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Abstract—Explainable AI (XAI) for lay users who do not
have expertise in Reinforcement Learning (non-RL experts) plays
an essential role in helping them build mental models of an
agent’s behavior in increasingly common applications, such as
self-driving cars. An intriguing approach involves utilizing the
”f́amiliarization effect”,́ where exposure to an agent’s behavior
across various scenarios assists users in naturally forming these
mental models. However, this method might be less effective
when dealing with multiple agents or complex, lengthy tasks,
due to the limitations of human short-term visual memory where
holding visual information briefly in mind. We propose that
visualizing abstracted trajectories, which illustrate transitions
between major states of the RL agents, can aid non-RL experts
in understanding the agents’ behaviors. Preliminary findings sug-
gest that this visualization enables non-RL experts to efficiently
recognize RL agents’ behaviors.

Index Terms—Explaniable AI, Trajectory Visualization, Tra-
jectory Abstraction

I. INTRODUCTION

In recent years, deep Reinforcement Learning (RL) agents,

employing deep neural networks in their policies, has outper-

formed skilled humans in fields like video games, chess, and

Go [21]. However, DRL agents, characterized by their opaque,

‘black box‘ policies, pose challenges in enabling humans to

construct mental models of their behaviors.

Explainable AI (XAI) for users who do not have expertise

in Reinforcement Learning (non-RL experts) becomes crucial,

aiding them in comprehending deep RL agents’ behaviors in

increasingly common applications, such as self-driving cars.

So far, various facets of explainability for non-RL experts

has been illuminated. These include explaining the policy

of an agent [9], [24], justifying the action of an agent with

reward [13], [26], and explaining the dynamics of an envi-

ronment [5], [14]. Recently, counterfactual explanations that

explain ”If A did not happen, B would not have happened”

and contrastive explanations that answer ”Why B1 rather than
B2?” have been actively considered as good explanations that

are understandable for a wide variety of users [17], [22], [29].

One notable approach is leveraging the ’familiarization

effect’, where exposure to an agent’s behavior in diverse

scenarios helps users intuitively grasp mental models of the
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agent’s behavior. For instance, Dragan & Srinivasa [33] ob-

served that watching a robot’s trajectory in videos enables

users to predict the robot’s future trajectory. Another study

pointed out that short video clips of an agents’ game-play can

effectively build mental models of the agents’ performance [1].

However, this strategy may falter with an increase in the

number of agents, or in complex, extended tasks, due to the

limitations of human short-term visual memory where holding

visual information briefly in mind.

We posit that visualizing abstracted trajectories – a method

of visually representing RL agents’ behaviors through major

state transitions – offers a promising solution to these chal-

lenges. This approach aims to give users a condensed visual

summary of various agents’ behaviors by transforming videos

of these behaviors into abstracted trajectories. This paper

focuses on the question: how should trajectories be abstracted
and visualized to facilitate users’ intuitive understanding of an
agent’s behavior? To address this, we introduce a trajectory

abstraction algorithm and propose an interface for visualizing

these abstracted trajectories, applicable to diverse agent types.

Our initial findings from a pilot study indicate that while

the proposed interface could benefit from enhancements, the

visualization of abstracted trajectories proved helpful for non-

RL experts in deducing agents’ behaviors.

This paper is structured as follows: the next section covers

the technical background needed to understand an algorithm

used to generate the abstracted trajectories; Section III presents

a literature review of relevant research; From section IV

through VII, outline of proposed interface, preliminary eval-

uation, result, and discussions are provided; Finally, section

VIII and IX give limitations and a conclusion.

II. BACKGROUND

This section delves into the technical background of ma-

chine learning models, particularly focusing on extracting tran-

sitions between major states in the RL agents. For details on

how these extracted transitions are visualized, refer to section

IV. As depicted in Fig. 1, our algorithmic process comprises

three steps: trajectory extraction, trajectory abstraction, and

visualization of the abstracted trajectory. In the following two

subsections, the trajectory extraction and trajectory abstraction

will be explained.
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Fig. 1. The process of generating abstracted trajectories from input images
that a RL agent observed. The features z (latent variables) are extracted from
the input images x with VAE (See section II-A). The extracted features z are
abstracted by spatio-temporal clustering (See section II-B).

A. Trajectory Extraction

In this study, we employed a machine learning model known

as the Variational Autoencoder (VAE) to extract interpretable

series of features without human supervision. Given an input

x, the VAE’s objective is to learn a vector z that captures the

features of x in a disentangled manner (see Fig. 2 (a)). For

example, when the VAE trained with images of Breakout, a

game in which the player breaks rainbow-colored blocks by

moving the paddle left and right and hitting the ball back

to the block, the VAE learns to represent an input image

of the game using z. Since the dimension of the vector z
is usually high, dimensional reduction techniques, such as

PCA [6], t-SNE [28] and UMAP [19], are used to project

learned representation in 2D space. An example of this can be

seen with the feature representing the number of remaining

blocks in Breakout, visualized using PCA in a 2D space

(Fig. 2 (b)).Ideally these independent factors are expected

to be captured in separated dimensions of z (i.e., semantic

dimensions), however, in practice, some dimensions of z will

not learn to have semantic meanings. To address this, we

introduce the β-VAE [10] which can facilitate z to learn more

disentanglement representation than vanilla VAE. The β-VAE

is trained to minimize the following loss function:

Lβ(θ, φ|x) = −Eqφ(z|x)[log (pθ(x|z))]+βDKL (qφ(z|x)||pθ(z))
(1)

The first term of this equation represents the reconstruction

loss, while the second term is a regularization term for

enhancing disentanglement. With β > 1, β-VAE encourages

a more disentangled z by imposing constraints on the latent

bottleneck. As a result, similar images are positioned closely

together in the latent space. With the continuous state changes

due to the agent’s actions, these transitions are depicted as

trajectories in the latent space. In this research, the architecture

of the β-VAE follows the approach presented by Ha and

Schmidhuber [7].

Fig. 2. a) The architecture of VAE, input images are fed to the decoder of
VAE and the decoder is trained to compress inputs to latent variable z. The
encoder of VAE is also trained at the same time to reconstruct the inputs
from corresponding latent vectors. b) The reconstructed images projected on
the latent space formed z1 and z2.

B. Trajectory Abstraction

To abstract the trajectories generated by the β-VAE, we

utilized ST-DBSCAN [4], a clustering algorithm tailored for

spatio-temporal data. ST-DBSCAN is a density-based cluster-

ing method, distinct from many clustering techniques that of-

ten rely on the independence and identically distributed (i.i.d.)

assumption. This algorithm takes into account the temporal

dynamics of data, forming clusters based on the density of

points within a specified spatio-temporal radius. This approach

is particularly effective in capturing the temporal structure

inherent in the state transitions of our data.

ST-DBSCAN categorizes the features z, derived from the

encoder of the β-VAE, into several clusters. To identify major

states along a trajectory, we compute the median of the z
distribution for each cluster and then input these medians

into the decoder of the β-VAE. The abstracted trajectories are

subsequently formed by connecting these major states in their

chronological sequence.

III. RELATED WORK

This study intersects with two significant areas of research:

Visual Analytics (VA) for enhancing the explainability of

RL agents, and the visualization of trajectories for temporal

data. This section outlines contributions in these domains and

differentiates our work from existing efforts.

VA has been recognized for its potential in facilitating

hypothesis formation to explain visualized behavior patterns
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of RL agents, primarily through interactive interfaces. These

interfaces have been primarily designed for RL practitioners to

discover behavior patterns and potential bugs of an agent [12],

[18], [20], [23], [30]. These methods enable the RL practi-

tioners to construct accurate mental models about an agent

by examining information in multiple charts about the agent.

However, their complexity makes them less accessible to non-

RL experts. Moreover, these methods are generally tailored

for specific machine learning models (like RNN, LSTM, and

DQN), limiting their applicability in comparing different types

of models.

Trajectory visualization, on the other hand, focuses on

representing agents’ behavior patterns as trajectories in a sin-

gular visual format. For example, the Projection Path Explorer

visualizes multiple Rubik’s Cube solution strategies as trajec-

tories, analyzing these as patterns [11]. Such visualizations can

reveal agent behavior patterns through clusters or bundles of

trajectories. Zahavy et al. proposed an interface that employs t-

SNE to project RL model’s latent vectors into two dimensions,

offering case studies to illustrate how these trajectories can

depict agent behaviors [32]. However, these studies often lack

user-based evaluations on the practicality and comprehension

of the interfaces. Additionally, their complexity, stemming

from directly projecting high-dimensional states to 2D spaces,

poses challenges for non-RL experts.

In contrast, our paper introduces a novel trajectory abstrac-

tion algorithm designed to simplify the trajectories of diverse

RL agents. This abstraction allows non-experts to easily grasp

a high-level overview of RL agents’ behavior patterns. We

also conduct a pilot study to assess users’ understanding

and interpretation when exposed to the abstracted trajectory

visualizations.

IV. TRAJECTORY VISUALIZATION INTERFACE

This section outlines our interactive interface designed for

visualizing abstracted trajectories. The interface, as illustrated

in Fig. 3, is comprised of two main components: a map view,

which presents the trajectories as a directed graph, and a

slider view, which displays the trajectories horizontally. The

subsequent subsections detail the functionalities of both the

map view and the slider view.

Fig. 3. Proposed interface for abstracted trajectory visualization: The map
view is centrally placed, with the slider view positioned at the bottom. An
enlarged image of a node, when hovered over, appears in the inspector window
at the top right.

A. Map View

Located at the center of the interface, the map view

visualizes abstracted trajectories as a directed graph. The

nodes in this graph represent major states identified from

clusters using ST-DBSCAN, as discussed in section II. These

nodes are positioned based on a force simulation implemented

with D3JS [3], where the Euclidean distances between latent

vectors z of major states influence the linking strength, thereby

forming clusters. The directed graph’s edges, denoting tempo-

ral dependencies between nodes, are rendered using Bézier

interpolation for enhanced readability, with time progression

shown through animated dots along the edges.

Interaction with the map is facilitated through scrolling,

dragging, hovering, and clicking. Users can pan and zoom

on the map akin to navigating Google Maps. Hovering over

nodes brings up an enlarged image in the top-right inspector

window, allowing users to examine state transitions. Clicking

on a node highlights its corresponding trajectory, and hovering

over another node facilitates comparative analysis between

trajectories. The highlighted trajectory is also synchronized

with the slider view, which we will elaborate on next.

B. Slider View

The slider view arranges the nodes of abstracted trajectories

horizontally in chronological order. Since the nodes in the

slider view are sorted from left to right, users can easily see

state transitions on the abstracted trajectories by comparing

the adjacent images.

Users can interact with this view through scrolling, hover-

ing, and clicking, similar to the map view. Scrolling horizon-

tally navigates through the slider, while hovering over a node

displays its enlarged image in the inspector window. Clicking

on a node highlights its trajectory on the map, providing a dual

perspective of both the trajectory’s shape and its sequential

states, as viewed in the map and slider views simultaneously.

V. PRELIMINARY EVALUATION

We conducted a preliminary comparative evaluation to as-

sess the effectiveness of two visualization types: with and

without trajectory abstraction. For the non-abstracted case, par-

ticipants were shown animations like those in Fig. 4 (a), which

we refer to as “complete trajectories” since they represent the

full range of state transitions. In the abstracted case, as detailed

in the previous section and shown in Fig. 4 (b), participants

were provided with abstracted trajectories. In both scenarios,

we measured task completion accuracy, the specifics of which

are discussed in section V-B. This pilot study was designed to

be conducted online to facilitate broad participation in future

research.

A. Questions

To examine if abstracted trajectories aid non-RL experts in

building mental models of agent behavior, we set the following

guiding questions for this pilot study:
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Fig. 4. Two visualization types used in a comparative evaluation

Q1- How well does a user’s mental model obtained from the

abstracted trajectory agree with a mental model obtained

from complete trajectory?

Q2- Is the trajectory abstraction algorithm able to extract

information that helps users to understand the behavioral

pattern of RL agent?

Q3- What insights do users gain from the abstracted trajecto-

ries?

B. Task

We designed an analytical task, depicted in Fig. 5, to assess

each visualization type’s effectiveness. Participants were asked

to observe a changing animation over time and identify the

corresponding trajectory from six options, represented as either

complete or abstracted trajectories. This task aimed to gauge

participants’ ability to generalize an agent’s policy from each

visualization type.

For this study, we designed tasks for 6 different applica-

tions, detailed in Table I. The Mnist application was used

for a tutorial presented at the start of the pilot study. This

tutorial showcased animations of handwritten digits transition-

ing smoothly (e.g., 0→4→3→2). In the complete trajectory

scenario, participants observed six different animations (see

Fig. 4 (a)), whereas in the abstracted trajectory scenario, they

used the interface shown in Fig. 4 (b).

After the tutorial, participants were tested on the remaining

five applications. A total of 10 questions (2 visualization

types × 5 applications) were randomly presented. The detailed

procedure following the tutorial is explained in section V-C.

The datasets of state transitions for each application were

sourced from the work by Such et al. [25]. They trained six RL

models including A2C, ApeX, DQN, ES, GA, and Rainbow,

on various Atari games to support research that investigates

the properties of these agents. In our study, replays of an Atari

game played by these six RL models were represented as six

trajectories. A participant never encountered a task with the

same answer across visualization types.

In summary, we employed a within-subject design compar-

ing two visualization types (with/without trajectory abstrac-

tion). The question blocks were counterbalanced to avoid bias,

and participants never faced repeat answers across visualiza-

tion types. Including the tutorial, the total number of trials

amounted to 12N trials (2 visualization types × 6 applications

× N participants).

Fig. 5. Analytical task for abstracted trajectory: Participants are asked to
match a trajectory visualized in the interface of abstracted trajectory (region
(1) in the figure) with an animation (region (2)). In the complete trajectory
scenario, region (1) displays complete trajectory visualizations as in figure 4
(a).

TABLE I
APPLICATIONS USED IN THIS PILOT STUDY

Mnist Breakout Qbert Amidar SpaceINvader Boxing

C. Procedure

Each participant in the pilot study answered a total of 12

questions (2 visualization types × 6 applications including

the tutorial). Participants were given unlimited time to com-

plete each question and could not redo them. We assessed

performance based on response accuracy. The accuracy of each

visualization type was measured by the number of correct

responses out of the total responses for each application.

Comparing accuracy between the two types provided insight

into how effectively participants could generalize an agent’s

policy from abstracted trajectories versus complete trajecto-

ries. For each question, participants rated their confidence in

their answers and the question’s difficulty using a 5-point

Likert scale. For questions involving abstracted trajectories,

we also asked participants to rate their usage frequency of the

map and slider views using a 5-point Likert scale.

Upon completing all questions, participants rated the ease

of use and usefulness of the abstracted trajectory interface

on a 5-point Likert scale. Additionally, open-ended questions
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were provided to gather insights on their interpretation and

challenges faced while using the interface of abstracted tra-

jectories.

D. Experimental Setup
The pilot study was entirely conducted online. Participants

used personal laptops or desktops for the task. Window size

was recorded to exclude any who completed the task in

an inadequately small window, though no exclusions were

necessary. The study was approved by our internal IRB and

lasted approximately 45 minutes on average.

E. Participants
We recruited 9 participants (5 male and 4 female) who self-

declared as non-RL experts, aged between 22 and 45 years,

from computer science. The participants rated the familiarity

of the applications used in the study using a 4-point Likert

scale. As shown in figure 6, most participants answered they

have played the game at least once in Breakout and Space

Invaders. For the other games, participants generally reported

low familiarity.

Fig. 6. Participants’ familiarity with applications used in the pilot study, rated
on a 4-point Likert scale.

VI. RESULTS

This section presents the results of our study, encompassing

both quantitative (accuracy) and qualitative (subjective ratings

and responses to open-ended questions) aspects. We applied

Fisher’s exact test (α = .05) for accuracy comparisons and

the Mann-Whitney U test (α = .05) for other comparisons.

A. Quantitative Results
The accuracy comparison between abstracted and complete

trajectories is illustrated in figure 7. Due to some cell frequen-

cies being less than 5, Fisher’s exact test was employed. The

test revealed no statistically significant differences in accuracy

between the two groups.

B. Qualitative Results
1) Confidence and Difficulty of the task: Fig. 8 and 9

display participants’ confidence in their answers and diffi-

culty ratings of the task for both abstracted and complete

trajectories. The Mann-Whitney U test indicated no significant

differences in confidence or difficulty ratings between the two

groups.

Fig. 7. Accuracy Results: No significant differences were observed between
the two groups across all applications.

2) Usefulness of the interface: We gathered comments

and feedback from participants after completing the study.

Participants rated the question “Do you think the trajectory

visualization tool is more useful than watching animations

for performing tasks?” on a 5-point Likert scale and provided

reasons for their ratings.

Most participants found the abstracted trajectory interface

useful (see Fig. 10). However, opinions regarding the map

view were mixed: about half found it generally useful, while

the rest did not. One neutral participant commented, “(I am)

not sure the map is for someone that has never dealt with data

visualization.” A participant who answered disagree suggested

that “it would be nice to visualize nodes in the map with less

cluttered, because tight clusters do not help clarity.” Another

participant who agreed on the rating scale left a positive

comment about the map that “It helps compare and contrast

what is similar and what is not.”

Regarding the slider view, most participants found it helpful

for task performance (see Fig. 10). When asked “What did you

find most useful about the tool over watching the animation?”,

the majority of participants highlighted the slider’s utility. For

example, one participant noted, “The slider was really useful

because it meant you could focus on certain parts of the

animation.” This aligns with the trend of participants using

the slider more frequently than the map, as shown in Fig. 11.

3) Ease of use: We also collected comments about the

interface’s ease of use. Participants responded to “Do you

think the trajectory visualization tool is easy to use?” on a

5-point Likert scale. Additionally, they provided feedback on

a question “What was most difficult to understand from the

visualization tool?”.

Participants were divided on whether the interface was easy

to use, with an equal number of participants saying it was more

or less neutral. Those who found it easy to use commented, ”

It is not easy to use for finding a matching path but easy to

use for eliminating similar paths.” A participant who answered

neutral stated that “(It) was hard to follow the map and at

the same time compare it with the animations”. A participant

who strongly disagreed stated, ”I did not find any purpose
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of using the map. Instead, I just toggled the path number on

the right with the eye icons, then skimmed through the nodes

to compare to the original animation.” Overall, participants

mentioned the ease of use of the map as a criterion for

evaluating the ease of use of the interface.

Fig. 8. Confidence Results: The vertical axis is the rating of 5-point Likert
scale about participants’ confidence on their answer (1 - “Not at all”, 2 -
“Slightly”, 3 - “Somewhat”, 4 - “Fairly” and 5 - “Completely”).

Fig. 9. Difficulty Results: The vertical axis is the difficulty rating of 5-point
Likert scale about the task (1 - “Very easy”, 2 - “Easy”, 3 - “Neither”, 4 -
“Difficult” and 5 - “Very difficult”).

Fig. 10. Usefulness and Ease of Use Results.

VII. DISCUSSIONS

The primary objective of our evaluation was to assess

whether visualizing abstracted trajectories assists non-RL ex-

Fig. 11. Usage Results: The vertical axis shows a 5-point Likert scale rating
of frequency of map and slider use. The slider was used more frequently than
the map for task performance.

perts in forming mental models of agents’ behavior. The pilot

study revealed comparable accuracy scores for trajectory iden-

tification tasks between abstracted and complete trajectories.

Additionally, participants subjectively preferred the interface

of abstracted trajectory. These preliminary findings support

questions Q1 and Q2 from section V-A. However, some users

raised concerns about the map view’s usefulness and ease of

use, indicating a need for improvement in this area. In the

following subsections, we discuss the pilot study results in

relation to questions Q1, Q2, and Q3, and offer suggestions

for enhancing the interface for abstracted trajectories.

A. How well does a user’s mental model obtained from the
abstracted trajectory agree with a mental model obtained from
complete trajectory?

The task accuracies using abstracted trajectories were on

par with those using complete trajectories, suggesting that the

abstraction algorithm effectively distills crucial information

about agents’ behavioral patterns. A participant supported the

effectiveness of the trajectory abstraction by saying that ”You

can see snapshots, you don’t need to wait for the animation

to loop.” Another participant stated the benefit of abstracted

trajectory on the short-term visual memory that ”Being able

to go node by node, frame by frame, to compare the original

animation to the different paths, is a lot easier than having

to watch 6 other animations and comparing it to the original

animation.” This comment emphasizes the advantage in visual

memory that abstracted trajectory visualization allows for at

glance comprehension of state transitions, whereas looking

at complete trajectory necessitates refreshing their short-term

visual memory.

B. Is the trajectory abstraction algorithm able to extract
information that helps users to understand the behavioral
pattern of RL agent?

While discussions on section VII-A suggest that the trajec-

tory abstraction algorithm works to a degree, a participant’s

comment about the need for a ”mental leap” to understand the

state of each game suggests a gap between human intuition and

the algorithm’s abstraction. The discrepancy between machine-

learned spatial information and human conceptual understand-

ing is a well-discussed topic in knowledge abstraction and

representation learning [16], [27]. Designing interfaces that
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bridge these gaps remains a novel challenge in the CHI

domain [31].

Applying models from video summarization in supervised

and transfer learning to trajectory abstraction in RL might

produce results more aligned with human intuition, as these

methods have shown promise in creating condensed versions

of longer videos [2], [8].

C. What insights do users gain from the abstracted trajecto-
ries?

The arrangement of node clusters and trajectory shapes

on the map provided key insights for users in identifying

trajectories similar to an animation. For instance, a user

who analyzed trajectories commented, ”It helps compare and

contrast what is similar and what is not. You can also refer

back and forth to see which one looks more similar and keep

it in mind or uncheck it so that you eliminate it as an option.”

Another user referred to the benefit of the clusters of the nodes,

”clusters that were nicely isolated from others were easier

to focus on finding the ”why are they far away”. Because

they read such information, the map would be a more useful

tool when performing tasks such as grouping similar behavior

patterns of RL agents or counting the number of agents visiting

similar states.

D. Improvements for the Interface

Feedback from the pilot study suggests the need for en-

hanced interaction and organization in the map view. Users

found it challenging to trace trajectories with a mouse cursor.

Implementing a direct manipulation technique designed for

trajectory visualization [15] could allow for more intuitive

navigation. Additionally, reducing node and trajectory overlap,

perhaps through clustering techniques like k-means, would

enhance visibility and encourage more effective use of the

map.

Lastly, emphasizing temporal structures of the trajectory

visualization in the map view may lead to user’s better

understanding for the visualization. Majority of participants in

the pilot study preferred the slider rather than the map. This

may be because the slider, of which nodes align from left

to right based on temporal dependency, facilitates an intuitive

grasp of state transitions. Thus, a visualization incorporating a

branching tree structure could be advantageous for performing

the task.

VIII. LIMITATIONS AND FUTURE WORK

The findings of this paper should be considered preliminary

due to the small sample size of the pilot study. Furthermore,

the participant pool, being solely from a computer science

background, highlights the need for diverse evaluations from

individuals with varied backgrounds. However, the advantage

of our evaluation framework’s online nature presents an oppor-

tunity for employing crowdsourcing methods in future studies

to address these limitations and broaden participant diversity.

IX. CONCLUSION

This paper introduced a novel XAI algorithm for generating

abstracted trajectories from a range of RL agents’ trajecto-

ries and proposed an interface for their visualization, aimed

at helping non-RL experts understand RL agents’ behavior

patterns. We developed an online evaluation framework to

assess the utility of abstracted trajectories for non-RL experts

in forming mental models of agents. The results from our pilot

studies indicate that the interface was effective for non-RL

experts in identifying agent behavior patterns. These studies

also highlighted a preference for the slider over the map

view and provided insightful feedback for further enhancing

the visualization of abstracted trajectories. Future work will

focus on refining the interface and expanding the evaluation

framework to include a broader and more diverse participant

base.
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