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Abstract—Transfer learning is a convenient approach to
quickly adapt state-of-the-art deep learning models to specific
applications with small datasets. Typically, network backbones
are fixed, and only the last layer as a classifier is modified to
match with a new number of targeted classes. The performance of
the models is then limited by model-predefined structures. In this
research, we are going to overcome this constraint by studying
the effect of the common classifier layer and then proposing an
extension classifier module for action recognition applications. By
focusing on local spatiotemporal representation of deep features
encoded by pre-trained models, we exploit further this local
representation in the proposed classifier to enrich deep features
representation. In addition, the extension classifier was designed
so that it can plug on top of any image or video encoders to
perform action recognition. A public dataset TinyVIRAT2 and
two private datasets Scratch and AtomicA were adopted for
evaluation and the experiments show significant performance
improvement caused by the proposed extension classifier.

Index Terms—Spatiotemporal feature, temporal inception, ac-
tion recognition, extension classifier head

I. INTRODUCTION

By leveraging pre-trained models in public model zoos,

we can inherit the generalization capacity of models. How-

ever, the drawback is that we have to stick with pre-defined

model structures. To overcome this limitation, pre-trained

models should be considered as data encoders. Classifier heads

that support specific applications can be designed on top of

them, capturing essential representation among encoded multi-

dimension features to maximize task performances. Flexibility

in designing classifier heads also provides opportunities to

adopt pre-trained models from different tasks. In developing

action recognition in surveillance systems, the proposed action

classifier heads were designed to focus on spatiotemporal

representation among multidimensional features of videos en-

coded by state-of-the-art (SOTA) models, which were trained

for either image or video classification applications.

The most common classifier head consists of a single

fully connected layer following a channel-wise mean function

transforming compressed deep features into a single deep

feature, a normalization layer standardizing distribution of

feature values, and a dropout layer overcoming overfitting. We

named this popular classifier head as meanFC. The objective
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Color map 0 → 1

Fig. 1: The heat maps of Pearson correlation coefficient score

among encoded features extracted by the pre-trained model

VideoVIT [1] when it combines with (a) meanFC, (b) self-

attention, and (c) our proposed head (STE) as a classifier.

of this design is to extract location-invariant features, meaning

that encoded deep features at different spatiotemporal locations

are expected to be the same after training. However, due to

local representation, this goal seems unachievable. Fig 1.a and

Fig 1.b are the heat maps of Pearson correlation coefficient

scores among deep features encoded by a pre-trained model

(VideoVIT [1]) using meanFC and self-attention as a classifier,

respectively. In general, almost all features are well correlated

to each others (red colour) but there are existing features that

do not, indicating in blue and green colours. Therefore, diving

deeper into local spatiotemporal representation should benefit

entire model performance. Consequently, when we apply the

proposed classifier head (STE), deep features of VideoVIT

model becomes divergent, indicating by dominance of blue

and green colours in the generated heat map Fig 1.c.

Temporal and spatiotemporal representations depicting rela-

tionships among frames in input videos were considered essen-

tial representations for action recognition. Many proposed re-

search works captured this representation using convolutional

layers, TSN [2], I3D [3], PAN [4], TEA [5], TDN [6], EAN

[7], as well as transformer attention layers, UniformerV2 [8],

Hiera [9], VideoMAEV2 [1] TimeSformer [10], DirectFormer

[11], TubeVit [12]. In TSN, I3D, PAN, TEA, TDN, and EAN,

temporal representation extraction layers, usually conv3D,

temporal difference, and temporal shift, were inserted in the

middle of spatial representation extraction layers. Spatiotem-
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poral representation gradually grows from local representation

to global representation along model depth. Uniformer model

[8] is a conv-transformer hybrid architecture that inserts con-

volutional layers in the middle of transformer layers to capture

the local representation of encoded features which they noticed

that this representation is sparse in most of the transformer

models, such as VideoMAE2. TimeSformer [10] tried to

separate temporal attention and spatial attention modules and

provided ablation studies on different combinations of these

modules. TubeVit [12] proposed local spatiotemporal attention

in tubes. On the other hand, the Hiera model [9] focuses

on local and global spatiotemporal representations using pure

transformer blocks.

Drawing inspiration from the inception modules in

GoogleNet [13], that manage adeptly multi-scale spatial rep-

resentation, we propose a temporal inception component han-

dling multi-scale temporal representation. Different numbers

of consecutive frames are involved in capturing temporal

representation. Furthermore, we replace the popular meanFC

classifier with a proposed patch base classifier, implemented

by applying convolution 3D layers to exploit further spatiotem-

poral representation among encoded deep features. Combining

these two proposed components with a spatial extraction

component and a multilayer perception component (MLP), we

form a spatiotemporal excitation classifier head (STE head)

that is a main contribution in this research. This extension

classifier head is designed so that it can be plugged on top

of any feature extraction backbones, including spatial feature

extractors and spatiotemporal feature extractors, to perform

action recognition tasks.

As both VideoMAEV2 [1] and UniformerV2 [8] stands

as state-of-the-art models cross various action recognition

benchmarks such as somethingV2, kinetic400, and kinetic600,

we utilize their architectures, excluding the meanFC classifier

head, as video feature extractors in all our experiments. We

opt for the base version of VideoMAEV2 since it is the largest

version available with pre-trained weight [14]. Different clas-

sifier heads are applied on the top of these feature extractors to

form different variants. These variants are evaluated on three

different action datasets: a public dataset, TinyVIRAT2 [15],

and two private datasets, Scratch and AtomicA, which are

designed for two practical applications. The variants formed

by the proposed STE head and two video feature extractors

always provide the top performance. Excitingly, these variants

provide a giant leap in performance improvement, more than

10%, on dataset AtomicA.

II. A SPATIOTEMPORAL EXCITATION CLASSIFIER HEAD

In this section, we describe the architecture of the proposed

action classifier head (STE head) that intends to magnify

local spatiotemporal representation presented in deep features

encoded from images/videos. This proposed head consists of

two main parts: spatiotemporal excitation blocks (STEb) and

a patch base classifier. A number STEb defines the depth of

the STE head. This STE head requests deep features input

shape of [n, c, h, w]. The value n is the number of video

frames from input videos. The values c, h, w are the numbers

of channels, height, and width of deep features, respectively.

A. A STE block

A STE block (STEb) includes three main components: a

temporal extraction component, a spatial extraction component

(SE), and a multilayer perception component (MLP). Each

component extracts different representations from encoded

features and embeds these extracted representations back into

the encoded features.

TI(x0) = x0 + fconv311(x0) + fconv511(x0)

+fconv711(x0)
(1)

x
′
1 = SE(x0 + TI(x0)) (2)

x1 = x
′
1 +MLP (x

′
1) (3)

Where x0 and x1 are an input and an output of a STEb.

The temporal extraction component is a temporal inception

module (TI). The goal is to enrich video-encoded features

x0 with multiple scales of its local temporal representation.

We adopted 3D convolution layers to design this module. The

convolution kernels’ temporal dimensions vary from three to

t, targeting encoded features of three to t consecutive frames.

The kernels’ spatial dimensions maintain as one. The value t

might need to be adjusted for optimal recognition performance.

In this work, the proposed TI module is configured with three

values of t as 3,5,7, forming three conv3d layers with kernel

sizes of 3x1x1, 5x1x1, and 7x1x1, shown in equation (1).

The spatial extraction component follows the temporal

extraction component to capture further local spatial repre-

sentation in encoded features. In this work, we applied 2D

convolution with a kernel size 3x3. We then enrich the encoded

features by representation from its higher dimension space,

extracted by the MLP component, which is very common in

transformer blocks.

B. A patch base classifier

To avoid the aforementioned drawback of the common

classifier meanFC, we proposed a patch base classifier. En-

coded features are finally divided into N patches (cubes);

each patch contains its local spatiotemporal representation.

Patches are then passed through a single 3D convolution layer

with a kernel size equal to the patch size to perform action

classification. The output of this classifier is in the shape of

(N,num class). A function channel-wise mean is then applied

to the output to form the final classification. It is worth noting

that the number of output channels equals the number of

classes.

y = E(Conv3d(x)) x ∈ R
N,d ⇒ y ∈ R

n cls (4)

III. EXPERIMENTS

A. Datasets

To evaluate the effectiveness of the proposed classifier head,

we used three datasets: TinyVIRAT2 dataset [15], Scratch

dataset, and AtomicA dataset.
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The TinyVIRAT2 dataset was proposed to optimize action

recognition models for security surveillance applications. The

dataset was created by cropping out human activities regions

in dataset VIRAT. Cropped clips have a wide resolution range

from 10x10 to 128x128 pixels, averaging 70x70 pixels. This

dataset is multi-label data, meaning that there are multiple

targeted actions per clip. The dataset focuses on 26 daily

activities and has 20258 samples for training and 7425 samples

for testing. In this study, we only used the training samples as

there were no public labels for the testing samples. Training

samples are divided into a training set containing 16950

samples and a validation set containing 3308 samples.

The Scratch dataset was proposed to develop scratch de-

tection models for healthcare services. Live cameras recorded

videos at 30fps, mounted at 2-meter height. Hands areas were

localized by applying the mediapipe library [16] and cropped

to form sample clips, sorted into two classes: scratch and no-

scratch. Two separate groups of participants were managed

to provide a training set and testing set, composed of 2064

and 451 samples, respectively. Cropped clips have a resolution

range from 10x10 pixels to 226x226 pixels with an average

of 80x80 pixels.

The AtomicA dataset was proposed to develop action

recognition models for analyzing customers’ behaviour while

interacting with retail store products. The dataset focuses on

six atomic actions: Put-Items, Fetch-Items, Touch-Items, Try-

Items, Carry-Items, and Others. To conduct this dataset, we

first recorded videos fed by a surveillance system setup at retail

clothing stores at a frame rate of 2fps. Human detection was

then applied to localize humans with ROIs, which were used

to crop videos and provide sample clips. Because Put-Items

and Fetch-Items are fleeting actions, appearing only in two

to five consecutive frames, all sample clips were configured

to be short at this length. In the validation set, each action

has 100 samples. In the training set, respectively, Put-Items,

Fetch-Items, Touch-Items, Try-Items, Carry-Items, and Others

have 420, 587, 1367, 356, 5569, and 2563 samples. Cropped

clips have a resolution range from 78x78 pixels to 670x670

pixels with an average of 298x298 pixels.

B. Train and evaluation configuration

The implementation in this research adopted the mmaction2

library [17], which is a part of the open lab project. Recent

SOTA models and training frameworks, including data prepro-

cessing, model optimisation, and model evaluation process, are

well integrated. The VideoMAEV2-base and UniformerV2-

base were used as video feature extractor backbones. The

VideoMAEV2-base pre-trained weights were optimized by

distilling knowledge from the VideoMAEV2-giant model

on dataset Kinetic710. Before that, the VideoMAEV2-giant

model was trained on several datasets such as somethingV2,

kinetic400, kinetic600, kinetic700, DIVING48, MIT, UCF101,

and HMDB51 using a mask-based self-supervise learning

framework. The UniformerV2-base pre-trained weights were

optimized on Kinetic710 using the CLIP framework and tuned

for action recognition on Kinetic400.

To have a fair comparison among different classifier heads,

we fixed the training configuration, detailed as follows: learn-

ing rate of 1e-3, five warmup epochs using the step schedule,

and 95 main epochs using the Cosine Annealing schedule. The

learning rate is auto-scaled along with batch size (the base

batch size is 256). The number of frames is 16. The input

size is 224x224. Due to data imbalance among classes in the

training sets, a weighted sampler was applied according to

the number of samples per class. The binary-cross-entropy-

with-logit loss was applied to optimize the models on the

TinyVIRAT2 dataset, and the cross-entropy loss was applied to

optimize the models on the Scratch and the AtomicA datasets.

The difference in the applied loss functions is because the

TinyVIRAT2 dataset has multiple targeted classes per video,

while the Scratch and AtomicA datasets have a single targeted

class per video. To evaluate the models’ performances on

the TinyVIRAT2 dataset, we used the F1 score, which was

officially adopted for this dataset. We used the accuracy metric

for the Scratch and AtomicA datasets.

C. Evaluation results

First, we compared the effectiveness of the proposed

STE head with the common classifier meanFC. Because the

STE head contains STE blocks that might be deemed more

complex than the meanFC and might provide the STE head

an unfair advantage in the comparison, we inserted into the

meanFC classifier spatiotemporal self-attention blocks to form

another competitive classifier, named transformer classifier

(Tr head). A number of these additional blocks define the

depth of Tr head. Table I indicates the performance of these

three classifiers with two backbones, VideoMAEV2-base and

UniformerV2-base, on the three datasets. It is worth noting that

a combination of the VideoMAEV2-base feature extractor and

the meanFC classifier is the original structure of the Video-

MAEV2 base model. At a depth of 1, the proposed STE head

on VideoMAEV2-base backbone improves the performance

of the entire model on the two datasets TinyVIRAT2 and

Scratch at 0.67 (F1 score) and 0.66% (Acc@1), respectively.

Similarly, the proposed STE head on the UniformerV2-base

backbone improves the performance of the entire model on the

dataset TinyVIRAT2 at 10.87 (F1 score). It also outperforms

the Tr head. There is a giant leap of performance improvement

on the dataset AtomicA, more than 10% compared to the

Tr head and the meanFC, even with the VideoMAEV2-base

or the UniformerV2-base backbone. This giant leap might be

caused by the diversity of local spatiotemporal representation

of encoded deep features from sample clips in the dataset

AtomicA. Applying mean among these features in the clas-

sifier heads, as the meanFC and the Tr head, minimizes these

essential representations. In the proposed STE head, local

spatiotemporal representation is magnified in STEb blocks and

the patch base classifier. For future work, we will investigate

this outcome and provide comprehensive insight.

Second, we conducted ablation studies to understand the

effectiveness of the two proposed components in the proposed

STE head separately, the STEb and the patch base classifier,
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TABLE I: Performances of classifier heads with two differ-

ent video feature extractors VideoMAEV2-base (VMAE2bb)

and UniformerV2-base (UniF2bb) on datasets TinyVIRAT2,

Scratch, and AtomicA
TinyVIRAT2 Scratch AtomicA

F1-score Acc@1 Acc@1
VMAE2bb + meanFC head 78.17 96.9 50.17
VMAE2bb + Tr head - depth1 78.28 97.65 55.17
VMAE2bb + STE head - depth1 78.84 97.65 70.33
UniF2bb+ meanFC head 74.48 90.91 58.17
UniF2bb + Tr head - depth1 72.44 89.14 60.5
UniF2bb + STE head - depth1 85.35 89.58 71.67

and investigated whether it is worth building a deep STE head.

In these studies, we only used the VideoMAEV2-base back-

bone.

Table II shows performances of different combinations

among the STEb, the meanFC, and the patch base classifier.

It is noted that a combination between the STEb and the

patch base classifier is the STE head with a depth of 1.

We observed that the STEb provides critical value to extract

meaningful spatiotemporal representation from encoded deep

features. Given that the meanFC or the patch base classifier

is applied for classification, a single STEb can boost the entire

model performance.

Table III shows the performance of the entire model with

different depths of the STE head by varying the number of

STEb blocks from 0 to 4. The results indicate that the current

STEb block design can extract essential local spatiotemporal

representation among encoded features. It provides the best

performance at a depth of 1. However, this design is not

scalable because the entire model performance worsens when

the depth gets deeper. We observed that when the head

architecture gets deeper, more neighbouring encoded features

in both spatial and temporal axises are included to extract

local spatiotemporal representation. It suggests that too many

representations from local neighbour features embedded into

encoded features may degrade encoded features’ representa-

tion, leading to worse performance. In future research, we

will investigate this issue to control the balance between

features’ representation and magnified local spatiotemporal

representation so that the proposed design can be scaled deeper

to improve further recognition performance.

TABLE II: Effectiveness of STEb and patch base classifier

to the entire model performance, evaluated on the dataset

TinyVIRAT2

VMAE2bb F1-score recall precision
meanFC head 78.17 73.85 88.06

patch base classifier 78.01 73.68 87.48
STEb+meanFC head 78.64 74.38 88.4

STEb+patch base classifier 78.84 74.48 88.83

TABLE III: Performance of the entire model with different

depth of STE head on the dataset TinyVIRAT2

VMAE2bb+STE Head F1-score recall precision
Depth = 0 78.01 73.68 87.48
Depth = 1 78.84 74.48 88.83
Depth = 2 78.27 74 88.09
Depth = 3 77.9 73.61 87.75
Depth = 4 77.29 72.95 87.23

IV. CONCLUSION

In this research, we found that even though encoded deep

features were adequately optimized to be location-invariant,

they still maintain their local representation that can be ex-

ploited further for performance improvement. It could be a

room to build models that leverage pre-trained deep learning

models for generalization capacity while adapting to custom

datasets. In action recognition application, we proposed the

spatiotemporal excitation classifier head consisting of four

main components: temporal inception, spatial extractor, multi-

layer perceptron, and patch base classifier. This head can plug

on top of any pre-trained image or video feature extractor

backbones to perform action recognition. One current limita-

tion is that although the proposed classifier head can improve

the entire model performance, it lacks scalability, which we

are going to address in future research.
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