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Abstract—Deep neural networks excel in a wide range of tasks
but require diverse datasets to prevent overfitting. Overfitting
occurs when a network fits training data too precisely, leading to
poor generalization. Data Augmentation is often used to mitigate
overfitting aiming at enlarging and improving the quality of
training datasets, facilitating the construction of superior deep
learning models. MAGAN algorithm emerges as an innovative
approach that functions as a Meta-Analysis of Generative Ad-
versarial Networks (GANs). MAGAN harnesses the latent space
capabilities of GANs to confront the challenges presented by
binary-class, multi-class, grayscale, and RGB images, effectively
covering a wide spectrum of scenarios. In this paper, we
propose the use of MAGAN algorithm for binary-class and
multi-class data augmented generation. We also undertake an
in-depth experimental analysis, evaluating the performance of
the proposed MAGAN-based approach in comparison to two
alternative baseline scenarios: one without any augmentation and
another utilizing a conventional augmentation method. To gauge
the effectiveness of the proposed technique, we employed diverse
classification metrics, including accuracy, loss, precision, recall,
F1-score, and the confusion matrix. Our results demonstrate
that the proposed approach surpasses the other two scenarios
achieving improvements in terms of accuracy by a factor of
x1.15 and x1.03, respectively. This underscores the significant
advantages of harnessing MAGAN, a meta-analysis of GANs,
for data augmentation across a range of image types and
classification tasks.

Index Terms—machine learning, deep neural networks, overfit-
ting, data augmentation, data augmented generation, generative
adversarial networks, latent space.

I. INTRODUCTION

In machine learning, the quantity and quality of training data

are pivotal for model effectiveness. As tasks become more

complex, dataset size is crucial for pattern discernment and

efficient generalization. The training dataset is fundamental,
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enabling the model to learn patterns and rules. Its quality

and representativeness are key during the training phase.

Choosing a suitable dataset is critical. It should mirror the real-

world problem’s complexity. A well-structured, large dataset

enhances the model’s ability to generalize to new, unseen data,

improving predictions in real-world scenarios. A larger dataset

provides a more comprehensive depiction of the underlying

data distribution.

This larger representation allows the model to detect an

array of features in the data. As a result, the model learns

more about the patterns and correlations between features,

resulting in more accurate predictions. Furthermore, a larger

dataset mitigates the risk of overfitting [1], a typical problem

in machine learning. Overfitting occurs when a model becomes

overly specialized in the training data and struggles to gener-

alize to new, unseen data.

As the availability of more data drives breakthroughs in

machine learning, human labeling of massive datasets becomes

a limiting factor for large-scale deep learning systems [2], [3].

Data augmentation has developed as an emerging approach

in the field [4], solving the issue of insufficient training data.

It involves augmenting the dataset with varied and realistic

synthetic examples, hence enhancing the performance and gen-

eralization of machine learning models. Among several data

augmentation approaches, Generative Adversarial Networks

(GANs) proposed by Goodfellow [5] have received a lot of

interest. GANs excel in understanding the underlying data

distribution and generating high-quality synthetic data. These

networks are made up of a generator and a discriminator, with

the generator generating synthetic samples from random noise

and the discriminator differentiating between real and fake

data.

Through the process of adversarial training, the system

undergoes a learning phase where it becomes proficient in

mapping samples from the latent space to the real data
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distribution. Once this proficiency is attained, GANs gain the

capability to generate credible images by drawing samples

from a random distribution. Previous research efforts [6], [7]

have primarily focused on improving synthesis quality by

identifying a more precise distribution aligned with ground

truth data. However, there has been limited exploration into

understanding what GAN truly comprehends within the latent

space. For instance, in the context of face synthesis, although

the latent code governs which facial features are generated,

the precise relationship between the latent code and various

semantic properties of the resulting facial image, such as

age and gender, remains ambiguous. Various approaches [8],

[9] have been proposed to exert control over the generated

images. However, it is worth noting that their quality remains

notably inferior when compared to the performance achieved

by unconditioned GANs [6], [10]. A study conducted by

Radford et al. [11] suggests that delving into the arithmetic

characteristics of vectors within the latent space provides

insights into how GANs acquire certain semantic information

in their earliest hidden layers. A prior research study by

Bau et al. [12] illustrates that the generator is capable of

synthesizing specific visual attributes through its intermediary

layers. Nevertheless, there remains a significant knowledge

gap regarding how alterations in the latent space can precisely

influence the desired output of generated images.
In their study, Härkönen et al. [13] highlight the importance

of the latent space in GANs for image generation, in which

the generator converts random noise into meaningful data

representations. Following a similar intuition, we propose,

in this paper, the use of MAGAN algorithm [14] for data

augmentation. MAGAN is an emerging algorithm that is

suitable for exploring the latent space vector distances and

offers valuable insights into the relationship between generated

images.
The main contributions of this work can be summarized as

follows:

• It proposes a unified MAGAN-based approach for both

binary-class and multi-class data augmentation that gen-

erates synthetic images by taking the mean of all vectors

within each class. The incorporation of the class means

preserving the core traits of each class, resulting in

semantically relevant and different augmentations.

• It addresses the problem of data scarcity by creating

additional images utilizing the MAGAN-based augmen-

tation, particularly when working with smaller datasets.

The enhanced data increased the training data’s effective

size, resulting in more robust and dependable model

performance. Overfitting was effectively minimized by

training models on a larger, more dataset and unseen

dataset, allowing the models to generalize to previously

unknown data.

• It presents a comprehensive evaluation in which the

proposed approach is applied to different types of sce-

narios covering the binary-class, multi-class, grayscale,

and RGB image datasets. The evaluation results indicate

the proposed unified approach’s flexibility and promise

for improving the training process across a wide range

of domains.

The structure of this paper can be outlined as follows.

Section I provides a concise introduction to Generative Ad-

versarial Networks (GANs) and data augmentation, conducts

a literature review, and highlights the contributions made

within this study. Moving forward, Section II describes the

methodology applied to both binary-class and multi-class

classification problems. Section III showcases experimental

results for both classification problems, where we compare

classification metrics across three scenarios: no augmentation,

conventional techniques, and MAGAN. Finally, in Section IV,

we conclude the paper by summarizing the main discoveries

and discussions presented.

II. PROPOSED UNIFIED MAGAN-BASED APPROACH

In this section, we propose the unified MAGAN-based

approach for binary-class and multi-class data augmented

generation.

The MAGAN algorithm constitutes a comprehensive explo-

ration of the latent space inherent in GANs, wherein the mean

μ and standard deviation σ of vector groups are computed

for each class. The determination of the mean for vectors

sharing a common label serves to encapsulate the principal

features characterizing each class. Subsequently, by displacing

epsilon ε times the standard deviation from the mean vector

μ, a diverse array of images is generated, thereby contributing

to the enhancement of the generalization process. Figure 1

depicts the MAGAN algorithm [14] that we are proposing

to use for data augmentation. By leveraging the MAGAN

algorithm, we enlarge the dataset and infuse it with greater

semantic value by incorporating images that reside within the

interval defined by (μ± σ × ε).

Fig. 1. The MAGAN algorithm.

We enlarge the dataset size by integrating an additional

1000 images per class generated using the MAGAN algo-

rithm. Utilizing Generative Adversarial Networks (GANs) as

a parameter-controlled data generator facilitates data-driven

augmentation. Specifically, the MAGAN algorithm harnesses

the latent space capabilities of GANs to generate synthetic
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images that effectively enrich the dataset. By leveraging GANs

in this manner, we ensure that the augmented data aligns

with the distribution of the original dataset while introducing

variations that enhance the diversity and representativeness

of the training samples. This approach enables an effective

increase in the dataset size and improves the performance of

deep learning models trained on the augmented data.

III. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION

In this section, we will delve deeply into our experimental

setup, examine results, and interpret them. Our objective is

to thoroughly assess the MAGAN approach for data aug-

mentation, employing samples from both the Fashion-MNIST

dataset and the cat-vs-dog dataset. We aim to assess the

efficacy of our proposed approach and draw meaningful con-

clusions by undertaking a systematic examination and analysis.

All experiments in this study were conducted using Google

Colab powered by a GPU-accelerated environment (NVIDIA-

SMI 525.105.17, Driver Version: 525.105.17, CUDA Version:

12.0). The implementation of the deep learning algorithms

in this work utilized Keras with Google TensorFlow as the

backend, complemented by additional scientific computing

libraries such as matplotlib, numpy, and scikit-learn.

A. Datasets

In this work, we rigorously evaluate our proposed data

augmentation technique using two datasets. The proposed

MAGAN-based method assesses the impact of data scarcity on

model performance, with deliberate extraction of 1000 samples

per class from each original dataset to highlight challenges

posed by restricted data availability.

We demonstrate the algorithm’s efficacy on subsets from

Fashion-MNIST and cat-vs-dog datasets, showcasing its appli-

cability across diverse datasets. The intentional selection en-

sures a comprehensive evaluation in both multi-class (Fashion-

MNIST) and binary-class (cat-vs-dog) classification scenarios.

Additionally, by incorporating RGB images from cat-vs-dog

and grayscale images from Fashion-MNIST, we thoroughly

examine the algorithm’s performance across different color

spaces. This approach extends the generalizability of our

findings and addresses nuances in binary-class and multi-

class classification tasks, as well as variations in image color

formats.

B. Data Transformation Techniques

Two distinct data augmentation procedures have been eval-

uated in our experimentation: the conventional method and the

MAGAN augmentation. The conventional method included a

variety of augmentation techniques such as random horizontal

flipping, random rotation, random shear, random zoom, and

others as shown in Table I. These enhancements were made

on the fly throughout the training session. Contrarily, the MA-

GAN approach leveraged the latent space’s mean vector μ and

standard deviation σ, creatively generating synthetic images.

The epsilon factor ε, a critical parameter, was judiciously set

to different values for each class to strike a balance between

generating diverse images and maintaining realism. The values

of ε for the subsets of Fashion-MNIST and cat-vs-dog datasets

are presented in Figure 2 and Figure 3 respectively.

TABLE I
DATA AUGMENTATION METHODS

Data Augmentation Methods

Method Technique

Conventional

• Rescaling: The images were rescaled to
a range of 0 to 1, converting pixel values
to the interval [0, 1].

• Rotation range: Random rotations
within ± 15 degrees were applied.

• Shear range: A shear transformation was
employed with a range of 0.1.

• Zoom range: Images were randomly
zoomed in and out with a range of 0.2.

• Horizontal flip: Horizontal flipping was
enabled.

• Width shift range: Horizontal shifts
with a range of 0.1.

• Height shift range: Vertical shifts within
a range of 0.1.

MAGAN

Increasing the dataset size by incorporat-
ing 1000 images per class generated using
the MAGAN algorithm. GAN is used as a
parameter-controlled data generator for data-
driven augmentation.

Fig. 2. The values of the parameter ε for each class label for Fashion MNIST
classification.

Fig. 3. The minimum distance and the values of the parameter ε for each
class label for cat-vs-dog classification.
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C. Multi-Class - Fashion-MNIST

To tackle the challenge of limited data availability, this study

conducted evaluations using a restricted subset of the Fashion-

MNIST dataset. Instead of the typical 6,000 images per class

in the training set, our experiment utilized only 1,000 images

for each class for each training and testing dataset.

To comprehensively compare MAGAN with traditional data

augmentation, we conducted a classification analysis on the

subset, augmenting it with an additional 1,000 generated

images per class. Visual representations of accuracy and loss

evolution across training epochs for all three approaches were

plotted on a single graph, spanning epochs 0 to 100 as shown

in Figure 4 and Figure 5.

Fig. 4. Validation set performance: comparison of accuracy trends across
training epochs for Fashion-MNIST.

These curves offer valuable insights into the convergence

and optimization trajectories of the algorithms, highlighting

any divergence or convergence trends.

Fig. 5. Validation set performance: comparison of loss trends across training
epochs for Fashion-MNIST.

In our assessment, we conducted critical tests, including

accuracy, precision, recall, and F1-score, comparing three sce-

narios: no augmentation, standard approach, and MAGAN. Ta-

ble II highlights MAGAN’s superior performance on Fashion-

MNIST.

Summarily, MAGAN outperforms both no augmentation

and conventional augmentation. Without augmentation, the

model achieves 75.38% accuracy. Conventional augmentation

improves accuracy to 84.72%, and MAGAN achieves an im-

pressive 86.89%; an approximately 11.51% improvement over

no augmentation and a 2.17% improvement over conventional

augmentation. These results underscore MAGAN’s substantial

effectiveness in enhancing model performance.

TABLE II
COMPARISON OF AUGMENTATION METHODS FOR FASHION-MNIST

CLASSIFICATION: TEST ACCURACY, PRECISION, RECALL, AND F1-SCORE

ANALYSIS.

Metrics
No Augmen-
tation

Conventional MAGAN

Test
Accuracy
(%)

75.38 84.72 86.89

Precision 0.77 0.85 0.87

Recall 0.75 0.85 0.87

F1-score 0.76 0.85 0.87

We used confusion matrices to acquire a more complete

understanding of these outcomes. Figures 6, 7, and 8 illustrate

these matrices in detail, each corresponding to one of the

three scenarios: no augmentation, the traditional way, and the

MAGAN approach, respectively. The confusion matrices show

that the classifier trained using the MAGAN approach had

the highest number of correct predictions. These visual rep-

resentations provide persuasive proof of MAGAN’s superior

classification performance when compared to the other two

approaches.

Fig. 6. Confusion matrix for Fashion-MNIST (no augmentation).

D. Binary-Class - cat-vs-dog
The MAGAN algorithm excels in binary classification sce-

narios.
To address limited data availability, we evaluated MAGAN

using a constrained subset of the cat-vs-dog dataset, utilizing

only 1,000 images per class for both training and testing.
To comprehensively compare MAGAN with traditional data

augmentation, we enriched the subset with an additional 1,000

generated images per class. Figure 9 displays validation accu-

racy graphs for the original subset, conventional augmentation,

and MAGAN throughout the entire training process, providing

a clear visual comparison of accuracy scores against training

epochs.
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Fig. 7. Confusion matrix for Fashion-MNIST (conventional).

Fig. 8. Confusion matrix for Fashion-MNIST (MAGAN).

Fig. 9. Validation set performance: comparison of accuracy trends across
training epochs for cat-vs-dog.

Figure 10 provides a visual representation of the validation

loss patterns for these three methodologies. These loss curves

serve as informative indicators of the convergence and opti-

mization trajectories of the algorithms, shedding light on any

divergence or convergence trends that may arise.

We conducted essential evaluations, encompassing test ac-

curacy, precision, recall, and F1-score, as integral components

of our thorough assessment of model performance. In com-

parison to two alternative scenarios, namely, no augmentation

and the conventional approach, these pivotal metrics provided

invaluable insights into the effectiveness of our MAGAN

strategy. Table III presents the results of these evaluations,

Fig. 10. Validation set performance: comparison of loss trends across training
epochs for cat-vs-dog.

showcasing a notable disparity that underscores the superior

performance of MAGAN on the cat-vs-dog dataset.

TABLE III
COMPARISON OF AUGMENTATION METHODS FOR CAT-VS-DOG

CLASSIFICATION: TEST ACCURACY, PRECISION, RECALL, AND F1-SCORE

ANALYSIS.

Metrics
No Augmen-
tation

Conventional MAGAN

Test
Accuracy
(%)

71.45 78.20 80.45

Precision 0.72 0.78 0.80

Recall 0.71 0.78 0.80

F1-score 0.71 0.78 0.80

In summary, comparing the three approaches reveals notable

differences in test accuracy. Without augmentation, the model

achieved 71.45%. Conventional augmentation improved accu-

racy to 78.20%, while MAGAN demonstrated the most sig-

nificant enhancement, reaching 80.45%; approximately 2.25%

higher than conventional and 9.00% higher than no augmenta-

tion. MAGAN effectively enhances model performance com-

pared to both no augmentation and conventional augmentation

methods.

For a comprehensive insight, confusion matrices in Fig-

ure 11, Figure 12, and Figure 13 highlight MAGAN’s superior

classification performance with the highest true negatives and

true positives, providing compelling visual evidence.

IV. CONCLUSION

This paper introduced and evaluated the MAGAN algo-

rithm, a Meta-Analysis of Generative Adversarial Networks,

as a solution for data augmentation in deep neural networks,

particularly focusing on binary-class and multi-class scenarios.

Leveraging the latent space capabilities of GANs, MAGAN

demonstrated its effectiveness in handling binary-class, multi-

class, grayscale, and RGB images, showcasing its versatility

across a wide spectrum of scenarios. The comprehensive

experimental analysis conducted in this study compared the
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Fig. 11. Confusion matrix for cat-vs-dog (no augmentation).

Fig. 12. Confusion matrix for cat-vs-dog (conventional).

Fig. 13. Confusion matrix for cat-vs-dog (MAGAN).

performance of the proposed MAGAN-based approach with

two alternative baseline scenarios, one without any aug-

mentation and another utilizing a conventional augmentation

method. The evaluation employed a variety of classification

metrics, including accuracy, loss, precision, recall, F1-score,

and the confusion matrix. The results consistently revealed

that the MAGAN-based approach outperformed the other

two scenarios, achieving notable improvements in accuracy

by factors of x1.15 and x1.03, respectively. These findings

underscore the significant advantages of integrating MAGAN

into the data augmentation pipeline for deep learning models.

The success of MAGAN in enhancing classification accuracy

across various image types and classification tasks highlights

its potential as a valuable tool in preventing overfitting and

constructing superior deep learning models. The presented

results contribute valuable insights to the field of data aug-

mentation, emphasizing the effectiveness of meta-analysis in

harnessing the power of GANs for improved generalization

and performance in diverse scenarios.
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