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Abstract—Cataract is a leading cause of visual impairment in
the elderly. With a greying population globally, there is a pressing
need to improve the accessibility of cataract screening. Hand-held
Slit-lamp Cameras (HSCs) are often preferred in community eye
screening due to their great portability and accessibility. However,
the image quality from HSCs is generally inferior to that from
conventional bulky fundus cameras. In this paper, we extend
the pre-trained ResNet-18 neural network to analyze a limited
number of HSC images (n=187) for cataract detection. Model
accuracy is improved through augmenting training data samples
and complementing the visual features with patients’ vision
measurements. Explainability (of focal model areas for decision
making) is attained via extracting the saliency maps using the
Grad-CAM method. Our model achieves a high accuracy of 0.96,
on par with state-of-the-art results reported in the literature. Our
approach demonstrates the potential of large-scale community-
based cataract detection using HSCs and our highly accurate
and explainable AI-assisted model.

Index Terms—cataract detection, eye images, hand-held slit-
lamp cameras, AI-assisted community health screening

I. INTRODUCTION

Cataract is the clouding of the human crystalline lens. It is

the most prevalent and treatable cause of visual impairment

and blindness around the globe [1]. Cataract is commonly

caused by aging, disease, trauma, medication, and genetic

predisposition [2]. Thus, it poses a great challenge to all aging

populations including Singapore [3]. Furthermore, because the

cataract progresses slowly and painlessly, patients are often

unaware of its presence, e.g., most Singaporeans above 40

who have significant cataracts in either eye are unaware of

their condition [4]. Generally, the patient is referred to an

ophthalmologist when the cataract has progressed significantly.

This delay in cataract diagnosis may result in diminished

visual quality. Hence, accessible large-scale cataract screening

is essential to detect a cataract in its early stage to stop or

reverse the progression of visual impairment.
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Fig. 1. Two types of cameras often used for cataract evaluation. (a) Fundus
cameras (picture excerpted from [8]) are often used in clinical settings.
(b) Hand-held slit-lamp cameras (picture excerpted from [9]) can be used
in non-clinical settings due to their greater portability and accessibility.

In a typical clinical setting, an ophthalmologist often as-

sesses the patients’ optic nerve and disk using the fundus cam-

era. When the ophthalmologist further checks the existence of

cataract, he/she also evaluates the patients’ visual acuity (e.g.,

Logarithm of the Minimum Angle of Resolution (LogMAR)

Chart [5]) and contrast sensitivity (e.g., Pelli-Robson Contrast

Sensitivity Chart [6]) using eye charts [2]. Expertise is needed

to operate the fundus camera and to compare the patients’

crystal images with the standard graded images such as the

Lens Opacity Classification System III (LOCS III) [7].

Fundus cameras are expensive, bulky and requires expertise

to operate (see Fig. 1(a)). A few prior studies were carried out

to use Hand-held Slit-lamp Cameras (HSCs) as an alternative

(see Fig. 1(b)) to capture images of the patients’ eyes and

subsequently apply various machine learning algorithms to

evaluate cataract (see Section II). The use of HSC enables

more healthcare providers to perform cataract screening in

community settings. However, HSC image quality is generally

much inferior to those taken by fundus cameras (see Fig. 2).

Thus, the accuracy of cataract diagnosis using HSC images is

generally lower than using fundus cameras (see Table IV).

To elevate the accuracy of cataract evaluation using HSC

images towards large-scale screening in community settings,

in this paper, we incorporate two additional procedures into the

general framework, namely (i) data augmentation to alleviate

the problem of having a small dataset and an imbalanced class

distribution, and (ii) fusion of patients’ vision measurements,

i.e., visual acuity and contrast sensitivity, as the peripheral

information with the deep learning computer vision model.
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Fig. 2. The quality of the eye images taken by fundus cameras ((a)&(b), taken
from [10]) is relatively much higher than those taken by slit-lamp cameras
((c)&(d), collected in this study). In general, the slit-lamp images contains the
overexposure of the lamp glare, lack of details, are low in clarity and contrast,
and have inconsistent position, periphery and size of the iris.

Specifically, we select the lightweight ResNet-18 [11] pre-

trained on ImageNet in this work based on preliminary results.

We conduct experiments using own-collected dataset compris-

ing 187 eye images (quite small in size comparing to prior

studies). The results show that our model achieves an accuracy

of 0.96, which is on par with state-of-the-art results reported in

the literature. To further validate the model, we extract saliency

maps to visualize the areas of attention where the model

focuses on while deriving the prediction. The assessment on

these saliency maps provide much transparency to the model’s

dynamics, which is essential to encourage healthcare providers

to adopt our AI-assisted cataract detection model for large-

scale screening in community settings.

II. RELATED WORK

Because the images taken by fundus cameras are of high

quality (see Figs. 2(a) and 2(b)), many pioneer AI-assisted

cataract diagnosis models were developed using fundus im-

ages. Especially after the release of the Ocular Disease Intel-

ligent Recognition (ODIR) dataset in 2019 [10], which com-

prises 5,000 patients’ information and their fundus images of

both eyes (other than cataract, disease labels such as diabetes,

glaucoma, hypertension, etc., are also provided), a series of

studies were conducted using ODIR. Among which, Sudar-

sono et al. [12] fine-tuned AlexNet with the diffGrad optimizer

to achieve an accuracy of 0.975 for cataract detection. Hasan

et al. [13] used the pre-trained InceptionResnetV2 to achieve

an even higher accuracy of 0.982. These studies showcased

the high efficacy of the AI-assisted cataract diagnosis models

trained using fundus images.

Nonetheless, as afore-introduced, it is impractical to use

bulky fundus cameras for cataract detection in non-clinical

settings. Therefore, HSCs were also often used in cataract

diagnosis studies. Liu et al. [14] constructed their own CNN

model to perform cataract detection and grading. It is worth

noting that they focused on pediatric cataracts while all the

other studies mentioned in this paper focus on cataracts in

adults. Their model achieved an accuracy of 0.971 for cataract

detection. Xu et al. [15] first applied Faster R-CNN to locate

the nuclear region and subsequently applied ResNet-101 for

cataract grading. Their model achieved an accuracy of 0.847

for 5-class cataract grading.

Instead of using commercial-off-the-shelf (COTS) HSCs,

a group of researchers attempted to make the hand-held

devices more portable and accessible by developing prototypes

with COTS smartphones integrated. Zhang et al. [16] used

Inception-v3 for cataract detection and achieved an accuracy

of 0.948. It is worth noting that they also collected a dataset

using COTS HSCs and achieved a higher accuracy of 0.959.

Hu et al. [17] employed a combination of YOLOv3, ShuffleNet

and SVM to grade cataracts and achieved an accuracy of 0.935

for three classes. Askarian et al. [18] extracted luminance

and RGB features to train an SVM, achieving an accuracy of

0.966 for cataract detection. Different from all the other studies

mentioned in this paper, Askarian et al. [18] used images of

eye models rather than human eyes.

As aforementioned, due to the inferior quality of HSC

images, models trained using these images generally achieve

a lower accuracy than those trained using fundus images (see

Table IV). Nonetheless, we still focus on HSC images in this

paper because they represent the real-world quality of eye

images acquired in most non-clinical settings.

Surprisingly, these prior studies on cataract diagnosis did
not apply any explainable AI (XAI) techniques to visualize
or explain the model dynamics. We deem such explanations

as critically necessary to provide ‘assurance’ to the medical

professionals. Hence, we analyse the explainability of our

model (see Section IV-D).

III. METHODOLOGY

Same as a number of prior studies [12]–[14], [16], [18], the

key objective of this work is to develop an AI-assisted cataract

detection model that is capable of determining whether a given

eye image has cataract or not. Nonetheless, comparing to prior

studies, our model has the following three innovative aspects,

all novel in the field of image-based cataract detection:

1) Augmentation of limited data samples (from our

infrared-based HSCs). This alleviates the problems of small

data size and imbalanced data distribution in the dataset.

2) Feature complement with patient’s vision measure-

ments, namely visual acuity measured by the LogMar Chart

[5]) and contrast sensitivity measured by the Pelli-Robson

Contrast Sensitivity Chart [6], respectively.

3) Visualisation of the model’s decision process by ex-

tracting the saliency maps using the Grad-CAM method [19].

We deem these three innovative aspects should be adopted
by subsequent studies in this field. Specifically, data aug-

mentation should be applied because this process would save

cost in data collection; vision measurements including visual

acuity and contrast sensitivity should be used because they are

always collected during a standard cataract screening process;
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Fig. 3. The architecture of our cataract detection model.

and the model’s dynamics should be visualized to assess the

rightfulness of the decisions made. In summary, adopting these

three procedures will not lead to any increase in the amount
of effort required for data collection, while at the same time,

they would help to elevate the model performance and
provide the necessary transparency of the model.

The architecture of our cataract detection model is shown

in Fig. 3. As shown, there are five key procedures in our

model, namely (a) image preprocessing and data augmen-

tation, (b) parameter adoption of ResNet-18 pre-trained on

ImageNet, (c) complements with patient’s vision measure-

ments, (d) model fine-tuning, and (e) visualization of the

decision process. We introduce these five key procedures in

the following subsections, respectively.

A. Image Preprocessing and Data Augmentation

We preprocess all the available HSC images as follows:

1) The white space on the image border, if any, is cropped.

2) The contrast of each cropped image is enhanced by ap-

plying the Contrast-Limited Adaptive Histogram Equalization

(CLAHE) [20] technique.

3) The RGB pixel values for all images are normalized

across the dataset towards zero-mean. This step is usually

applied to improve the deep learning model’s convergence.

Thereafter, we generate synthetic samples to deal with the

following two common problems exist in this research field:

Problem 1: The sample size of the collected images is

generally small, which may lead to model underfitting.

Problem 2: The number of healthy eye samples (without

cataract) is generally much smaller than that of cataract

samples, because it is exceptionally uncommon for people

with healthy vision have their eye(s) imaged. Nonetheless,

this imbalanced class distribution may pose challenges to the

classification model.

Specifically, we apply random scaling, random cropping,

random rotation, and random brightness scaling to generate

synthetic samples based on the original ones. In addition, we

purposely apply another round of random rotation (ranging in

[-180◦, +180◦]) to all images in the training dataset. This is

to let the model learn that the visual artifacts (glares and their

reflections) are irrelevant to the presence of cataracts. In the

end, all images are center cropped to the size of 224×224

pixels to fit with the input size of ResNet-18 [11].

B. Adoption of Pre-trained ResNet-18

Because the size of the HSC image datasets is normally

small, we choose not to train a deep learning model from

scratch. In this work, we select ResNet-18 [11] (see Fig. 4)

pre-trained on the ImageNet dataset. As aforementioned, this

selection is based on preliminary results that ResNet-18

achieves competitive performance comparing to larger models

in the ResNet family. In addition, we deem the small model

size will lead to a faster processing speed in future real-world

deployments for cataract screening.

C. Complements with Patient’s Vision Measurements

Patient’s visual acuity and contrast sensitivity are always

measured as part of the cataract detection and grading pro-

cedures. Such measurements can be easily and are often

conducted in non-clinical settings, such as in the spectacles

shops. In our work, we complement the HSC images with

such vision measurements as the model’s inputs, aiming to

elevate the model performance by utilizing the highly relevant,

existing information.

Specifically, we extend the Fully Connected (FC) layer in

the original ResNet-18 (see Fig. 4) with two FC layers (see

Fig. 3). The inputs and outputs of the two FC layers are

described in Table I. Specifically, the patients’ visual acuity
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Fig. 4. The architecture of ResNet-18. As shown, multiple convolutional layers are grouped into convolutional blocks: Conv 1, Conv 2 Conv 3 and Conv 4.

TABLE I
THE TWO FC LAYERS IN OUR MODEL

Layer Input(s) Shape Output

FC 1
Latent visual features from ResNet-18 1×128

1×128Patient’s visual acuity score 1×128
Patient’s contrast sensitivity score 1×128

FC 2 Output of FC 1 1×128 1×2

(measured by LogMAR [5]) and contrast sensitivity (mea-

sured by Pelli-Robson Contrast Sensitivity [6]) are mapped

to vectors with the size of 1×128, respectively. Such mapping

is learned (with batch normalization) by the model (see the

following subsection).

It is worth mentioning that for the augmented images, the

associated vision measurements are adopted from the corre-

sponding original image without any random value alteration.

D. Model Fine-tuning

Because the key objective of our model is to determine

whether cataract exists in the input HSC image with the

complement of patient’s vision measurements, the model

essentially performs binary classifications that 0 represents

the absence of cataract and 1 represents presence. Therefore,

we use the following cross-entropy loss (J(θ)) to train all

learnable parameters:

J(θ) = − 1

N
[

N∑
y log(g(z)) + (1− y) log(1− g(z))], (1)

where θ denotes the set of all learnable parameters, N denotes

the total number of data samples used for training, y denotes

the ground-truth label, z denotes the model inputs, and g(z)
denotes the model output. To speed up the learning process,

we optimize θ using the stochastic gradient descent algorithm.

E. Saliency Maps for Model Dynamics Visualization

To provide transparency on how our model detects the

presence of cataract in an input image, we apply the Grad-

CAM algorithm [19]. Specifically, for each input HSC image,

the gradients flowing into the final convolutional layer of each

convolutional block (see Fig. 4) are used to produce a coarse

saliency map to visualize and examine the attention of the

model (see Section IV-D).

TABLE II
DATASETS USED IN OUR EXPERIMENTS

Dataset Image Type Train Test Total

Baseline
Healthy 14 5 19
Cataract 163 5 168

Total 177 10 187

Balanced-small
Healthy 168 5 173
Cataract 163 5 168

Total 331 10 341

Balanced-large
Healthy 490 5 495
Cataract 489 5 494

Total 979 10 989

IV. EXPERIMENTS

In this section, we first introduce the own-collected dataset.

We then describe how we define the various model config-

urations and set up the experiments. After presenting and

discussing the experimental results, we visualize the saliency

maps extracted from both healthy and cataract images.

A. Own-collected HSC Image Dataset

The study data were collected from Khoo Teck Puat Hospi-

tal (KTPH) and Tan Tock Seng Hospital (TTSH) in Singapore

over the period of Q2 2022 to Q2 2023. After removing

samples with missing patient data, a total number of 187

samples comprising both the HSC images and patient vision

measurements were collated. This dataset is highly imbalanced

where only 19 samples (10.16%) are healthy, while the other

168 samples all have cataracts in varying grades.

B. Model Configurations and Experimental Set-ups

Because the key objective of this study is to develop an

AI-assisted cataract detection model for future deployment

in community settings, we focus on the binary classification

problem to determine whether a sample has the presence

of cataract or not. Nonetheless, to alleviate the problem of

having a highly imbalanced class distribution, we generate

two augmented datasets following the steps introduced in

Section III-A. As shown in Table II, the Baseline dataset

only comprises the original 187 samples. For the Balanced-

small dataset, we only augment the healthy class to make the

class distribution (almost) equal, while for the Balanced-large

dataset, we augment both classes to have a larger dataset. It is

worth mentioning that the augmented samples are generated

independently for the latter two datasets.
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TABLE III
PERFORMANCE OF OUR CATARACT DETECTION MODEL

Configuration Dataset Accuracy F1-score Sensitivity Specificity

image-only
Baseline 0.740 ± 0.058 0.795 ± 0.041 0.960 ± 0.036 0.520 ± 0.122

Balanced-small 0.890 ± 0.035 0.892 ± 0.032 0.900 ± 0.053 0.880 ± 0.077
Balanced-large 0.925 ± 0.042 0.928 ± 0.040 0.940 ± 0.050 0.910 ± 0.072

image+metadata
Baseline 0.845 ± 0.048 0.863 ± 0.040 0.950 ± 0.056 0.740 ± 0.103

Balanced-small 0.905 ± 0.039 0.905 ± 0.037 0.900 ± 0.053 0.910 ± 0.072
Balanced-large 0.960 ± 0.039 0.959 ± 0.041 0.960 ± 0.046 0.960 ± 0.036

TABLE IV
PERFORMANCE COMPARISONS WITH PRIOR STUDIES (MODELS RANKED BY ACCURACY)

Study Year Image type Sample size Model Accuracy Remarks
Hasan et al. [13] 2021 fundus 1,088 InceptionResNetV2 0.982 Using images selected from ODIR [10]
Sudarsono et al. [12] 2020 fundus 200 AlexNet 0.975 Using images selected from ODIR [10]
Liu et al. [14] 2017 HSC 886 CNN 0.971 Focused on pediatric cataract

Askarian et al. [18] 2021 HSC 100 SVM 0.966
Using own HSC prototype and eye models;
Using extracted luminance and RGB features

Ours 2024 HSC 187 ResNet-18 0.960 Image augmentation + vision measurements
Zhang et al. [16] 2020 HSC 2,516 Inception-v3 0.948 Using own HSC prototype

The size of the Baseline dataset is small, especially because

it only has 19 healthy samples. Therefore, instead of splitting

the samples with a consistent ratio into the train and test

subsets, we maintain a consistent size of the test subset. Specif-

ically, for all experiments, we always keep five samples from

each class in the test subset while use all the other samples for

training. It is worth highlighting that the samples in the test

subset are all the original ones without augmentation and for

all samples selected in the test subset, their correspondingly

augmented samples, if any, are excluded from the train subset.

These precautions are implemented to ensure there is no data

leakage between the train and test subsets.

To remove the random effects, for each experiment setting,

we report the averaged performance with standard deviations

(std) across 20 independent runs.

In addition, to evaluate the effectiveness of having the

complements of patient’s vision measurements, we conduct

an ablation study to examine the performance of our model

without taking in the vision measurements as inputs. We refer

to the former configuration as image+metadata and the latter

as image-only. Specifically, for the image-only configuration,

instead of the two FC layers (see Table I), we adopt the original

single FC layer of ResNet-18 (see Fig. 4).

C. Experimental Results

The experimental results are presented in Table III. It is

not surprising to see that the image+metadata model trained

on the Balanced-large dataset achieves the best performance

across all performance metrics. Moreover, the image+metadata

model is shown as outperforming the image-only model, show-

casing the effectiveness and importance of the complement

of patient’s vision measurements. Furthermore, it is observed

that with the increase of the dataset size, the performance of

both models generally improves, showcasing the effectiveness

and importance of image augmentation. Specifically, with the

augmentation of more and more healthy samples, both models’

specificity keeps improving.

Because all HSC image datasets used and the models

constructed in prior studies were not made publicly available,

it is not viable to make fair comparisons using the same

dataset. Alternatively, we compare the performance of our

model against the prior studies’ results on cataract detection

(binary classification on the presence of cataract) simply using

their reported model performance while listing the contex-

tual information in Table IV. Although our model comes in

second last in terms of accuracy among the six compared

in Table IV, its performance is still competitive especially

among the studies using HSC images. The top-two models

[13], [12] used high-quality fundus images (see Fig. 2) that

let them outperform the rest. The third model [14] used a

larger dataset with a balanced class distribution (476 healthy

and 410 cataract). The fourth model [18] used eye models to

take high-quality images with an equal class distribution. As

such, considering all these factors that greatly affect the model

performance, we deem ours achieves the same level of high

performance as these state-of-the-art prior studies.

D. Using Saliency Maps to Visualize Attention

Using the best-performing model trained on the Balanced-

large dataset, we extract saliency maps of all the original

images for visualization of the model’s attention (see Sec-

tion IV-A). In Fig. 5, we present the saliency maps extracted

from two randomly selected images: one with cataract (patient

ID: A031, right eye) and one healthy sample (patient ID:

K009, right eye). These two sets of saliency maps well demon-

strate the model’s attention at different depth. Specifically, at

the relatively shallower layers (i.e., Conv 1 and Conv 2, see

Fig. 4), the model pays more attention to the specific and

scattered regions, e.g., the small regions brightened by the

HSC and around the peripheral; while at the deeper layers
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Fig. 5. Saliency maps extracted from two randomly selected images. The
red regions indicate where the model’s attention lies the most, the black
regions indicate where the model’s attention lies the least, while the other
colors interpolate the level of attention in between.

Fig. 6. The saliency maps averaged from all the cataract, healthy and
combined (both classes) images in the original dataset, respectively. These
saliency maps are rescaled to elevate the contrast for better visual assessment
on the areas with the most attention.

(i.e., Conv 3 and Conv 4), the model pays more attention

to the abstract and connected regions, e.g., the large regions

around the centerline of the iris. Such observations are con-

sistent across most saliency maps that cataracts are generally

identified at either Conv 3 or Conv 4 (for A031, the most

noticeable part of the cataract is accurately identified in the

bottom-right quadrant at Conv 3), while for healthy eyes, the

attention is generally spread out at Conv 3 and Conv 4 (see

Conv 4 of K009).

Furthermore, to provide a visualized overview of all the ex-

tracted saliency maps, we average them at each convolutional

block according to the images’ class labels and present the

averaged results in Fig. 6. As shown, there is little difference

between the three sets of averaged saliency maps, suggesting

our model has a consistent focus. The HSC glare and the

outline of the iris are clearly visible at Conv 1, while they

get blurred at Conv 2 and Conv 3. The area of attention at

Conv 4 is enlarged and centers around the centerline of the

iris with no specific focus.

Observations from both Figs. 5 and 6 suggest that our

cataract detection model successfully emulates how an oph-

thalmologist checks the various regions of an eye step-by-step

to arrive at the final decision.

V. CONCLUSION

This study shows that our AI-assisted cataract detection

model using HSC images has high accuracy and explainability

(for transparency of the decision process). It may potentially

be deployed for large-scale cataract detection in communities.

Going forward, we plan to 1) develop own hand-held

cameras to capture high-quality images and 2) automate the

screening procedures towards real-world deployments.
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