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Abstract—Convolutional neural networks (CNNs) have proven
to be effective for disease prediction from images, namely, CT
scans. However, previous research studies the application of
CNNs for disease prediction separately for each disease. The aim
of this study is to investigative the generalisability of CNNs for
disease prediction. The study firstly examines the performance of
two neural networks, namely, AlexNet and ResNet34 for disease
prediction across three diseases, namely, brain tumour diagnosis,
lung cancer detection and skin cancer diagnosis. The study also
investigates an incremental neural network approach (INNA) for
learning in neural networks when used for disease prediction.
The INNA divides the dataset into easy, medium and hard using
a difficulty estimation techniqu The performance of these CNNs
and the INNA are evaluated independently for each of the three
diseases examined, as well as across all three diseases. The study
revealed that when evaluated separately for each disease AlexNet
performed the best for brain tumour diagnosis and ResNet34 for
lung cancer detection and skin cancer diagnosis. When evaluated
across all three datasets for the different diseases, ResNet34
outperformed AlexNet and both CNNs with INNA. While the
INNA did not outperform AlexNet or ResNet34, it had a lower
computational cost and outperformed state of the art approaches
for lung cancer detection.

Index Terms—disease prediction, convolutional neural net-
works, generalisability

I. INTRODUCTION

While convolutional neural networks(CNNs) have proven to

be effective for disease prediction, the research done in this

area applies and evaluates CNNs independently for disease

diagnosis. This study forms part of a larger initiative aimed

at improving the generalisability of CNNs for disease pre-

diction. In addition the study also evaluates an incremental

approach(INNA) in learning in CNNs for disease prediction

to reduce computational cost and possibly improve accuracy.

The motivation for the INNA is that if it learns on an easier

dataset first this model will form the foundation for the datasets

that are more challenging, at a medium level of difficulty

and then at the hard level of difficulty. Thus there are two

research problems in this study. The first is to investigate the

generalisability of CNNs for disease prediction. The second

is to investigate an incremental approach of learning in CNNs

for disease prediction.

Three disease prediction problems are used for evaluation,

namely, brain tumour diagnosis, lung cancer detection and skin

cancer diagnosis. Both ResNet34 and AlexNet are used in this

study as both these CNNs have performed well in previous

studies for disease prediction from CT scans [1] [2].

The study revealed that ResNet34 performed the best across

all three problems, outperforming existing state of the art

approaches. While the INNA resulted in big improvements

with regards to the decrease in computational cost, it did not

outperform networks not using incremental learning. Hence,

the main contributions of this study are:

• An investigation into the generalisability of CNNs for

disease prediction produces results competitive to SOTA.

• An investigation into an incremental approach for learn-

ing in CNNs to reduce computational cost.

The following section provides a description of the three

disease prediction problems and start of the art approaches

for the corresponding datasets. Section III describes the INNA.

The experimental setup used to evaluate the generalisability of

the networks is presented in section IV. The performance of

the networks is discussed in section V. The findings of the

study and future research directions are presented in section

VI.

II. RELATED WORK

This section describes the three disease prediction problems

that the INNA is evaluated on. The datasets used for each

of these problems and state of the art approaches for these

datasets are presented.

A. Brain Tumour Diagnosis

Brain tumour diagnosis essentially involves classifying im-

ages into a category corresponding to the type of tumour

and is hence a multiclass image classification problem [3].

This study uses the Figshare brain tumour dataset [4]. The

dataset is comprised of 3064 images divided into three classes,

namely, 708 glioma images, 1426 meningioma images, and

930 pituitary images. The rest of this section provides an

overview of state-of-the-art approaches applied to this dataset.

Abiwinada et al. [5] employed a CNN architecture consist-

ing of 2 convolutional layers with a maxpool layer after each, a

flatten layer, a fully connected layer, and finally an output layer

with 3 output nodes. The ReLu activation function was used

in the convolutional layers which were made up of 32 filters

of 3x3 each. The maxpool kernel size was 2x2 and the fully
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connected layer consisted of 64 neurons. The Adam optimizer

was used due to its ability for handling noisy problems. The

model achieved a training accuracy of 84.19% and a testing

accuracy of 98.51%.

In the study conducted in [6] a variation of GoogleLeNet

was used with transfer learning. The model consisted of 2

convolutional layers, 2 pooling layers, 1 fully connected layer

and 9 inception layers each with 6 convolutional layers and

1 pooling layer. Filters of sizes 1x1, 2x2, and 3x3 were

used. The Adam optimizer was used. 3 different classifiers

were used, softmax, SVM, and KNN. The KNN and SVM

classifiers achieved the highest accuracy of 98.0% and 97.8%

respectively. The SVM classifier also obtained an average of

99.7% in correctly classifying the tumour into one of the three

classes.

Rehman et al. [1] proposed a transfer learning model using

3 architectures of convolutional neural networks: AlexNet,

GooLeNet, and VGGNet). The VGG16 model achieved the

best accuracy of 98.69%. This model consisted of 16 convo-

lutional layers, 3 fully connected layers with ReLu applied in

each one, 5 max pooling layers with a kernel size of 2x2, and

a softmax layer for output.

A CNN model consisting of 4 convolutional layers with

ReLu applied after each one, 4 max pooling layers with kernel

size of 2x2, a dropout layer before each max pooling layer,

2 fully connected layers, and a softmax layer, for output

was proposed by Badˇza and Barjaktarovi´c [7]. This model

achieved an accuracy of 96.56%, however with only 4.3

million weights, it outperforms models such as VGG16 which

has 138 million weights.

Chaki and Wo´zniak [8] proposed the Brain Tumour Seg-

mentation and Classification Network (BTSCNet) to classify

brain tumours into the 3 classes described above. The model

includes 4 folds: segmentation of brain tumour region, ROI

selection using morphological operation, feature extraction

using multi-region gray level co-occurrence matrix and lastly

a sliding window for classification. The model was able to

achieve accuracies of 98.1%, 96.6%, and 95.3% in classifying

glioma, meningioma, and pituitary tumours respectively.

EfficientNets and their use in multi-class brain tumour

classification was studied by Zulfiqar, Bajwa, and Mehmood

[9]. In the study, they found that fine tuning a pre-trained

EfficientNet showed the best performance and achieved an

accuracy of 98.86%. The proposed model is lightweight and

computationally inexpensive.

Due to the small size of the dataset, Gupta et al. [10]

proposed a method of using Cycle Generative Adversarial

Networks to increase the dataset size. Their full method

consisted of a modified InceptionResNetV2 pre-trained model

for tumour detection and Random Forest Tree for classifying

the tumour into one of the 3 classes. The model achieved an

accuracy of 99% for tumour detection and 98% for tumour

classification.

Sadad et al. [11] proposed a method of improving brain tu-

mour classification accuracy by applying a contrast-stretching

algorithm to obtain high resolution images and data aug-

mentation such as rotating and flipping the images. The

researchers made use of a UNet architecture with a backbone

of ResNet50 for brain tumour detection and a NASNet model

for classification. The model achieved an accuracy of 99.6%

in brain tumour classification.

B. Lung Cancer Detection

Lung cancer detection involves determining whether a pa-

tient has cancer or not from an image, namely, a CT scan of

the patients lungs [12]. Thus, this is a binary classification

problem. The dataset used in this study for lung cancer

detection is the 2017 Kaggle Data Science Bowl [13]. This

section presents an overview of the state-of-the-art approaches

for this dataset.

Chon et al. [12] used o a U-Net architecture proposed for

image segmentation. The network took 2D images as input and

output an image of 1’s and 0’s indicating whether the pixel

contained a nodule or not. The study then looked at a ”vanilla”

3D CNN model as well as a model built on the GoogLeNet

architecture for classification. Both models made use of the

Adam optimizer. The vanilla 3D CNN model achieved an

accuracy of 70.5% whilst the GoogLeNet architecture achieved

and accuracy of 75.1%. These low accuracies could be at-

tributed to the subset of data that was used to train to models.

Alakwaa et al. [14] proposed the use of a 3D CNN for the

detection of nodules in the CT scans. The U-Net architecture

was used as a pre-processing step for the CNN. The U-Net

model was pre-trained on the LUNA16 dataset. The goal of

the U-Net model was to determine exactly where the nodules

were if present. Classification was done using the 3D CNN

architecture consisting of 2 convolutional layers with a ReLu

activation function, a max pool layer after each convolutional

layer, and finally 2 dense layers with one being a binary output

layer. The Adam optimizer was used. The model achieved an

accuracy of 86.6%.

Serj et al. [15] proposed a deep CNN architecture consisting

of four convolutional layers which follow two max pooling

layers, a full-body convolutional layer, and one fully connected

layer. The ReLu activation function was used after each

convolutional layer. The cross-entropy loss function was used

in the training model. The model achieved a sensitivity of

87%, a specificity of 99%, and an F1 score of 95%.

Zhang et al. [16] proposed a 3D deep CNN model for

classifiction of pulmonary nodules as malignant or benign.

Segmentation of the image data was done beforehand to

remove unimportant features such as bones and surrounding

air. The contrast of the images was increased to highlight the

lung tissue. Training was done in two phases. The first phase

trains a nodule detection network whilst the second phase fine

tunes the network. The model achieved a sensitivity of 84.4%

and a specificity of 83%.

Vijh et al. [17] proposed a hybrid bio-inspired algorithm.

The algorithm was built using the whale optimization algo-

rithm and the adaptive particle swarm optimization. A CNN

was then used for classification. The CNN consists of three

densely connected layers with the ReLu activation function
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after each layer. The images are preprocessed and segmented.

The model achieved an accuracy of 97.18%, a sensitivity of

97%, and a specificity of 98.66%. Although the performance

was quite good, the study only made use of 120 images from

the dataset.

C. Skin Cancer Diagnosis

Skin cancer diagnosis is a multi-class classification problem

involving classifying an image as one of the types of skin

cancer [18]. The ISIC 2018 challenge HAM10000 dataset [18]

is used in this study. State-of-the-art approaches that have been

applied to this dataset are presented in this section.

Chaturvedi et al. [8] proposed an efficient skin cancer

classification model. This model made use of a pre-trained

MobileNet that was then fine tuned on the HAM10000 dataset.

The model achieved an accuracy of 83.1%, a precision of

89%, a recall of 83%, and an f1-score of 83%. These metrics

matched the performance of expert dermatologists.

Nugroho et al. [19] proposed a CNN architecture for clas-

sifying skin cancer images. The proposed model consisted of

4 convolutional layers with a ReLU activation layer after each

one. Max-pooling with a kernel size of 2 was used after every

2 convolutional layers. The Adam optimizer was used with a

learning rate of 0.001. The model achieved a testing accuracy

of 78%.

Garg et al. [2] proposed their own CNN model for skin

cancer classification. The model achieved a precision of 0.88,

a recall of 0.74, and an F1-score of 0.77. The authors compared

their model with ResNet and VGG16 models that made use

of transfer learning. The ResNet model achieved the best

accuracy of 90.5%

Gajera et al. [20] proposed a deep CNN model to classify

the images in the HAM10000 dataset. Deep features were

extracted from 8 different CNN models which were then fed

into a group of classifiers for final classification. The model

achieved an accuracy of 81% on the HAM10000 dataset.

Pai and Giridharan [21] proposed the use of a VGGNet for

skin cancer classification. The proposed model was trained

using the Adam optimizer and an initial learning rate of 0.001

which was reduced by a factor of 0.5 every 5 epochs. The

model achieved an accuracy of 78%. The accuracy achieved

could be attributed to the class imbalance in the data and could

thus be increased by adding more data.

From the survey of the literature in this section it is evident

that each study has focussed on just one disease and the studies

have been done in isolation of each other. There appears to

be no research on comparing the performance of CNNs across

problems or assessing the generalisability of CNNs for disease

prediction.

III. INCREMENTAL NEURAL NETWORK APPROACH

(INNA)

The INNA is based on the hypothesis that the neural

network will be more accurate if it learns incrementally on

subsets of the datasets rather than the entire dataset. The

dataset is divided into easy, medium and hard and the neural

network learns incrementally over these subsets of data. The

overall approach is depicted in Algorithm 1:

Algorithm 1 INNA Algorihtm

1: Divide the data into n subsets based on difficulty

2: for i = 1 to n do
3: if i=1 then
4: Initialize weights to random values

5: else
6: Initialize weights to the best weights

7: from iteration n− 1
8: end if
9: end for

10: Evaluate the CNN from the last iteration on the testing set

The INNA firstly divides the data into subsets of data

corresponding to different levels of difficulty. This is done

using a probe network [22]. The probe network was chosen

for difficulty estimation due to its low computational cost. The

network consists of 3 convolutional layers and uses a ReLu

activation function. The accuracy of the probe network is used

as the measure of difficulty of the data. The probe network is

used to calculate the difficulty for each image in the dataset.

The images are then ranked based on the difficulty value and

divided into n subsets according to difficulty. In this study n
is 3 so each of the subsets corresponding to easy, medium and

hard are allocated a third of the data instances in order of rank.

The instances are split into thirds within each class to alleviate

the potential problem of class imbalance. This ensures that the

ratio of each class is maintained in each level of difficulty. The

test set is created by randomly selecting an equal number of

images of each difficulty level (i.e. easy, medium and hard).

This is done to ensure that the test set accurately represents

each of the difficulty levels.

Once the dataset is divided into subsets based on level of

difficulty a CNN is trained on each subset iteratively. The

initial values of weights of the CNN trained on the first subset

are randomly generated. However, on subsequent iterations the

best weights of the CNN from the previous iteration are used

as the initial weights of the CNN for the current iteration. The

CNN of the final iteration is then evaluated on the test set.

IV. EXPERIMENTAL SETUP

A. Data Preprocessing

The images are resized according to the requirements of the

model used. AlexNet requires images to be of size 227x227

whilst the ResNet34 requires images to be of size 224x224.

The mean and standard deviation of the dataset is calculated

and used to normalize each pixel value in the dataset to

reduce computational cost. The dataset is divided into training,

validation and test sets using the following ratio 70:10:20.

B. Experiments

The study involves two experiments:

• Experiment 1: Compares the performance of ResNet34,

AlexNet without and with INNA for each of the problems
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separately. The performances metrics in section IV-C are

used to compare performance.

• Experiment 2: Compares the performance of ResNet34,

AlexNet without and with INNA across all three prob-

lems. Formula 1 ranking, used to assess the performance

of cross-domain hyper-heuristics [23], is used to assess

performance. Each algorithm is assigned a rank based

on its performance for each problem and the ranks are

summed.

Due to the stochastic nature of the approaches 30 runs,

each using a different random number seed, is performed

for ResNet34, AlexNet without and with INNA and

performance is reported over these runs. Hypothesis tests

using the Z statistic is used to test the statistical signifi-

cance of the results.

C. Performance Metrics

The following metrics are used to assess the CNNs and

INNA independently:

• Accuracy : (TP + TN)/(TP + FP + FN + TN)

• Precision: TP/(TP + FP)

• Recall: TP/(TP + FN)

• F1 Score: 2*(Recall * Precision)/(Recall + Precision)

• Specificity: TN/(TN + FP)

where:

TP: True Positive- Model correctly predicted disease; TN:

True Negative - Model correctly predicted healthy; FP: False

Positive - Model incorrectly predicted disease; FN: False

Negative- Model incorrectly predicted healthy.

D. Problem Details and Parameters

The dataset details and parameters values for each of the

problems is listed in Table I. The parameter values were

determined by trial and error, testing different values for the

number of epochs and learning rate.

TABLE I
PROBLEM PARAMETERS

Brain Tumour Lung Cancer Skin Cancer
Diagnosis Detection Diagnosis

Subset 1 size 715 1167 2336
Subset 2 size 715 1167 2336
Subset 3 size 716 1168 2339
Test set size 918 1498 3004
Number of classes 3 2 7
Number of epochs 30 30 30
Batch size 32 16 16
Learning rate 0.00005 0.00005 0.00005
Loss function Cross entropy Cross entropy Cross entropy
Optimizer Adam Adam Adam

E. Technical Specifications

Python was used to implement the CNNs and INNA. The

computer used to run the models consisted of the following

specifications:

• Ryzen 5 3600 6-Core CPU

• Nvidia RTX 3080 10GB GPU

• 16GB DDR4 RAM

V. RESULTS AND DISCUSSION

This section compares the performance of ResNet34,

AlexNet without and with INNA for brain tumour diagnosis,

lung cancer detection and skin cancer diagnosis. Section V-A

discusses the results for Experiment 1 and section V-B for

Experiment 2. The performance comparison with state of the

art approaches for the datasets is presented in section V-C.

A. Experiment 1 Results

This section discusses the performance of ResNet34,

AlexNet and INNA evaluated independently for each problem.

Table II presents the comparison of ResNet34 and AlexNet

with and without the INNA for brain tumour diagnosis.

AlexNet outperforms ResNet34 and both CNNs with INNA.

These results are statistically significant at a 99% level of

confidence.

TABLE II
PERFORMANCE COMPARISON FOR BRAIN TUMOUR DIAGNOSIS

ResNet34 AlexNet ResNet34+ AlexNet+
INNA INNA

Accuracy 94% 99% 79% 91%
Precision 94% 99% 80% 90%
Recall 93% 99% 83% 91%
F1 93% 99% 82% 91%
Specificity 97% 99% 91% 96%

Table III lists the performance of the CNNs and INNA

for lung cancer detection. ResNet34, AlexNet and AlexNet

with INNA perform comparatively and there is no statistical

significance in their performance. However, all three networks

outperform AlexNet with INNA at the 99% confidence level.

TABLE III
PERFORMANCE COMPARISON FOR LUNG CANCER DETECTION

ResNet34 AlexNet ResNet34+ AlexNet+
INNA INNA

Accuracy 100% 99.99% 99.33% 97.73%
Precision 99% 99% 99% 98%
Recall 99% 99% 99% 98%
F1 99% 99% 99% 98%
Specificity 99% 99% 99% 98%

As can be seen from Table IV ResNet34 outperforms the

other networks for skin cancer diagnosis at the 99% confidence

level. It is interesting to note that INNA did not perform well

for this problem irrespective of the CNN used with it. Future

work will investigate this further.

In terms of computational cost, the CNNs with INNA had

a lower computational cost for all three problems as can be

seen from the average runtimes (in seconds) in Table V.
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TABLE IV
PERFORMANCE COMPARISON FOR SKIN CANCER DIAGNOSIS

ResNet34 AlexNet ResNet34+ AlexNet+
INNA INNA

Accuracy 96% 95% 69% 72%
Precision 91% 91% 43% 48%
Recall 91% 90% 43% 49%
F1 90% 90% 43% 48%
Specificity 99% 97% 89% 88%

TABLE V
RUNTIME COMPARISON

ResNet34 AlexNet ResNet34+ AlexNet+
INNA INNA

Brain tumour 450 390 299 257
diagnosis
Lung cancer 1170 615 242 460
detection
Skin cancer 1710 1410 1178 913
diagnosis

B. Experiment 2 Results

This section compares the performance of ResNet34,

AlexNet, ResNet34+INNA and AlexNet+INNA across the

three problems. Based on the performance in terms of accuracy

a rank is assigned to each network based on its performance on

each of the three problems and the ranks are summed. Table

VI lists the sum of ranks for each of the networks. ResNet34

performs the best over all three problems followed by AlexNet

and the INNA networks.

TABLE VI
PERFORMANCE COMPARISON ACROSS PROBLEMS

Network Rank Sum
ResNet34 4
AlexNet 5
ResNet34+INNA 10
AlexNet+INNA 11

C. Comparison with State of the Art Approaches (SOTA)

For completeness the performance of the CNNs with and

without INNA are compared to state of the approaches. A de-

scription of these approaches are provided in section II. Table

VII compares the performance with SOTA for brain tumour

diagnosis. The AlexNet employed in this study outperforms

all of the SOTA approaches except the approach employed by

Sadad et al. [11].

From Table VIII it can be seen that the ResNet34 and

AlexNet with and without the INNA outperform the SOTA

approaches for lung cancer detection.

For skin cancer detection ResNet34 and AlexNet outperform

the SOTA. The INNA did not perform well for this dataset and

future research will investigate this further.

TABLE VII
BRAIN TUMOUR DIAGNOSIS COMPARISON WITH SOTA

Network Accuracy
CNN [5] 98.51%
GoogleNet [6] 98.00%
VGG16 [1] 98.69%
CNN [7] 96.56%
EfficientNet [9] 98.86%
InceptionResNetV2+Random Forest [10] 98.00%
Unet+ResNet50+NASNet [11] 99.60%
ResNet34 93.93%
AlexNet 99.36%
ResNet34+INNA 79.19%
AlexNet+INNA 91.07%

TABLE VIII
LUNG DIAGNOSIS COMPARISON FOR SOTA

Network Accuracy
GoogleNet [12] 75.10%
3D CNN [14] 86.60%
CNN [17] 97.18%
ResNet34 100%
AlexNet 99.99%
ResNet34+INNA 99.33%
AlexNet+INNA 97.73%

TABLE IX
SKIN CANCER DETECTION COMPARISON WITH SOTA

Network Accuracy
MobileNet [8] 83.0%
CNN [19] 78.0%
CNN [20] 81.0%
CNN [2] 90.5%
VGGNet [21] 78.0%
ResNet34 95.8%
AlexNet 94.5%
ResNet34+INNA 72.3%
AlexNet+INNA 69.5%

VI. CONCLUSION

The main aim of the research presented in this paper was

to examine the ability of CNNs to find acceptable solutions

to more than one disease prediction problem. Three such

problems, namely, brain tumour diagnosis, lung cancer de-

tection and skin cancer detection, were used fin this study.

The study firstly performed a comparison of networks applied

individually to each problem. This revealed that different net-

works worked well for the different problems, with ResNet34

producing the best results for two of the problems. The study

then examined how well the networks are able to perform

over the three problems, using Formula 1 ranking to assess

performance. ResNet34 was able to generalize better than the

other networks.

The study also investigated an incremental approach for

learning in CNNs. This approach when used with ResNet34

and AlexNet performed comparatively to the networks without

incremental learning with a lower computational cost for brain

tumour diagnosis and lung cancer detection. However, the
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INNA did not work well for skin cancer diagnosis and future

work will investigate the reasons for this. It is hypothesised

that the performance is possibly related to the number of

classes. The INNA performed well for binary classification

and not as well for three classes. It performed the worse for

skin cancer diagnosis which had seven classes.

For brain tumour diagnosis ResNet34 outperformed SOTA.

For lung cancer both ResNet34 and AlexNet, with and without

the INNA, outperformed SOTA. For skin cancer detection both

ResNet34 and AlexNet outperformed SOTA. It can be seen

from this study that some CNNs, like ResNet34, can generalise

better than others. While the INNA did not outperform any of

the networks without incremental learning, it had a much lower

computational cost and produced results that outperformed the

SOTA for lung cancer detection.

Future extensions of this research will include investigat-

ing other neural networks as well as ensemble learning for

generalisability in CNNs for disease prediction. Furthermore

a performance metric for evaluating networks for generalis-

ability, similar to that derived for hyper-heuristics [24], will

be investigated. Future work will also investigate improving

the INNA by firstly investigating other methods for difficulty

estimation. The use of ensembles, containing classifiers for the

different levels of difficulty, will also be investigated.
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