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Abstract—Recent developments in artificial intelligence have
been giving rise to new job profiles comprising several tasks
which require different technical and cognitive skills. These tasks,
most of which are new to human resources staff and job seekers,
make it difficult to assess the complexity of a job and therefore
challenging to select the right candidate profile. In this paper,
we present an automated classification scheme based on Bloom’s
taxonomy, a hierarchical model of educational objectives, which
is applied on online AI-related job postings. The main goals are
an improvement of the prediction accuracy of the classification
model as well as an analysis of requirements for AI-related
jobs. The modeling relies on a pre-trained BERT model which
is fine-tuned on our dataset. In a two-step process, a semi-
supervised approach is used in order to benefit from a large
amount of unlabeled data. The model-generated pseudo-labels
have been evaluated by the experts. Taking advantage of the
now available larger correctly labeled dataset, a fully supervised
training is done on the enhanced dataset and compared to the
semi-supervised approach. Our results show that both models
can classify AI-related tasks with good performance, supporting
the use of semi-supervised training. The performance limitation
rather lies in the subjectivity of expert labeling which is addressed
in more detail in the paper. Moreover, we observe the model being
more accurate at classifying tasks at higher levels of Bloom’s
taxonomy than at lower levels.

Index Terms—Artificial Intelligence, Bloom’s Taxonomy, semi-
supervised learning, BERT, online job postings

I. INTRODUCTION

Over the last decade, artificial intelligence (AI) has seen

rapid progress thanks to the availability of large-scale datasets

and new machine learning techniques. This technological

advance leads mainly to automation, which on the one hand

contributes to the change of usual jobs, and on the other hand

to the creation of new jobs and new tasks [1], [2]. As a

result, professional profiles are changing, with AI-related jobs

becoming increasingly important. The positive aspect of AI on

employment was also demonstrated by Damioli et al. (2023),

as it fosters the development of new business sectors and offers

a wide variety of new jobs [3]. These new jobs, with their new

tasks, most of which are new to human resources staff and job

seekers, make it difficult to assess the complexity of a job and

therefore challenging to select the right candidate profile.

Bloom’s Taxonomy is a hierarchical model of cognitive

skills which is used to classify learning objectives into six

progressively complex levels. Though commonly used in edu-

cational settings to guide the development of curricula and as-

sessment tools, the taxonomy provides a general framework to

evaluate the complexity of a task, which in the context of job-

related tasks can serve as an estimate of job complexity. It clas-

sifies cognitive tasks into 6 levels, from the least to the most

challenging: “Remember”, “Understand”, “Apply”, “Analyze”,

“Evaluate”, and “Create” [4]. Each level is characterized by a

number of keywords that identify the tasks assigned to them.

However, the context in which these keywords are used also

has to be considered, making task classification non-trivial and

requiring expert knowledge. Shaikh et al. (2021) applied the

keyword approach to automatically classify learning outcomes

using Bloom’s Taxonomy, achieving an accuracy of just 55%

[5].

In this study, we present an automated classification scheme

based on Bloom’s Taxonomy which is trained and tested on

a small expert-labeled dataset of AI-related job tasks. The

modeling relies on a pre-trained BERT model which is fine-
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tuned on our dataset. In a two-step process, a semi-supervised

approach is used in order to benefit from a large amount

of unlabeled data. The model-generated pseudo-labels have

been evaluated by the experts. Taking advantage of the now

available larger correctly labeled dataset, a fully supervised

training is done on the enhanced dataset and compared to the

semi-supervised approach.

The paper is structured as follows. After briefly reviewing

previous work in Section 2, we present our semi-supervised

learning approach and the BERT model setup in Section 3.

Afterwards, in section 4, we present and discuss the results.

Section 5 concludes the study and suggests possible future

work.

II. RELEVANT WORK

A. AI-related jobs

Analysis of the required job skills has been carried out in

a number of studies to promote the use and development of

new AI-related technologies. Samek et al. (2021) analyzed

the required skills in AI-related jobs and found that next

to technical skills, social and emotional skills are almost as

important in AI-related jobs [6]. More specifically they show a

high need in two groups of skills, one related to the application

of AI and the other to the development or creation of AI

programs, and show a correlation between these two groups.

They also found that AI-related jobs require competencies

linked to Big Data. According to De Mauro et al. (2018),

there are 4 different job groups linked to Big Data: “Business

Analysts, Data Scientists, Big Data Developers, and Big Data

Engineers.” These job groups also require skills linked to

development for the more technically oriented roles and skills

linked to analysis and application for the business-oriented

roles [7].

B. Bloom’s Taxonomy

In 1956, Bloom et al. [8] introduced a taxonomy of edu-

cational objectives in the cognitive domain, categorizing dif-

ferent learning levels based on cognitive processes. Anderson

and Krathwohl [4] later revised this taxonomy in 2001 by

changing terminology from nouns to verbs and introducing a

two-dimensional structure that incorporated different types of

knowledge and cognitive processes, resulting in a taxonomy

with six levels: Remember, Understand, Apply, Analyze, Eval-

uate, and Create. This paper will use the revised taxonomy by

Anderson and Krathwohl.

Several studies have been using Bloom’s Taxonomy to

automatically categorize assignments in educational content.

Yahya and Osman (2011) used Support Vector Machines

(SVM) to classify questions in the field of E-learning, based

on Bloom’s cognitive levels. The machine learning model was

trained on a dataset of 272 questions taken from the internet,

resulting in a precision of 85.83% and a recall of 29.14%. The

authors highlight the need for a large quantity of labeled data

to improve the model’s performance [9]. This observation was

confirmed by Zhang et al. (2021). They trained a BERT model

on a dataset of 504 questions related to computer science,

manually labeled with Bloom’s Taxonomy levels. This dataset

was unbalanced, resulting in an accuracy of 59.2% for the

six classes. The dataset was merged for the least represented

classes to train the model on four classes, yielding in an

accuracy of 68.52%. Finally, further model improvement was

obtained by removing these three classes and training the

model only on the three remaining, i.e. lowest-hierarchical,

classes. This increased the accuracy to 82.61% [10].

In a study from 2021, Shaikh et al. (2021) used Bloom’s

Taxonomy to automatically classify manually labeled datasets

of 829 learning course outcomes and 600 assignments. They

compared the keyword-based classification approach with the

machine learning approach. Using an LSTM neural network,

an increased accuracy of 74% was achieved over 55% for the

keyword-based approach [5]. Other studies using Bloom’s Tax-

onomy have been pursued to automatically classify learning

objectives. On a dataset of 21,380 manually labeled objectives,

Li et al. (2022) implemented and compared two classifica-

tion methods, namely the multi-class multi-label classification

aiming to recognize all levels at the same time and the

multiple binary classifiers allowing to train a binary model for

each level. They trained different machine learning and deep

learning models including Random Forest, XGBoost, logistic

regression, SVM, naive Bayes, and BERT. The results showed

that BERT outperformed all other classifiers and the multiple

binary classifier approach gave better results. The authors also

recommend the use of semi-supervised learning to achieve

better performance [11].

C. Semi-supervised Learning

Semi-supervised learning (SSL) based on pseudo-labeling

was introduced by Lee (2013). It involves training a model on

the available data first, then using the trained model to generate

pseudo-labels of the unlabeled data. The generation of pseudo-

labels is thresholded with a class probability to select the labels

most likely to be correct [12].

Nowadays, there are several ways of integrating unlabeled

data into the learning process. Lee et al. (2019) trained a semi-

supervised neural network with different proportions of labeled

and unlabeled data and compared its performance with the

supervised approach. They confirmed that SSL outperforms

supervised learning (SL) and that the performance of the SSL

model scales with the amount of available data. However, they

showed that the uncontrolled addition of unlabeled data to the

labeled data can sometimes weaken the performance of the

model and therefore recommend more care to select appro-

priate unlabeled data [13]. In line with this recommendation,

Ghosh and Desarkar (2020) successively integrated unlabeled

datasets with higher confidence with those labeled by self-

learning. They defined this integration process through two

criteria, both specific to each class of dataset. On the one

hand, by setting a threshold for each class based on the initial

performance obtained on the model trained by supervised

learning. On the other hand, they defined the number of pseudo

labels to be added by each iteration in each class according

to the number of labeled records initially present in that class.
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This allowed them to manage the eventual problem of the

unbalanced dataset [14].

In 2021, a study highlighted the limitations of a fixed

threshold for selecting unlabeled data with high confidence

and proposed an SSL approach with a variable threshold [15].

Since the model is likely to improve its performance after each

iteration, they progressively upgrade the value of the threshold,

allowing the model to be increasingly selective.

The majority of the work on SSL with pseudo-labels uses

a threshold to incorporate unlabeled data into the learning

process. Kumar et al., (2021) noted a limitation of this ap-

proach in the sense that it is difficult to choose the appropriate

threshold, and an inappropriate threshold can significantly

degrade the performance of the model. They proposed an

approach that avoids this difficulty when generating pseudo-

labels by training a binary classifier for each class in a “one-

vs-all” strategy. Each binary classifier assigns the pseudo-label

of its corresponding class, by classifying unlabeled data as

positive. Data classified as negative are passed on to other

binary classifiers. For image, sound, and text classification,

they demonstrated the superiority of their approach over

several other SSL approaches [16].

III. METHOD

A. Data Collection and Labeling

The dataset used in this experiment consists of 1966 AI-

related job offers in the German language extracted from

three major job portals for the period from March to Septem-

ber 2022. The key search term was “Künstliche Intelligenz”

[engl.: Artificial Intelligence]. Online job postings differ in

their layout, their content and the language they use, as

job- or company-specific layouts and terminologies may be

used. Nevertheless, each job posting included a job title,

information on the company’s offers to potential candidates

(e.g., benefits), a description of the candidate’s profile, and

the tasks associated with the job [17]. A sample of 466 tasks

was randomly selected and labeled by two domain experts

according to the different levels of Bloom’s Taxonomy. Since

the lowest level Remember(“Erinnern”) was never assigned by

the expert labelers, the labeling range starts at the second level

of Bloom’s Taxonomy, meaning Understand (“Verstehen”),

Apply (“Anwenden”), Analyse (“Analysiere”), Evaluate (“Be-

werten”), Create (“Entwickeln”). For ease of reading, we will

refer to these levels as L2, L3, L4, L5, and L6, respectively.

Figure 1 shows the distribution of these labeled tasks, which

is [33, 208, 36, 49, 140] for levels [L2, L3, L4, L5, L6],

respectively. In a semi-supervised manner, these tasks will be

used to train the models which will generate the pseudo-labels

for 1500 unlabeled tasks.

B. Semi-Supervised Learning Approach

Inspired by the work of Kumar et al. (2021), which makes

it possible to implement semi-supervised learning without the

use of thresholds [16], we have developed a new approach for

producing pseudo-labels. Instead of training a binary classifier

for each class, we successively group classes (levels) with

Fig. 1. Distribution of the labeled data on each level of the cognitive domain
of Bloom’s Taxonomy.

Fig. 2. Filter tree for generating pseudo-labels. Four binary classifiers are
trained, BCn with n = [1...4].

similar samples until we obtain two class groups, which are

then used to train the first binary classifier, reducing the

problem of class imbalance. The process is then repeated

in each class group until pseudo labels are assigned to the

unlabeled data. A total of n-1 binary classifications will be

trained to produce pseudo-labels for n classes.

The process is presented in detail in Algorithm 1: First select

the least represented class (level), then merge it with the

one with which it is most similar. Repeat the process until

two groups of classes are obtained, which are then used to

train a binary classifier. In each of the class groups obtained,

algorithm 1 is reapplied.

Recursive application of Algorithm 1 produces a filter tree as

shown in Figure 2, which should be read from top to bottom

and from left to right.

The grouping of the levels was done based on the cosine
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similarity of their vector representations. The vector represen-

tations were derived by generating BERT sentence embeddings

for each task description of a level and calculating their mean.

The cosine similarity is given by the formula:

cos(Li, Lj) =
Li · Lj

‖Li‖ · ‖Lj‖ (1)

where Li, Lj are the vector representation of tasks at level i,
j. With i, j in {2,3,4,5}.

Algorithm 1 binary Partition

Input: multi classes: list of tasks for n levels (n ≥ 2)

Output: binary Classes: list of tasks for 2 groups of levels

BC: trained binary classifier

1: weak class ← minClass(multi classes) � select the

least represented class

2: rest classes ←multi classes – weak class
3: for <class ∈ rest_classes> do
4: Compute cosine similarity(class, weak class)

Choose most similar class

5: end for
6: merge classes = merge(weak class,most similar class)

7: remove weak class and most similar class from

multi classes
8: insert merge classes into multi classes
9: if len(multi classes ≥ 2 then

10: goto 1

11: end if
12: binary classes ← multi classes
13: train(BC, binary classes) � train the binary classifier

BC

14: savemodel(trainedBC)

15: return binary classes,BC

We trained four binary classifiers BCn with n = [1...4]

to produce pseudo-labels. In the first experiment (Exp1), we

merged these pseudo-labels with the original labels to train a

multi-class classification model in a semi-supervised manner.

In the second experiment (Exp2), the generated pseudo-labels

were evaluated by experts and then a fully supervised training

is performed on the enhanced dataset.

C. Training BERT Model

For hyper-parameter tuning, data from the binary classifiers,

as well as the final multi-class classifier (MCC), were divided

into training, validation, and test data.

For binary classifiers involving several levels in a class, we

want to make each level stand out proportionally in the test

set for a better analysis. This is the case for BC1 in which we

took 20% of each level for the test set, giving: Test set BC1
= 49 (7 L2 + 42 L3) + 46 (7 L4 + 10 L5 + 29 L6). This is

also the case for BC3 where we have 25% of each level for

the test set, leading to: test set BC3 = 22 (9 L4 and 13 L5) +

35 (L6).

For other binary classifiers, a balanced test set corresponding

to 30% of the least represented level is used once to assess

the classifier at the end of training (this corresponds to 10

tasks per level in the multi-class classifications). To address

the problem of class imbalance in the training data, we

used three operations of “Easy data augmentation” (EDA)

[18], namely “Synonym Replacement” (SR), which consists

of randomly choosing a word and replacing it with one of

its synonyms, “Random Insertion” (RI), which consists of

inserting a synonym of a randomly chosen word in a random

position, and finally “Random Swap” (RS), which consists of

swapping the positions of two randomly chosen words [18].

Synonyms of German words have been randomly selected

from OpenThesaurus1. Usually, applying EDA to a text results

in a paraphrase of that text.

In addition, we selected a maximum value of 181 tasks

corresponding to the median value of the number of tasks in

the pseudo-labels obtained, to merge with the original labels

in order to train the final multi-class classifier.

The augmented training was finally divided into 20% for val-

idation and 80% for the final training set. Table I summarizes

the splitting process.

TABLE I
DATASET SPLITTING: NUMER OF SAMPLES IN TRAIN, VALIDATION AND

TEST SET FOR THE DIFFERENT BINARY CLASSIFIERS AND THE FINAL

MULTI-CLASS CLASSIFIER (MCC). THE TRAIN AND VALIDATION DATASET

WERE AUGMENTED WITH ”EASY DATA AUGMENTATION” (EDA) [18].

Models Test Data
Train data + EDA

Train Validation
BC1 95 307 77
BC2 20 318 80
BC3 57 165 41
BC4 22 160 40

MCCs 50
Train + Pseudo labels + EDA
1516 379

For fine-tuning of the BERT sequence classification model,

All combinations of the following values were tested to

optimize the hyperparameters: Batch size = [2,4], number of

epochs = [2,3,4], Evaluation strategy = ”epoch” to see the

performance at each epoch, and Learning rate = [1e-4, 1e-5,

5e-5] with Adam optimizer and cross-entropy loss.

D. Evaluation Metrics

We have evaluated the performance of classification mod-

els by calculating standard performance measures: precision,

which measures the correctness of positive predictions; recall

or true-positive rate, which is the rate of positive instances

successfully recognized by the classifier; F1 score, which is the

harmonic mean of precision and recall; and accuracy, which

gives the rate of correct predictions.

IV. RESULTS AND DISCUSSION

A. Binary Classifiers: Pseudo-labels

The performance of the four binary classifiers trained to

produce pseudo labels is shown in Table II. The first binary

1https://www.openthesaurus.de/
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classifier (BC1) involving the aggregation of levels L2-3 on

the one hand and levels L4-5-6 on the other has an accuracy

of 81%. Tasks classified as L2-3 are subjected to the second

binary classifier BC2, which has an accuracy of 60%. We

assume that this poor performance is due to the fact that

the model has difficulty differentiating between tasks in L2

and those in L3 which is further enhanced by the problem of

class imbalance. Although the application of EDA allows us

to produce additional tasks, it obviously does not completely

solve the problem of class imbalance, as the tasks produced

lack feature variety. The model is, therefore, able to learn

sufficiently the characteristics linked to tasks at the over-

represented level L3, but is unable to learn those of tasks

at the least-represented level L2. This justifies a high recall

against a low precision at level L3, as well as a high precision

against a low recall at level L2.

Tasks classified as L4-5-6 by BC1 are then passed through

the binary classifier BC3 to separate L4-5 tasks from L6 tasks.

BC3 has an accuracy of 91%. The L4-5 tasks are finally

classified by the binary classifier BC4. This has an accuracy

of 81%. Generally, we can observe that tasks at higher levels

are easier to classify than those at lower levels of Bloom’s

Taxonomy.

TABLE II
CLASSIFICATION REPORT OF THE BINARY CLASSIFIERS

Model Evaluation metrics on test set
Precision Recall F1-Score Accuracy

BC1 2-3 0.84 0.78 0.81 0.81
4-5-6 0.78 0.85 0.81

BC2 2 0.75 0.30 0.43 0.60
3 0.56 0.90 0.69

BC3 6 0.92 0.94 0.93 0.91
4-5 0.90 0.86 0.88

BC4
4 0.99 0.64 0.84

0.82
5 0.73 0.99 0.85

B. Multi-Class Classifiers

In the first experiment based on semi-supervised learning,

the model was trained on a large dataset comprising both data

with correct labels and data with pseudo-labels. It achieved an

accuracy of 76% as shown in Table III. Levels L3 “Apply” and

L2 “Understand” are the lowest in terms of precision and recall

respectively. This is certainly justified by the poor performance

of the binary classifier (BC2) used to generate the pseudo-

labels for these two levels.

In the second experiment, in a further iterative step the

pseudo-labels were evaluated by experts. Of the 1500 pseudo-

labeled data, 81 were assessed as unclassifiable with Bloom’s

Taxonomy, and of the remaining 1419, 1249 were correctly

labeled with the filter tree, yielding an effective accuracy of

88%. This demonstrates the effectiveness of our approach

based on the successive binary classification described in the

previous section. The revised pseudo-labeled data was then

merged with the original data and a fully supervised learning

was performed on the enhanced dataset. The model achieved

an accuracy of 78% as shown in Table IV. This result is

very close to that obtained with the semi-supervised approach,

which justifies the use of semi-supervised learning. As in the

first experiment Exp1, the levels “Apply” and “Understand”

always have the lowest precision and recall, respectively.

TABLE III
CLASSIFICATION REPORT EXP1.

Precision Recall F1Score Support
Create 0.73 0.80 0.76 10
Evaluate 0.73 0.80 0.76 10
Analyse 0.86 0.60 0.71 10
Apply 0.67 1.00 0.80 10
Understand 1.00 0.60 0.75 10

Accuracy 0.76 50
Macro avg 0.80 0.76 0.76 50

TABLE IV
CLASSIFICATION REPORT EXP2.

Precision Recall F1Score Support
Create 0.82 0.90 0.86 10
Evaluate 0.78 0.70 0.74 10
Analyse 0.78 0.70 0.74 10
Apply 0.64 0.90 0.75 10
Understand 1.00 0.70 0.82 10

Accuracy 0.78 50
Macro avg 0.80 0.78 0.78 50

C. Evaluation of the classification model

The performance of both, the final fully-supervised model

and the semi-supervised approach, was adversely affected by

the absence of a large number of tasks at level L2 “Under-

stand” and by the models’ difficulty in distinguishing tasks

at level L3 “Apply” from other tasks. Indeed, the confusion

matrices for the Exp1 (Fig. 3) and Exp2 (Fig. 4) show that all

tasks at level 3 were misclassified with the other levels at least

once, and tasks at level 2 are often confused with other levels.

This result was to be expected, given the poor performance of

the binary classifiers in classifying these levels.

The implementation of the proposed semi-supervised

method is very time-consuming. It took around 20 hours longer

than the supervised method. This is due to the filter tree,

which requires the training of 4 binary classifiers to produce

the pseudo-labels. This method would therefore be optimal

for large quantities of unlabeled data. For small quantities of

unlabeled data, manual labeling would be more beneficial.
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Fig. 3. Confusion matrix for MCC Exp1.

Fig. 4. Confusion matrix for MCC Exp2.

Fig. 5. Confusion matrix for Pseudo-labels

The slight outperformance of the fully supervised approach

over the semi-supervised approach was expected, as all labels

were verified by experts in the fully supervised approach.

However, the performance increase is only marginal. The

result of this verification shows that tasks at level L2 were

the most misclassified by the filter tree (s. Fig. 5). This could

justify the improvement of the F1-score at level L2 from 75%

to 82% in particular, and the overall improvement of the model

in Exp2.

D. Analysis of AI-related job requirements

As with the models, the two domain experts struggled to

classify the tasks, since most of them were not clearly defined.

This has been very time-consuming, sometimes requiring the

involvement of an additional expert to corroborate the clas-

sification. The final analysis and manual classification show

that almost none of the AI-related jobs were assigned to the

lower levels of Bloom’s taxonomy (levels 1 and 2). Instead, the

majority of tasks corresponded to level 3 “Apply”, followed

by level 6 “Create”. This suggests that AI-related jobs require

fairly high cognitive skills that involve practice, either using

tools and algorithms that are already available, or developing

one’s own tools to solve specific problems.

V. CONCLUSION

The goals of this work have been an automatic classification

of tasks in AI-related job offers using Bloom’s Taxonomy

and an analysis of their requirements. Due to the lack of

expert-labeled data, we first implemented a semi-supervised

learning approach, which was then compared to a fully su-

pervised training on the dataset obtained by combining the

small amount of initial data and pseudo-labeled data proced

by the first method and reviewed by experts. The results of

these two experiments show that both models can classify

AI-related tasks with encouraging performance (up to 76%

accuracy with semi-supervised learning), supporting the use

of semi-supervised learning. Upon closer examination, it was

evident that the models struggled to differentiate between

tasks at the lower levels of Bloom’s Taxonomy, specifically

”Apply” and ”Understand”, which had a negative impact on

the overall performance of the multi-class classifier. Another

aspect that had an impact on the models was the problem of

class imbalance. This was partially solved by paraphrasing the

available text data, but the results show that a larger dataset

with a roughly even distribution would have produced better

results. Nevertheless, the results of our research show that it

is possible to use deep learning together with semi-supervised

learning to automatically classify tasks in AI-related job offers

using Bloom’s Taxonomy.

Future work could examine other deep learning models such

as LSTM and CNN for the classification of tasks in AI-related

job offers, or implement a multi-label classification, as some

tasks may contain subtasks belonging to different levels of

Bloom’s Taxonomy. Furthermore, the effect of an enlarged

dataset should be investigated containing better quality labels

at the lower levels of Bloom’s Taxonomy.
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