalized learning tool built on a Large Language
Model (LLM) that can provide immediate and personalized
attention to students as they complete homework containing
problems interleaved from undergraduate physics courses. Our
tool leverages the dimensional analysis method, enhancing stu-
dents’ qualitative thinking and problem-solving skills for com-
plex phenomena. Our approach combines LLMs for symbolic
regression with dimensional analysis via prompt engineering and
offers students a unique perspective to comprehend relationships
between physics variables. This fosters a broader and more ver-
satile understanding of physics and mathematical principles and
complements a conventional undergraduate physics education
that relies on interpreting and applying established equations
within specific contexts. We test our personalized learning tool
on the equations from Feynman’s lectures on physics. Our tool
can correctly identify relationships between physics variables
for most equations, underscoring its value as a complementary
personalized learning tool for undergraduate physics students.

Index Terms—AI and Education, Symbolic Regression, Large
Language Models, Physics Education, Prompt Engineering, Un-
dergraduate Learning

I. INTRODUCTION

Interleaved practice enhances students’ memory and

problem-solving ability in undergraduate physics courses [1].

This involves students alternating between topics in physics

while completing their homework assignments. However, dif-

ferent students learn at different paces, and tutors cannot

simultaneously provide complete attention to different students

as they work on different topics. The need for a personalized

learning tool for each student can be met with Large Language

Models (LLMs).

Dimensional analysis, a fundamental concept in physics

education, is renowned for its efficacy in cultivating qualitative

thinking and unraveling complexities in physics. Its robust

application in higher education, as demonstrated in advanced

topics like Rayleigh Scattering, underscores its versatility and

power. While foundational works by pioneers like Bucking-

ham and Bridgman have cemented its importance, recent stud-

ies suggest the potential for its enhanced application in teach-

ing methodologies [2]–[6]. The integration of dimensional

analysis into an LLM-driven learning environment further

leverages this powerful tool, deepening students’ understand-

ing of physics beyond conventional pedagogical boundaries.

LLMs can facilitate the learning of physics from data and

the inferencing of laws by leveraging symbolic regression to

distill complex physics laws from raw data [7]. This method

aligns well with the historical context of physics discovery,

where major theories often emerged from extensive data

analysis [8], [9]. Incorporating these algorithms into LLMs

allows for a more data-driven and exploratory approach to

learning physics, enabling students to infer and understand

the underlying principles from empirical data.

In this context, our research introduces a personalized

learning tool built on an LLM that leverages dimensional

analysis and symbolic regression. This tool is designed to

cater to the individual learning pace of students, guiding them

through interleaved practice in undergraduate physics courses.

Our approach aims to enhance the conventional physics edu-

cation model, which often limits students to memorizing and

applying established equations within specific contexts.

We experimentally evaluate our personalized learning tool

by applying it to equations drawn from Feynman’s lectures on

physics [10]–[12]. Our tool possesses a remarkable capacity to

discover and establish relationships between various physics

variables accurately. This efficacy was observed across the

majority of the equations tested, which underscores the tool’s

potential as a beneficial resource in undergraduate physics

education. Our tool offers a customized learning experience,
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adapting to individual student needs and learning styles.

Consequently, this tool stands as a valuable complement to

traditional teaching methods, enhancing students’ grasp of

complex physics concepts and their application in various

scenarios.

II. BACKGROUND

A. Symbolic Regression

Symbolic regression is a process that seeks to discover

an explicit symbolic formula, representing a mapping from

a given set of numerical input-output pairs {xi, yi}Mi=1, where

each xi is a vector in a d-dimensional space (xi ∈ R
d)

and each yi is a corresponding output in a q-dimensional

space (yi ∈ R
q). The core objective is to find a symbolic

expression, denoted as f , that accurately describes the math-

ematical relationship y = f(x) inherent in the data [13].

Unlike traditional regression models that might yield complex

numerical algorithms, symbolic regression strives to provide

a clear, human-readable formula that captures the intricacies

and underlying patterns of the dataset.

Symbolic regression is an NP-hard problem, requiring a

complex search through an extensive space of mathematical

expressions to find the one that best fits a dataset. This

complexity involves not just identifying the appropriate math-

ematical operations but also their optimal arrangement and

combination. The resultant expression, f , provides a model

that reveals insights into the underlying relationship between

variables [14].

B. Dimensional Analysis

Dimensional analysis is a powerful tool in physics. It is used

to simplify complex problems by focusing on the dimensions

of physical quantities. The dimensions of a physical quantity

Q are expressed as [Q] = MaLbT c, where [Q] denotes

the dimensions of Q in terms of mass (M), length (L), and

time (T). The utility of dimensional analysis extends beyond

mere simplification. Historical contributions like Bucking-

ham’s study on physically similar systems and Bridgman’s

seminal book on dimensional analysis establish the method’s

foundational role in physics research and education [2].

The importance of dimensional analysis in education is

further emphasized by its ability to develop students’ intuitive

understanding of physical phenomena. Furthermore, Blasiak

et al. and Taber have also discussed the multi-stage nature

of physics comprehension and the importance of sequencing

in education, suggesting a need for innovative methods that

integrate dimensional analysis more effectively into physics

learning [6], [15]. Dimensional analysis has thus emerged as

a crucial tool in developing a deeper and more intuitive un-

derstanding of physics, underscoring the need for its effective

integration into physics curricula.

Rayleigh’s method is an insightful technique within the

dimensional analysis literature that seeks to elucidate the re-

lationships between various physical quantities [16]. It begins

by identifying all independent variables that may influence a

dependent variable. The method then formulates a functional

relationship between these variables, generally as a power

product, taking the form:

R = CRa
1R

b
2R

c
3 . . . R

m
n , (1)

where R is the dependent variable, R1, R2, . . . , Rn are the

independent variables, C is a dimensionless constant, and

a, b, c, . . . ,m are the exponents to be determined.

Each variable is expressed in base units, and through the

principle of dimensional homogeneity, a set of simultaneous

equations is formulated. Solving these equations yields the

values of the exponents and forms a dimensionally consistent

equation relating the independent and dependent variables.

C. Large Language Models in Physics Education

LLMs like the Generative Pre-trained Transformer (GPT)

have shown significant potential to revolutionize education,

especially in fields like physics. These models can analyze

and generate text-based content, aiding in problem-solving and

explanation generation [17]. In physics education, LLMs have

been utilized for solving calculation problems, explaining con-

cepts, and creating new exercises, offering a novel approach

to learning and understanding complex topics [18]. However,

the effective use of LLMs in physics education requires careful

consideration of their capabilities and limitations. Recent stud-

ies have highlighted both the potential and the challenges of

integrating LLMs into physics education, particularly in terms

of accuracy, reliability, and contextual understanding [19].

III. RELATED WORKS

A. Symbolic Regression

Symbolic regression aims to find mathematical models

fitting empirical data, evolving significantly since its early

days [20]. Current algorithms are mainly heuristic or exact,

with heuristic approaches prioritizing speed and exact methods

focusing on accuracy [21].

Conventional symbolic regression uses genetic program-

ming, an evolutionary technique derived from genetic algo-

rithms and inspired by natural selection [22]. Pioneered by

Holland [23], and extended by Cramer [24], this method

involves evolving populations of candidate programs, modi-

fied through genetic operations like crossover and mutation.

Koza’s work further demonstrated the effectiveness of genetic

algorithms in diverse problem domains, including symbolic

regression [25]

Neural networks have revolutionized symbolic regression,

leveraging their strength in gradient-based optimization and

handling high-dimensional data [26], [27] to enable the dis-

covery of intricate parametric equations [28], [29].

Physics-informed symbolic regression integrates physical

principles to enhance expression discovery. A key development

in this domain is AI Feynman, which employs neural networks

to streamline equation discovery, effectively re-discovering

equations from the Feynman Lectures on Physics and serving

as a benchmark in the field [30]. Another notable advancement

is the Scientist-Machine Equation Detector (SciMED) by

Keren et al., an open-source framework that melds scientific
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knowledge with advanced symbolic regression techniques for

identifying physically meaningful symbolic expressions [31].

B. Prompt Engineering for Reasoning

Reasoning is a structured cognitive process that can be lever-

aged by LLMs [32] to augment their performance in symbolic

regression. Effective prompt engineering, which tailors input

prompts to guide LLM behavior, is key to maximizing their

potential in reasoning tasks [33]. This involves single-stage

and multi-stage approaches, discussed in Section III-B1 and

III-B2 respectively.

1) Single-stage Approach: The single-stage approach, in-

spired by the proficiency of LLMs as few-shot reasoners,

predominantly employs template-based prompts. Techniques

like Contrastive Explanations and POTTER have harnessed

prompts to augment commonsense reasoning with pre-trained

models [34]. Notably, the Chain-of-Thought prompting ap-

proach introduced by Wei et al. uses a sequence of inter-

mediate reasoning steps within few-shot prompts, making it

especially beneficial for multi-step problems [35]. Addition-

ally, other techniques have emerged that optimize prompt

permutations, examine the impact of exemplar diversity, and

incorporate explicit explanations to refine LLM performance in

various tasks [36]. However, the single-stage approach efficacy

can be sensitive to the selection of exemplars [37].

2) Multi-stage Approach: The multi-stage approach in

prompt engineering, unlike its single-stage counterpart, em-

ploys a series of input-output exchanges to better guide LLMs

in complex reasoning tasks. This method was substantiated

by the foundational works of Kazemi et al. and Creswell and

Shanahan, who conceptualized reasoning into sub-modules

and developed a selection inference framework, respectively

[38], [39]. Press et al. advanced this notion by integrating

follow-up questions and intermediate answers, thus bridging

the compositionality gap in LLMs [40]

In recent years, the multi-stage approaches have markedly

shaped research, giving rise to various state-of-the-art tech-

niques. This includes Generated-knowledge Prompting, which

enhances LLMs by incorporating external knowledge for

improved commonsense reasoning [41]. Alongside, Least-

to-Most Prompting sequentially dissects complex problems,

aiding in tasks that require progressive reasoning [42]. Adding

to the repertoire, Self-Refine Prompting iteratively refines

outputs through feedback loops, thus enhancing performance

across various tasks [43].Each of these techniques represents

a significant leap in the ongoing evolution of multi-stage

approaches in LLMs.

IV. METHODOLOGY

Our methodology uses custom prompts to guide an LLM

in generating dimensionally consistent physics equations. We

empirically compare different methodologies that use single-

stage or multiple-stage prompting approaches and evaluate

their efficacy in guiding the model’s output. Additionally,

we have integrated established theorems, such as Rayleigh’s

method, to enrich the model’s ability to generate physically

meaningful expressions, thereby enhancing its utility in both

educational and research contexts.

A. Single-stage General Dimensional Analysis Method

This method utilizes a single-stage prompting approach for

symbolic regression with an LLM. The LLM is presented with

both regressors and response variables along with their re-

spective dimensions, and a dataset containing variable values.

In this single stage, the LLM is instructed to simultaneously

propose dimensionally consistent equations through dimen-

sional analysis and determine the coefficients of the proposed

equation by fitting the data.

Sample Prompt
Regressors:
X1 : [I][T ]
X2 : [M ][L][T ]−3[I]−1
Response Variable:
Y : [M ][L][T ]−2
Propose a dimensionally consistent equation form

for the response variable as a function of the given

regressors with unknown coefficients.

X1 X2 Y
4.230094105945206 4.989988020338535 21.10811891357122

1.7835543769151454 4.879775762873631 8.703345420237708
...

Based on the data set given, derive the unknown

coefficients for the equation form proposed in the

previous step.

B. Two-stage General Dimensional Analysis Method

This method employs a two-stage approach to prompt sym-

bolic regression. In Stage 1, the LLM is presented with both

regressors and response variables, including their respective di-

mensions. The primary objective is to generate dimensionally

consistent equations through dimensional analysis. Following

the generation of the equation form, Stage 2 involves supplying

LLMs with a dataset containing variable values to determine

coefficients.

Sample Prompt for Stage One
Regressors:
X1 : [I][T ]
X2 : [M ][L][T ]−3[I]−1
Response Variable:
Y : [M ][L][T ]−2
Propose a dimensionally consistent equation form

for the response variable as a function of the given

regressors with unknown coefficients.

Sample Prompt for Stage Two
Data Points Table:

X1 X2 Y
4.230094105945206 4.989988020338535 21.10811891357122

1.7835543769151454 4.879775762873631 8.703345420237708
...

Based on the data set given, derive the unknown

40



coefficients for the equation form proposed in the

previous step.

C. Single-stage Rayleigh’s Method Analysis Method

This method utilizes a single-stage prompting approach,

with the integration of Rayleigh’s Method for Dimensional

Analysis 1. The LLM is presented with both regressors and

response variables along with their respective dimensions, and

a dataset containing variable values. The LLM is instructed

to simultaneously propose dimensionally consistent equations

through Rayleigh’s Method and determine the coefficients of

the proposed equation by fitting the data.

Sample Prompt
Regressors:
X1 : [I][T ]
X2 : [M ][L][T ]−3[I]−1
Response Variable:
Y : [M ][L][T ]−2
Propose an equation Y = C · Xa1

1 · Xa2
2 · . . . ·

Xan
n using Rayleigh’s Method, ensuring dimen-

sional consistency. Solve for the unknown exponents

a1, a2, . . . , an to make the equation dimensionally

homogeneous.

Data Points Table:

X1 X2 Y
4.230094105945206 4.989988020338535 21.10811891357122

1.7835543769151454 4.879775762873631 8.703345420237708
...

Based on the data set given, derive the unknown

coefficients for the equation form proposed in the

previous step.

D. Two-stage Rayleigh’s Method Analysis Method

This method employs a two-stage approach to prompt sym-

bolic regression. In Stage 1, the LLM is presented with both

regressors and response variables, including their respective di-

mensions. The primary objective is to generate dimensionally

consistent equations through Rayleigh’s Method. Following

the generation of the equation form, Stage 2 involves supplying

LLMs with a dataset containing variable values to determine

coefficients.

Sample Prompt for Stage One
Regressors:
X1 : [I][T ]
X2 : [M ][L][T ]−3[I]−1
Response Variable:
Y : [M ][L][T ]−2
Propose an equation Y = C · Xa1

1 · Xa2
2 · . . . ·

Xan
n using Rayleigh’s Method, ensuring dimen-

sional consistency. Solve for the unknown exponents

a1, a2, . . . , an to make the equation dimensionally

homogeneous.

Sample Prompt for Stage Two
Data Points Table:

X1 X2 Y
4.230094105945206 4.989988020338535 21.10811891357122

1.7835543769151454 4.879775762873631 8.703345420237708
...

Based on the data set given, derive the unknown

coefficients for the equation form proposed in the

previous step.

V. PERFORMANCE EVALUATION

A. Experiment Setup and Evaluation Metrics

In our study, we utilized the GPT-4 model, serving as the

LLM, and integrated it with a Wolfram Alpha Plugin. This

combination significantly bolstered the model’s computational

abilities, particularly in performing mathematical and symbolic

operations, essential for the scope of our research. To prevent

the model from relying on prior physics knowledge, variables

are obfuscated with generic names, e.g., E = q2×Ef becomes

Y = X1 ×X2.

Our study utilizes 26 equations from the Feynman Lectures

on Physics for undergraduate physics students [30].We focus

on the equations delineated by Udrescu et al. that are solvable

by dimensional analysis [30]. For all regression tasks, we used

20 data points per equation.

We specify the methodologies and metrics employed to

assess the effectiveness and efficiency of the LLM.

The first metric comprises two counts which assesses the

LLM’s ability to suggest and regress equation forms efficiently

and accurately. If the LLM fails to suggest the expected form,

the same prompt is iteratively used until success. Therefore

a smaller count is better. The first count is the number of

prompts required for the LLM to suggest a dimensionally

consistent equation. The second is the number of prompts

needed to accurately regress the coefficients.

The second metric is the Mean Absolute Percentage Error

(MAPE). It is an assessment of fit. The LLM regresses the

coefficients, regardless of the dimensional consistency of the

initially proposed model. The MAPE is averaged over all 26

equations in the study.

B. Performance Evaluation

We assess the four proposed methods utilizing the two

aforementioned metrics. The findings, detailed in Table I,

underscore the efficiency of LLMs in single-stage prompt

resolutions. The success rate for the Single-stage General Di-

mensional Analysis Method underscores the robust capability

of LLM in symbolic regression tasks even within the con-

fines of a single-stage process. Furthermore, the Single-stage

Rayleigh’s Method Analysis Method requires fewer prompts

on average than the Single-stage General Dimensional Anal-

ysis Method. The incorporation of an established dimensional

analysis approach enhances the LLM’s performance further.

Lastly, the Two-Stage Rayleigh’s Method Analysis Method

had the highest success rate. The combination of an established

dimensional analysis approach and a multi-stage prompting
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TABLE I
COMPARATIVE ANALYSIS OF METHODOLOGIES

Methodology
Single-stage General

Dimensional
Analysis

Two-stage General
Dimensional Analysis

Single-stage
Rayleigh’s Method

Analysis

Two-stage Rayleigh’s
Method Analysis

AI
Feynman

Successfully
discovered

in One Shot
17/26 22/26 17/26 23/26 26/26

Average No.
of Prompts
Needed to

Regress expected
equation

Propose
dimensionally

consistent
equation

Regress
expected

coefficients

Regress expected
equation

Propose
dimensionally

consistent
equations

Regress
expected

coefficients
N.A.

1.885 1.154 1.192 1.308 1 1.192 N.A.
MAPE 105.86% 22.88% 9.95% 3.77% ≈ 0%

Average
Time Taken 2m33s 56s 2m42s 2m17s 1m6s 2m40s 18m50s

technique yields the best results. This refinement underscores

the effectiveness of our methodology, particularly in tack-

ling sophisticated symbolic regression tasks, demonstrating its

practical utility in complex computational scenarios.

In comparison to the baseline symbolic regression AI Feyn-

man, Table Ishows that AI Feynman has a higher success rate

but is very time-intensive. In contrast, our four methodologies

consistently discovered equations within 5 minutes. This ef-

ficiency makes our tool more user-friendly and accessible, as

students can receive prompt attention and guidance on physics

problems, to match their learning paces.

VI. CONCLUSION

Our investigation into the application of LLMs for symbolic

regression with dimensional analysis tasks in physics has

yielded promising results. We observed that both the Gen-

eral Dimensional Analysis Approach and Rayleigh’s Method

Analysis Approach have proven effective, delivering equations

with good accuracy. Notably, our study reveals that two-staged

prompting approaches outperform single-stage prompting, un-

derscoring the importance of structured problem-solving and

systematic analysis in leveraging LLMs for educational pur-

poses. Furthermore, the integration of established dimensional

analysis methodology such as Rayleigh’s Method into prompts

has been shown to further enhance the effectiveness of sym-

bolic regression. This synergy allows for a more refined

exploration of complex physical phenomena, providing deeper

insights that are invaluable in an educational context.

In conclusion, our research highlights the potential role

of LLMs as innovative and accessible educational tools in

undergraduate physics education. By harnessing the power of

prompt engineering and combining it with scientific knowl-

edge like Rayleigh’s Method, LLMs facilitate personalized

and data-driven learning experiences, allowing for a nuanced

understanding of physical phenomena. Our approach not only

deepens students’ understanding of physics concepts but also

nurtures essential critical thinking and analytical skills, pivotal

in today’s scientific arena. Consequently, LLMs emerge as

valuable assets in the realm of undergraduate physics edu-

cation, offering novel avenues for learning and exploration.
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