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Abstract—Automatic and accurate fetal brain segmentation is
essential for congenital disease diagnosis and treatment. However,
voxel-wise manual annotation is laborious, and the annotation
quality strongly depends on the annotator’s professional knowl-
edge and clinical experience. This problem contradicts the data-
hungry nature of deep learning, especially for medical image
segmentation. To reduce the consumption of annotation, in this
paper, we propose a novel active semi-supervised algorithm
for fetal brain tissue segmentation that incorporates the active
learning techniques into semi-supervised methods to minimize
labeling costs. Specifically, we present a new active learning
selection strategy that leverages the global uncertainty variation
of a sample to measure its informativeness and adaptively adjust
the time to perform active learning according to the learning state
of the network. Furthermore, we design a non-parameter pool
attention (PA) module to refine the prediction of the model and
resist noise effectively. In addition, we introduce symmetric soft
cross entropy (SSCE) loss as an unsupervised loss function to
resist noise further. Extensive experiments on two fetal brain
tissue segmentation datasets demonstrate the effectiveness of
our model, outperforming state-of-the-art approaches. Associated
codes can be accessed at: https://github.com/Dreamer1209/ASL.

Index Terms—active learning, semi-supervised learning, global
uncertainty, noise resistance, medical image segmentation

I. INTRODUCTION

Congenital diseases are one of the leading causes of neona-

tal death worldwide [1], [12], [13], [40]. In order to detect

and treat congenital disorders, antenatal maternal and fetal

health care is paramount. Fetal ultrasound imaging has been an

essential tool in prenatal care for many years [2]. And in recent

years, fetal magnetic resonance imaging (MRI), especially of

the brain, has emerged as an essential complementary tool

to provide information on fetal development [3]–[5]. This

advanced imaging technique enables more precise segmen-

tation and analysis of fetal brain structures, enhancing our

capability to detect, comprehend, and precisely diagnose con-

genital anomalies [6]. Therefore, the development of automatic

segmentation methods for infant brain tissue, leveraging MRI

data, is vital for the accurate diagnosis and effective treatment

of congenital diseases.

Recently, deep learning methods have achieved remarkable

success in medical image segmentation tasks [14]–[19], [27]–

[29], but most of them rely on a large number of pixel (voxel)-

wise annotations [7]. However, due to the rapid changes in

fetal brain anatomy and the lack of growth data for many

pathological and congenital diseases, the training data is

Fig. 1. Depicting the process of Semi-Supervised Learning (SSL) integrated
with an active learning strategy. Duing active learning phase, active learning
component efficiently identifies and selects the most informative samples and
strategically moved from the unlabeled dataset into the labeled dataset.

limited. On the other hand, the corresponding annotations are

extremely time-consuming and labor-intensive, and labeling

accuracy depends heavily on annotators’ clinical experience

and expertise, especially for pixel (voxel)-wise images.

To alleviate the heavy reliance on annotations, semi-

supervised learning (SSL) is arguably one of the most fea-

sible solutions [8], which leverages a few labeled and a

large number of unlabeled samples to improve segmentation

performance that approximates or exceeds fully supervised

training. To connect labeled samples with the unlabeled ones

in the feature space, existing SSL methods use three strategies

for learning the representations of unlabeled samples, i.e.,

consistent learning, adversarial learning, and self-supervised

learning. Nevertheless, each strategy has its own drawbacks.

Consistent learning encourages the network to produce con-

sistent predictions for different perturbations of the same

sample [9], but its performance is limited by the adaptation

of the perturbation methods. Adversarial learning leverages a

discriminator to distinguish the authenticity of segmentation

results [10]. However, it is difficult to train and sensitive

to hyperparameters settings. Self-supervised learning converts

model predictions into pseudo labels and treats them as

guidance to train the model [11]. Nevertheless, it suffers from

pixel (voxel) indecipherable, class imbalance, and insufficient

label information problems, resulting in unrobust predication.

Instead of designing a sophisticated representation learning

strategy, we aim to assist human experts in annotating the

most effective samples for facilitating the training of SSL.

Motivated by active learning (AL) [24], [25], which involves
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human in the loop to select the most informative samples to

maximize model performance with minimal labeling cost, we

integrate active learning into the SSL process and resolve its

shortcomings. The procedure is illustrated in Figure 1.

In this paper, we present a novel semi-supervised algo-

rithm with active learning and pseudo-label noise resistance

technology. Our method focuses on selecting samples for

human annotation by utilizing global uncertainty variation

as informativeness measurement. Specifically, we discover

that the samples with lower uncertainty variation contain

richer information and design an uncertainty memory bank to

store the global uncertainty of unlabeled samples during the

past training process. We select the sample with the lowest

uncertainty fluctuation to annotate and migrate it from the

unlabeled pool to the labeled pool. Furthermore, to prevent

the network from overfitting the labeled data, we utilize the

mean intersection of union (mIoU) between the network’s

predictions and the corresponding labels (pseudo labels) to

decide when to perform active learning. In addition, we

propose a new pool attention (PA) which is a parameter-

free module to improve the model prediction provided by the

teacher model. To further resist noise, we introduce the soft

symmetric cross entropy (SSCE) as unsupervised loss function

and leverage the predicted probabilities as soft pseudo labels

instead of using pseudo hard labels.

Our contributions can be summarized as follows:

• We propose an advanced semi-supervised algorithm for

fetal brain tissue segmentation and leverage active learn-

ing and pseudo-label noise resistance on mean-teacher

framework, which offers easy implementation and archi-

tecture versatility.

• We present a new active selection strategy that leverages

global uncertainty variation of samples to measure its

informativeness and propose to utilize the learning state

of the network to adjust when to engage the active

learning dynamically.

• To resist noise and improve pseudo label quality, we

design the pool attention module to refine the prediction

and employ optimized symmetric cross entropy to resist

noise.

• Extensive experiments on two public fetal brain tissue

segmentation tasks demonstrate the effectiveness of the

proposed method.

II. RELATED WORKS

A. Semi-supervised Medical Image Segmentation

Recent years have seen a surge in interest towards semi-

supervised learning (SSL) as a means to reduce annotation

costs, enhancing model performance through the combined

use of labeled and unlabeled data in network training. Broadly,

SSL algorithms in this domain fall into three categories: adver-

sarial learning-based [14]–[17], [26], consistency-based [18]–

[23], and self-supervised learning-based approaches [27]–[31].

Consistent-based and self-supervised learning based ap-

proaches are domain SSL methods in medical image process-

ing. Li [22], [23] proposed TCSM (v2) algorithms for medical

image segmentation tasks which introduced transformation-

consistent strategy to enhance the regularization effect for

pixel-level predictions. MCNet [20] encourages mutual con-

sistency with cycled pseudo label scheme over two decoders.

Another line of consistency-based methods are to enforce

task-consistency [14], [21]. Self-supervised learning based

approaches estimate the pseudo labels for unlabeled samples

training and the key of this method is ensuring the qual-

ity of the pseudo labels. In medical scenarios, MPCT [30]

estimates reliable pseudo labels by performing consistency

among multiple planes for multi-organ segmentation. Sajjadi

[31] presented an SSL algorithm that utilized proportional

labels as weakly supervised information and generated pseudo

labels for unlabeled data by negative label learning in training

stage, which sift noisy labels with auxiliary information.

However, existing self-supervised learning approaches still

suffer from the challenges of noisy pseudo-labeling, low data

utilization and class bias (class imbalance task). In our paper,

we delve into a self-supervised learning method based on the

mean teacher framework. To combat noise, we introduce a

novel component, pool attention (PA) to enhance pseudo label

quality, and employ soft symmetric cross entropy (SSCE) to

address key issues in self-supervised learning.

B. Uncertainty Estimation

Uncertainty estimation evaluates how uncertain an AI sys-

tem is in its predictions and is introduced into semi-supervised

image segmentation tasks. For example, Yu [18] filtered out

the unreliable prediction with the guidance of the estimated

uncertainty of the teacher model. Xia [29] further proposed

uncertainty-aware multi-view co-training framework, which

integrated each view’s uncertainty estimation to achieve accu-

rate labeling. In this paper, we leverage the global uncertainty

variation of a sample as the sample’s uncertainty estimation

to measure its informativeness.

C. Active Learning

Active learning (AL) aims to work with minimal labels

while maximizing the model’s performance, in other words,

seeking the smallest subset of data that responds to the

entire data distribution. In recent years, many researchers have

incorporated active learning into semi-supervised algorithms

for selecting information-rich samples from unlabeled data

(samples near clustering boundaries, representative samples in

the space of unlabeled distributions). TOD [24] estimates the

sample loss by evaluating the discrepancy of outputs given

by models at different optimization steps to select informative

unlabeled samples. BoostMIS [25] found informative samples

as annotation candidates using virtual adversarial perturbations

and the density-aware entropy of the model. In our work, we

utilize global uncertainty variation of the unlabeled samples

to select informative samples. To insert newly annotated data

at an appropriate time, we leverage the average intersection

(mIoU) between the network’s predictions and the correspond-

ing labels (pseudo labels) to adjust when to perform active

learning automatically.
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Fig. 2. Overview of our proposed model. ζ and ζ′ are two data augmentation methods, θ and θ
′

correspond to the parameters of two structurally identical

models: the student model and the teacher model, where θ is updated by backpropagation algorithm and θ
′

is updated by the exponential average movement
(EMA) of θ, x, p, p̃ and y represents input data, model prediction, refined model prediction and segmentation ground truth respectively. The model is initially
trained with a small amount of labeled data and leverages mean-teacher structure to perform semi-supervised learning. During the training process, model
will actively select the most informative samples for labeling based on unsupervised prediction. These newly labeled samples are utilized to update the model,
and the model iteratively continue this process to improve model performance.

III. METHODOLOGY

A. Preliminary Definitions

In the medical image segmentation task, we define the

training set includes L labeled samples and U unlabeled

samples (L � U ). Dl = {(xi, yi)}Li=1 and Du = {(xi)}Ui=1

indicates labeled data set and unlabeled data set respec-

tively, where xi ∈ R
H×W×D×1 denotes the input volume

and yi ∈ {0, 1}H×W×D×C
is the corresponding voxel-wise

ground truth.

B. Network Overview

We propose a novel semi-supervised algorithm by introduc-

ing active learning and noise resistance technologies based

on mean teacher framework, as illustrated in Figure 2. For

a labeled input xl, the student model is trained by utilizing

a supervised loss between the prediction pl and its corre-

sponding ground truth yl. For an unlabeled input xu, we

feed the input into student and teacher model with different

augmentations and employ the teacher’s prediction to guide

student model learning. To resist noise, we present a pool

attention (PA) module to refine the prediction of teacher

model and introduce symmetric soft cross-entropy (SSCE) loss

to calculate unsupervised loss between student and teacher

prediction. In addition, we present a new active learning

strategy, which records the variation of the global uncertainty

to measure the informativeness of the sample. Moreover, we

utilize the prediction mean intersection of union (mIoU) value

to adaptively adjust when to engage in active learning until

the workforce is depleted.

C. Active Learning via Global Uncertainty Variation

To improve data utilization efficiency, we integrates Ac-

tive Learning (AL) into semi-supervised fetal brain tissue

segmentation by assessing the informativeness of unlabeled

samples via global uncertainty variation. Our approach tracks

the training process from uncertainty to certainty and utilize

the training variations as a function to select volumes for an-

notation. We calculate this variation by storing each sample’s

global uncertainty in a memory bank, then computing the

prediction of model p, the volume i voxel-wise entropy. Next,

we simply utilize the mean value of the entropy as the global

uncertainty, which can be formulated as:

H(i,j)
t = −

C∑
c=1

p
(i,j,c)
t log p

(i,j,c)
t , U i

t =
1

N

N∑
j=1

H(i,j)
t (1)

Here, Ht(i,j) represents the entropy of the j-th voxel in volume

i at step t, with C being the number of classes and N the total

voxel count per sample. The calculated global uncertainty U i
t

is then stored in the memory bank based on a first-in-first-out

principle. Then we assess the variation in global uncertainty

for each sample using the uncertain variance, defined as:

Vi =
1

K
×

K∑
k=1

(U i
t − Ū i)2 (2)

where K is the memory bank size and Ū i is the mean of U i
k

Lastly, the acquisition function A∗ is that:

A∗ = minλ

{V1,V2, ...,VU
}

(3)

where λ is the number of actively annotated samples and U
is the size of the unlabeled pool. The samples with minimum
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uncertain variance is selected due to the consideration that

the smaller the uncertainty variation of the sample, the richer

the information it contains because the training process of

the network is the process of classifying the sample from

uncertainty to certainty. The selected samples are transferred

from the unlabeled to the labeled pool for annotation.
When to perform active learning is critical to the training

of the model. If it performs too early, the model has not

yet learned enough about the labeled data. If it performs too

late, there is a risk of overfitting. Inspired by [39] which

demonstrated that the training mIoU increases rapidly during

early learning stage and rises slowly during memorization

stage. We propose to utilize the mIoU between predictions

and its corresponding labels or pseudo labels as guidance

to estimate the turning point. Specifically, we firstly fit the

following mIoU function with exponential function using least

square error:

f(t) = a
(
1− e−b·(t−d)c

)
(4)

where t represents training period and 0 < a ≤ 1, b, c, d ≥ 0
are fitting parameters. Then, we leverage the derivation f ′(t)
relative variation with respect to start training time to measure

the turning point where mIoU function starts to ascent slowly:

|f ′(t)− f ′(s)| > r|f ′(s)| (5)

where r represents a predetermined threshold, and s is the

training commencement point. Through experiments, we ob-

serve that when active learning is performed, there is a drop in

the mIoU function and then it continues to rise. In response to

this phenomenon, we adapt our approach by refitting the mIoU

function after each round of image annotation, utilizing the

newly obtained mIoU values. This process will iteratively fit

the mIoU function and estimating an optimal point for active

sample addition, until reaching the maximum active annotation

samples.

D. Pool Attention
In our semi-supervised learning method, the prediction

quality of teacher model is crucial since it guides the student

model’s unsupervised learning process. However, the predic-

tion of teacher model may be biased and inaccurate. Since

pooling operator can make each token averagely aggregate its

nearby token features and achieve excellent performance [38],

we propose a non-parameter pool attention (PA) module to

refine the prediction of teacher model. It conducts an average

pooling operation based on the model class-wise prediction

to mix the prediction of each class in adjacent domains. In

medical image, tissue appears in groups, indicating that each

voxel has at least one of its neighbors belonging to the same

class. So average pooling operation in each class channel

prediction can effectively extract domain attention and resist

noise. The pipeline of PA is shown in Figure 3. Specifically,

given the prediction of teacher model, we first conduct voxel-

wise matrix multiplication with its average pooling output.

And the final refined prediction is the matrix multiplication

between normalized average pooling attention and the initial

prediction.

Fig. 3. Overview of our proposed Pool Attention. Norm is z-score normal-
ization method on every class channel and dot-product is applied to calculate
voxel-wise attention.

E. Objective Functions

The objective function Ltotal of optimization consists of

two components: supervised loss Lsup and unsupervised loss

Lun, where Lsup is composed of cross entropy (CE) and dice

loss (dice) and Lun is symmetric soft cross-entropy (SSCE)

loss.

Ltotal = Lsup + τLun (6)

where τ is the weighting factor, in our experiments, the τ is a

gaussian ramp-up curve [44], i.e., τ(t) = s ∗ e−5(1−t)2 , where

t is the training epoch as s scales the maximum value of the τ
which is set to 0.5. Lsup is composed of a linear combination

of cross entropy Lce loss and dice loss Ldice [41] and it can

be formulated as:

Lce = − 1

C
×

C∑
c=1

yls(c) log
(
pls(c)

)
(7)

Ldice =
1

C
×

C∑
c=1

(1− 2
∑N

i=1 y
l
s(c)p

l
s(c)∑N

i=1 y
l
s(c) + pls(c)

) (8)

where N is the total number of voxels in a sample and C

is the number of class. And the supervised loss Lsup can be

calculated by:

Lsup = μLce + ηLdice (9)

where μ and η is the weight factor which are both set to 0.5

in our experiments.

Considering that for noisy pseudo labels, the class-wise test

accuracy varies significantly across different classes, and it

is difficult for the network to learn difficult classes when

using cross-entropy loss [43]. Due to the high similarities

in representations between certain classes, the predictions for

hard class examples are likely to assign a relatively large

probability to those similar classes. Therefore, a simple cross-

entropy loss is not sufficient for learning our task. In this paper,

we propose a symmetric soft cross-entropy (SSCE) loss as

unsupervised loss to exploit soft pseudo-labels to resist noise,

which can be expressed as:

Lun = αLsce(p
u
s | p̃ut ) + βLsce(p̃ut | pus ) (10)

where α and β are two adjustable hyper-parameter and set

to 0.1, 1, respectively. p̃ut and pus represents refined teacher

prediction and student prediction with soft label. The soft cross

entropy loss Lsce can be defined as follows:

Lsce(p
u
s | p̃ut ) = − 1

C
×

C∑
c=1

pus (c) log p̃
u
t (c) (11)
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TABLE I
DICE SCORE COMPARISON AMONG OUR METHOD AND OTHER RIVALS ON

THE FETA1 DATASET WITH UNET-3D BACKBONE. ’MDC’ INDICATES THE

AVERAGE OF THE CLASS DICE SCORE.

Method L ECF[%] GM[%] WM[%] Ven[%] Cer[%] DGM[%] Bra[%] mDC[%]

UNet-3D 60 80.12 72.64 90.83 83.74 87.23 84.26 81.80 82.95

SupOnly

6

75.29 66.21 85.38 70.07 73.80 71.20 70.22 73.17
UA-MT 74.39 65.45 87.08 66.42 76.01 71.45 71.92 73.24
TCSM 74.31 64.54 86.57 68.16 77.62 72.15 72.49 73.69
DTC 75.68 66.64 87.33 69.55 81.04 74.27 70.05 74.97
CPS 75.62 66.88 85.45 70.33 78.50 74.58 71.13 74.64

Ours 6 75.30 67.15 86.62 77.73 79.41 74.13 70.37 76.34

SupOnly

12

75.28 65.38 87.09 69.86 76.09 73.68 72.58 74.28
UA-MT 75.26 71.05 87.58 75.33 81.06 78.63 74.48 77.63
TCSM 75.64 68.95 88.65 75.59 83.02 77.73 73.73 77.62
DTC 75.32 70.76 89.05 79.28 83.58 80.15 73.26 78.77
CPS 75.64 71.39 89.17 79.92 84.25 79.96 75.17 79.36

Ours 12 79.27 72.26 89.02 82.26 85.06 80.04 80.19 81.16

TABLE II
DICE SCORE COMPARISON AMONG OUR METHOD AND OTHER RIVALS ON

THE FETA2 DATASET WITH UNET-3D BACKBONE. ’MDC’ INDICATES THE

AVERAGE OF THE CLASS DICE SCORE.

Method L ECF[%] GM[%] WM[%] Ven[%] Cer[%] DGM[%] Bra[%] mDc[%]

UNet-3D 30 78.74 68.56 84.05 73.34 78.16 75.44 68.53 75.26

SupOnly

3

34.51 26.54 37.18 27.85 2.71 35.24 8.41 24.63
UA-MT 39.37 29.24 24.39 19.32 5.71 34.89 7.31 26.92
TCSM 40.04 30.14 44.55 31.79 6.54 32.41 9.01 27.78
DTC 40.17 31.62 49.53 37.99 2.01 35.99 6.22 29.08
CPS 42.56 36.43 42.83 32.08 11.92 31.25 13.79 30.12

Ours 3 48.26 37.24 55.93 45.69 6.95 33.36 14.11 34.51

SupOnly

6

53.91 43.93 60.99 33.26 19.47 54.11 39.53 43.60
UA-MT 63.43 53.61 71.56 54.63 33.70 54.40 46.03 53.62
TCSM 67.52 54.04 68.44 46.25 53.82 56.38 48.37 56.40
DTC 65.20 58.31 74.48 60.15 38.60 66.72 49.85 59.05
CPS 67.62 59.01 73.67 64.23 44.38 63.23 51.47 60.52

Ours 6 73.48 65.23 80.54 70.42 56.55 69.92 62.01 68.31

IV. EXPERIMENT

A. Datasets

Extensive experiments were conducted to evaluate our

proposed algorithm on two public fetal brain tissue MRI

datasets using UNet-3D and VoxResNet as backbone.

FeTA1 dataset. The first dataset was Fetal Brain Tissue

Annotation and Segmentation Challenge released in 2021 [35]
1, which included 80 T2-weighted fetal brain reconstructions

with the corresponding label map that was manually

segmented into 7 different tissues, with an in-plane resolution

of 0.5mm × 0.5mm, and a slice thickness of 3 to 5 mm. In

our experiments, we used 60 scans for training and 20 scans

for validation. In active learning experiments, we random

select 3 training samples as initial labeled samples in our

work.

FeTA2 dataset. The second was Fetal Tissue Annotation

Challenge released in 2022 [35] 2, which collects 40 T2-

weighted fetal brain reconstructions with the corresponding

ground truth from four different sites. For FeTA2, we used

30 scans for training and 10 scans for validation. In active

1https://feta.grand-challenge.org/
2https://feta.grand-challenge.org/feta/

TABLE III
DICE SCORE COMPARISON AMONG OUR METHOD AND OTHER RIVALS ON

TWO DATASETS WITH VOXRESNET BACKBONE. ’MDC’ INDICATES THE

AVERAGE OF THE DICE SCORE. ’MHD’ DENOTES THE AVERAGE OF THE

95HD.

Dataset Method L mDC [%] mHD[%] L mDC[%] mHD[%]

FeTA1

SupOnly 60 83.80 3.91 - - -

SupOnly
6

74.03 15.75
12

74.49 10.83
CPS 75.47 10.59 79.83 6.83
Ours 77.33 6.98 81.80 4.60

FeTA2

SupOnly 30 78.64 2.45 - - -

SupOnly
3

24.03 17.85
6

52.58 8.60
CPS 34.76 16.22 62.52 6.67
Ours 40.10 13.94 69.75 4.88

learning experiments, we randomly select 1 training sample

as our work’s initial labeled sample.

B. Implementation Details

Environment. All experiments in our work are imple-

mented in Pytorch 1.9.0 and conducted under python 3.7

running on a NVIDIA GeForce RTX 2080Ti.

Backbone. In our experiments, we used UNet-3D [32] and

VoxResNet [33] as the backbone for all experiments.

Training details. The network was trained by an SGD

optimizer for 4k iterations, with an initial learning rate

0.01 and updated by max(initial learning rate ∗ (1 −
iter num/total iter)0.9, 1e−8). The batch size was 4 (2

labeled and 2 unlabeled). To avoid overfitting and mine more

unseen information, we applied weak-strong augmentation

strategy in our experiments. Specifically, we applied random

crop, random flip and random rotate as weak augmentation

(ζ ′) and RandAugment [34] as strong augmentation (ζ). We

randomly cropped 96 × 96 × 96 sub-volume as the network

input and used a sliding window strategy to obtain the final

results with a stride of 16× 16× 16.

Evaluation metrics. The segmentation targets include 7

classes (except background) in our experiments, i.e. External

Cerebrospinal Fluid (ECF), Grey Matter (GM), White Matter

(WM), Ventricles (Ven), Cerebellum (Cer), Deep Grey Matter

(DGM) and Brainstem (Bra). We respectively used dice (DC)

and the 95% hausdorff distance (95HD) to quantitatively

evaluate our method.

C. Comparison with SOTA Methods

In our study, we evaluated our semi-supervised learning

(SSL) segmentation method against both fully-supervised

approaches and four state-of-the-art SSL methods: the

uncertainty-aware mean teacher model (UA-MT) [18], the

transformation-consistent self-ensembling model (TCSM)

[22], [23], the dual-task consistency method (DTC) [21], and

the cross pseudo supervision strategy (CPS) [36]. All compar-

isons were conducted under identical experimental settings.

Results on the FeTA1 dataset, as shown in Table I, indicate

that our model generally surpasses its competitors in terms of
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Fig. 4. Visual comparison with different state-of-the-art methods on two dataset2 with the unet 3D as backbone under 20% labeled sample. To better visualize
the segmentation results, we only show one slice in one voxel.

TABLE IV
STATISTICAL COMPARISON OF OUR ABLATION STUDIES ON TWO

DATASETS WITH 20% LABELED SAMPLES. ’MDC’ INDICATES THE

AVERAGE OF THE DICE SCORE. ’MHD’ DENOTES THE AVERAGE OF THE

95HD.

Method
FeTA1

UNet-3D VoxResNet

mDC[%] mHD[%] mDC[%] mHD[%]

baseline 74.28 10.74 74.49 7.70

baseline+AL 78.58 6.15 79.31 6.54

baseline+PA 80.37 6.27 80.61 5.53
baseline+SSCE 79.92 5.05 80.22 4.87
baseline+PA+SSCE 81.16 4.85 81.80 4.60

dice score. This superiority is further illustrated in the upper

two rows of Figure 4, which provide visual comparisons and

highlight our method’s enhanced segmentation capabilities.

Similarly, on the FeTA2 dataset, our method consistently

outperforms others, as evidenced in Table II. In particular,

the experimental results demonstrates our method’s robust

performance even with limited labeled data. The bottom two

lines of Figure 4 offer additional visual comparisons, further

underscoring the effectiveness of our approach in achieving

superior segmentation results.

More experiments. To further verify the proposed algo-

rithm’s superiority, we conducted comparative experiments on

different backbones. As shown in Table III, our method can

still achieve better segmentation results than competitors under

different backbones on both datasets.

D. Ablation Studies

To evaluate the effectiveness of components in the pro-

posed method, we conducted the following ablation studies on

FeTA1 datasets with two different backbones (UNet-3D and

VoxResNet). The extensive ablation study results were shown

in Table IV, demonstrating each component’s contribution.

In our ablation studies, we defined the model trained over

labeled data with only supervised loss as the ’baseline’.

Except for ’baseline’, all ablation experiments are conducted

in active learning manner. ’baseline+AL’ denoted that we

select the most informative samples from the unlabeled pool

for annotating during network training and add them to the

labeled samples training process. For adding sample points,

we estimate the growth of the mIoU curve to choose adding

points. ’PA’ was the proposed pool attention module leveraged

to refine the prediction of the teacher model. ’SSCE’ was the

proposed softly-symmetrical cross entropy for resisting noisy

pseudo labels. In Table IV, the experimental statistical results

clearly demonstrated the effectiveness of ’PA’ and ’SSCE’, and

the combination of the two owns better performance.

V. CONCLUSION

In this paper, we explore the potential of active annotations

in semi-supervised fetal brain tissue segmentation task. We

propose a novel SSL segmentation algorithm based on mean

teacher framework with active learning and pseudo-label noise

resistance. Specifically, we present an actively select strategy

that leverages the global uncertainty variation of the teacher

model to measure the information of unlabeled samples.

Furthermore, we utilize the mIoU value between student model

prediction and ground-truth labels/pseudo-labels to adjust the

timing of performing active learning adaptively. In addition,

we further present a parameter-free pooling attention (PA)
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module to resist noise and improve model prediction qual-

ity and introduce a symmetric soft cross-entropy (SSCE) as

unsupervised loss to resist noise. The quantitative comparison

experiments and ablation studies based on two public fetal

brain datasets demonstrate the superior performance of the

proposed algorithm.
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