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Abstract—Current data augmentation methods for change
detection utilize fixed strategies to produce image samples without
considering the specificity of the change image pairs. In this
paper, we propose ADAAUG, a new reinforcement learning
framework that adaptively augments the change image pairs. An
actor selects the best augmentation operation from the operation
set according to the image pair. The augmented image pairs make
the change detector easier to learn the optimal parameters and
improve the final detection performance. Besides, we propose
a mask guided mixing customed for change detection data
augmentation, which mixes the change regions of the current
training sample based on the prediction results and labels to
generate high-quality samples with more positive samples. The
extensive experiments on the standard benchmarks show that
ADAAUG achieves favorable performance compared to SOTA
data augmentation methods.

Index Terms—Change detection, data augmentation, reinforce-
ment learning

I. INTRODUCTION

Data augmentation is a widely used strategy to increase the

diversity of training data, which improves the model gener-

alization for image classification [1]–[4] and object detection

[5]–[7].

Unlike image classification and object detection, change

detection identifies object changes from background changes

in two images captured in the same scene over a long time

span. Directly utilizing data augmentation methods for image

classification or object detection for change detection fails

to capture the specificity of the change image pairs, such as

temporal consistency, diverse patterns of background changes,

and adaptive augmentation operations selection. Recent works

study foreground [8] and background diversity [9] for change

detection. Specifically, Xing et al., [8] propose a novel mask

mix data augmentation method to generate image pairs to help

the neural network capture the foreground changes. Huang et

al., [9] propose the background-mixed augmentation by aug-

menting examples under the guidance of a set of background

changing images to let change detectors see diverse envi-

ronment variations. However, to the best of our knowledge,

there is no data augmentation method for change detection

considering adaptively selecting augmentation operations for

image pairs.

In the image classification area, reinforcement learning-

based data augmentations were studied to search for optimal

augmentation policy. AutoAugment [10] uses reinforcement

learning to search for an optimal augmentation policy in

a search space and achieve good performance. However,

the search process of AutoAugment takes a large amount

of training time. For this reason, some advanced automatic

augmentation methods [5], [11], [12] based on reinforcement

learning try to reduce the search time. A representative work,

Patch AutoAugment [11] employs multi-agent reinforcement

learning to search for an optimal data augmentation policy for

the patch level, obtaining remarkable gains over AutoAug-

ment. Although reinforcement learning has been successful in

data augmentation for image classification and object detec-

tion, its application in change detection remains a challenge.

Specifically, change detection environments contain complex

change information and background noise, and existing re-

inforcement learning-based data augmentation methods focus

only on common image transformations and fail to attend to

the diversity of change targets.

In this paper, we propose an adaptive data augmentation

method for change detection, dubbed as ADAAUG, a new

reinforcement learning framework for change detection data

augmentation. An actor chooses an optimal data augmentation

operation according to the state of the input image pair. Then

the augmented image pairs are used to update the change

detector. Since the actor always chooses the best operation,

the augmented image pairs make the change detector easier to

learn the optimal parameters and improve the final detection

performance. We use the Advantage Actor-Critic algorithm

[13] to train our actor. Besides, we propose a mask guided mix-

ing data augmentation customed for change detection, which

mixes the change regions of the current training sample based

on the prediction results and labels to generate high-quality

image pairs with more positive samples. We have conducted

various experiments on the standard benchmarks with several

different detectors. The experimental results demonstrate that

ADAAUG achieves favorable performance compared to SOTA

data augmentation methods. Our contributions can be summa-

rized as follows:

• We propose a reinforcement learning based change de-

tection data augmentation to adaptively choose the best

augmentation operation for each image pair, which can

improve the generalization ability of change detectors.
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• We propose a mask guided mixing data augmentation

customed for change detection. The augmented image

pairs have more positive samples to facilitate the change

detector’s training.

• We conduct extensive experiments in two public datasets

with three different change detectors. The experimental

results demonstrate that our method achieves favorable

performance against SOTA data augmentation methods.

II. PRELIMINARIES

Reinforcement learning (RL) models the policy-choose

problem as a Markov decision process (MDP) with

(S,A,P, R, γ, T ). During training, an agent interacts with

the environment by executing actions and receiving rewards.

At each time step t, the agent observes the current state

st ∈ S and executes the action at ∈ A through the policy

π(at|st), where π(at|st) is a mapping from state st to action

at. The agent obtains a reward rt : S × A → R to evaluate

the goodness of the action at and transitions to the next

state st+1 with a state transition function denoted as P :
S×A×S → [0, 1]. This exploration process continues until the

agent reaches the final state. The long-term discounted reward

Rt =
∑T

k=0 γ
krt+k is accumulated with the discount factor

γ ∈ (0, 1] in a time horizon T . The agent optimizes policy

π∗ to maximize reward Rt by constantly trying and learning.

In this paper, we adopt RL to adaptively choose the optimal

data augmentation policy for each image pair to improve the

performance of the change detection tasks.

III. METHOD

As shown in Fig. 1, given an image pair 〈I1, I2〉, we

extract deep features as the state. The actor network selects an

augmentation operation op(·) for the image pair based on the

state. Then, we train a change detector with the augmented

image pair 〈Ĩ1, Ĩ2〉. We use the feedback from the change

detector on the policy evaluation dataset T as a reward to

update the policy network.

A. Augmentation operation set O
Due to the lack of a data augmentation method for

change detection, we first introduce a novel data augmentation

method, dubbed as Mask-Guided Mixing (MGM). MGM uses

the prediction Yi, the ground truth map Mi of the image

pair 〈I1i , I2i 〉 and the ground truth map of the k-th change

object Mk
j in the j-th image pair 〈I1j , I2j 〉, to generate candidate

augmentation position Pc by

P k
c = Γ(Yi ∨Mi,M

k
j ), (1)

where ∨ is the logical or operation, P k
c = (P k

cx, P
k
cy) represent

the coordinates of the x and y axes, respectively. Γ(A,B) is

the change position generating function, seeking the position

in A to past the change object of B. Specifically, we search

the background region of A to find a position can paste the

change object of B.

According to Pc, the change region of 〈I1j , I2j 〉 is pasted onto

〈I1i , I2i 〉 to generate the augmented sample 〈Ĩ1, Ĩ2〉. Specifi-

cally, We first compute the affine transformation matrix Tk at

the corresponding position of k-th change object:

Tk =

[
P k
cx −X(Mk

j )
P k
cy − Y (Mk

j )

]
, (2)

where X(·) and Y (·) calculate the center coordinate of the

change object in the x and y axes, respectively. Then, we use

Tk to blend the change objects of images pairs 〈I1j , I2j 〉 and

〈I1i , I2i 〉 to get the augmented image pair:

Ĩ1 =

K∑
k=1

Mk
jTk �

(
δI1j + (1− δ)I2j

)
+ (1−Mk

jTk)� I1i ,

Ĩ2 =

K∑
k=1

Mk
jTk �

(
δI2j + (1− δ)I1j

)
+ (1−Mk

jTk)� I2i ,

(3)

where δ is randomly selected from {0, 1} with uniform prob-

ability. Note that, we return 〈Ĩ2, Ĩ1〉 with probability 0.5.

Finally, our operation set O consists of MGM, AugMix

[1], MUM [6], CutMix [7], GridMask [14], MixUp [15],

TokenMix [16], without augmentation (W/o Aug). Let O =
{op1, . . . , opM} be the set of all available operations. We use

op(·) to denote the transformation of image pair 〈I1, I2〉 to a

novel one (i.e.,〈Ĩ1, Ĩ2〉), as

〈Ĩ1, Ĩ2〉 = op(I1, I2). (4)

B. Policy evaluation set T
Prior works [11], [12] directly use the feedback of the

target model from training samples to assess the strategy.

However, due to the augmentation operation that might change

the label of the image pair, using a training dataset for

evaluation cannot accurately evaluate the policy. Thus, we

propose to use a fixed validation dataset as a policy evaluation

set T = {〈I1k, I2k,Mk〉}Kk=1. Note that each Mk should have

at least one change region.

C. Policy Modeling

The actor network chooses “optimal” augmentation oper-

ation for each image pair of an batch {〈I1i , I2i ,Mi〉}Bi=1).

Then the critic network evaluates the effectiveness of the

actor network. We detail the state, action, and reward for the

augmentation policy as below.

State. Since we conduct data augmentation for change

detection, we use the absolute difference features of an image

pair as the state of RL. The basic feature extraction network

consists of three convolutional layers. We adopt ReLU as a

nonlinear activation function for the first two convolutional

layers. The (kernel size, stride, and output channel number) of

these three convolutional layers are set to (8, 4, 32), (4, 2, 64),
and (3, 1, 64), respectively. The state st = φe(abs(I

1 − I2)),
where φe(·) denotes a feature extractor, abs(·) denotes abso-

lute difference.

97



Fig. 1. The proposed Adaptive Augmentation (AdaAug) framework.

Action. The actor network is a fully connected network with

2 layers. The first layer has 256 neurons. The second layer

has 8 neurons (i.e., the number of augmentation operations).

We use augmentation operation set O as the action space A.

Given a state st and action space A, the actor chooses an

action at ∈ A to augment the training sample.

Reward. The reward reflects the good and or bad of the

action. We use the quantitative values before and after updating

the change detector. Let ψ(·,Wbef) and ψ(·,Waft) denote a

change detector with parameters before and after updating with

augmentation operations on image pairs in a batch. The reward

r is defined as

r = S(ψ(〈I1, I2〉,Waft)− S(ψ(〈I1, I2〉,Wbef)), (5)

where S(·) represents a score function.

D. Policy Learning

We adopt the Advantage Actor-Critic (A2C) algorithm [13]

to learn the augmentation policy. The agent has an actor to

learn the discrete policy π(a|s). And the critic network of the

agent estimates the state’s value V π(s). We build the critic

network with two fully connected layers network. The first

layer has 256 neurons. And the second layer has 1 neuron.

We model the action-value Q function as

Qπ(s, a) = E[Rt|s, a], (6)

where Rt =
∑T

l=0 γ
lrt+l is the long-term discounted reward.

The advantage function of the augmentation policy is given as

Aπ(s, a) = Qπ(s, a)− V π(s). (7)

Let Θcritic denote the critic network parameters. The loss to

update Θcritic is defined as square value of advantage function

by

L(Θcritic) =
1

2
(Aπ(s, a))2. (8)

Let Θactor denote the actor network parameters. The loss to

update Θactor is defined as

L(Θactor) = −logπΘactor
(a|s)Aπ(s, a). (9)

To encourage exploration and prevent the policy from

converging too quickly to suboptimal solutions, we add an

entropy term to the policy loss, Equation (9) is rewritten as

L(Θactor) = −logπΘactor
(a|s)Aπ(s, a) + βH(π(s)), (10)

where β is the hyperparameter. The entropy term H(π(s)) is

defined as

H(π(s)) = −
M∑
i=1

π(ai|s)log(π(ai|s)), (11)

where M is the number of augmentation operations and

ai represents augmentation operation opi. The overall loss

function L is a weighted sum of policy loss and critic loss

as

L = λ1L(ω) + λ2L(θ), (12)

where the hyper-parameters λ1 = λ2 = 1.

E. Implementation details

We use Adam optimizer with a learning rate of 1e-3 to learn

the policy model. Following [11], we set the time horizon

T = 1. The change detectors are trained with batch size of 8

and epoch of 200. Other super-parameters for training change

detectors are set as the default. Before training our policy

model, we warm up each change detector by training change

detector n ∈ [3, 9] epochs on BCD and LEVIR datasets.

IV. EXPERIMENT

A. Setup

Datasets. We conduct extensive experiments on two rep-

resentative remote sensing change detection datasets (i.e.,

LEVIR and BCD) to verify the practical performance of the
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proposed ADAAUG. LEVIR [17] is a large-scale and very high

resolution change detection dataset. It has 637 pairs of images

with 1024 × 1024 pixels. We crop 256 × 256 image patches

in a non-overlap manner. The image patches are randomly

partitioned into training and testing sets with 8144 and 2048

image pairs, respectively. BCD [18] has a pair of aerial images

with a spatial size of 32, 507× 15, 354 of resolution with 0.2

m/pixel. We crop 256 × 256 image patches in a non-overlap

manner. We randomly partition the image patches into 6858

training image patches and 762 testing image patches.

TABLE I
QUANTITATIVE COMPARISON OF THE CHANGE DETECTORS WITH

DIFFERENT DATA AUGMENTATION METHODS ON BCD AND LEVIR. THE

BOLD VALUE IS THE BEST.

Model Method
BCD LEVIR

F1 ↑ IoU ↑ OA ↑ k ↑ F1 ↑ IoU ↑ OA ↑ k ↑

DTCDSCN [19]

w/o Aug 87.20 77.31 99.03 86.70 88.90 80.02 98.89 88.32
MixUp 85.44 74.58 98.94 84.89 87.98 78.53 98.84 87.37
CutMix 89.13 80.40 99.20 88.73 90.25 82.23 99.03 89.73
AugMix 88.67 79.62 99.18 88.24 89.08 80.32 98.90 88.50
MUM 86.80 76.67 99.02 86.28 89.64 81.22 98.96 89.09
TokenMix 85.84 75.19 98.89 85.26 88.09 78.72 98.83 87.48
GridMask 88.45 79.29 99.14 88.01 89.65 81.25 98.95 89.10
MaskMix 89.65 81.24 99.25 89.26 89.28 80.63 98.94 88.72
MGM(Ours) 92.20 85.54 99.45 91.92 90.38 82.44 99.04 89.87
AdaAug(Ours) 93.17 87.21 99.49 92.90 91.13 83.70 99.11 90.66

DMINet [20]

w/o Aug 89.52 81.03 99.21 89.11 90.04 81.89 99.00 89.52
MixUp 86.95 76.92 99.04 86.46 89.82 81.52 98.97 89.28
CutMix 91.27 83.94 99.36 90.94 90.57 82.76 99.06 90.07
AugMix 91.19 83.81 99.39 90.86 90.36 82.41 99.04 89.85
MUM 89.86 81.58 99.25 89.47 90.54 82.71 99.06 90.04
TokenMix 89.78 81.45 99.26 89.39 88.81 79.87 98.94 88.25
GridMask 90.83 83.20 99.32 90.48 90.41 82.50 99.06 89.91
MaskMix 91.87 84.96 99.41 91.56 90.74 83.04 99.06 90.24
MGM(Ours) 92.77 86.52 94.47 92.50 90.75 83.07 99.07 90.26
AdaAug(Ours) 93.55 87.89 99.52 93.31 91.24 83.89 99.12 90.78

BIT [21]

(Transformer)

w/o Aug 90.38 82.45 99.28 90.01 89.17 80.46 98.93 88.61
MixUp 84.87 73.72 98.89 84.29 86.68 76.49 98.73 86.02
CutMix 89.84 81.56 99.23 89.44 89.96 81.75 99.00 89.44
AugMix 91.57 84.44 99.38 91.25 89.74 81.39 98.98 89.20
MUM 89.40 80.83 99.21 88.99 89.88 81.62 98.99 89.35
TokenMix 87.30 77.46 99.06 86.81 88.73 79.74 98.91 88.16
GridMask 91.32 84.02 99.36 90.98 90.05 81.90 99.00 89.52
MaskMix 91.49 84.32 99.39 91.18 89.78 91.46 98.99 89.25
MGM(Ours) 92.25 85.62 99.44 91.96 90.49 82.63 99.05 89.99
AdaAug(Ours) 93.24 87.33 99.50 92.98 90.83 83.19 99.07 90.34

Criteria. We adopt F1-score (F1), overall accuracy (OA),

Intersection over Union (IoU) and Kappa coefficient (k) for

evaluation.

B. Comparison of Data Augmentations

Table I reports the performance of different change detection

methods change detectors with different data augmentation

methods on BCD and LEVIR datasets. We can find that:

(1) Not all data augmentation methods can improve the

performance of change detection models. For example, on the

LEVIR dataset, the performance of DTCDSCN, DMINet, and

BIT with the MixUp and TokenMix is lower than the perfor-

mance without data augmentation; (2) Our MGM outperforms

all other compared augmentation methods on both datasets

with large margins. Compared with the results of DTCDSCN

without data augmentation, DTCDSCN with MGM achieves

5.73% relative F1 improvement. On LEVIR, BIT with MGM

achieves 1.48% relative F1 improvement over BIT without

data augmentation. (3) ADAAUG promotes the performance

of different change detectors with large margins on both BCD

and LEVIR datasets. On BCD, ADAAUG improves the F1

of DTCDSCN, DMINet, and BIT to 93.17%, 93.55%, and

93.24%, respectively. On LEVIR, ADAAUG improves the F1

of DTCDSCN, DMINet, and BIT to 91.13%, 91.24%, and

90.83%, respectively. The quantitative results on both datasets

demonstrate the effectiveness of our proposed ADAAUG.

Table II shows the running time (Average time per epoch) of

DMINet with different data augmentation methods on LEVIR.

We can find that AugMix takes the longest time (598.11s)

due to performing multiple image transformations. Other data

augmentation methods (e.g., MixUp, CutMix, MUM, Grid-

Mask, TokenMix, and MaskMix) achieve lower time spent

than ADAAUG (504.97s) by a single algebraic operation.

However, they do not fully explore the contribution of different

data augmentation methods to the change detector, resulting

in achieving a lower performance than ADAAUG.

TABLE II
TIME COMPARISON (AVERAGE TIME PER EPOCH) OF THE DMINET WITH

DIFFERENT DATA AUGMENTATION METHODS ON LEVIR.

Method MixUp CutMix MUM GridMask TokenMix MaskMix AugMix AdaAug

Time(s) 250.29 242.80 237.54 254.64 227.36 305.51 598.11 504.97

C. Result visualization

1) Change detection result visualization: The visualization

results of using AADAUG on the two datasets are shown in

Fig.2. On LEVIR, change detectors trained with ADAAUG can

detect tiny change targets and obtain integral change regions.

As demonstrated in the 1st row of Fig.2, the results of different

change detectors trained with ADAAUG can detect the tiny

change buildings at the left-bottom of the images. In the 3rd

and 5th rows, the results of different change detectors trained

with ADAAUG are more accurate than the results without

ADAAUG.

2) Selected policy visualization: In Fig.3, we plot the

curves of the proportion of different augmentation operations

selected by ADAAUG with DMINet on LEVIR during the

training process. We can find that (1) in the whole training

stage, no augmentation operation takes a lower proportion; (2)

MGM, MUM, and GridMask have higher proportions been

selected by ADAAUG; (3) with the learning of the change

detector, ADAAUG selects the single data augmentation oper-

ation’s proportion is less than 35%. MGM, CutMix, MUM,

and GridMask are alternately selected. This demonstrates that

ADAAUG can adaptively select data augmentation operations

for different image pairs.

D. Ablation Study

1) Ablation study of augmentation operation selection pol-
icy: To verify the effectiveness of ADAAUG, we test two

additional augmentation operation selection policies, random

selection and uniform selection. Specifically, random selection

randomly selects an augmentation operation for each image

pair. While uniform selection selects an augmentation op-

eration for each image pair with the same probability. As

shown in Table III, the performance of the change detection
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Fig. 2. Visual comparison of different change detection models with (+ADAAUG) and without ADAAUG on LEVIR and BCD.

Fig. 3. The proportion of different augmentation operations during training.

on both datasets decreases when using the random and uni-

form selection policies. It demonstrates that ADAAUG with

meaningful guidance significantly surpasses the random and

uniform selection policies.

2) Ablation study of the number of augmentation opera-
tions: We explore the effect of the number of augmentation

operations in O on the change detection performance. We

randomly select m operations from O to form a new operation

set Ô for the ablation study. Specifically, we set the number

of m to 4 and 6. To prevent the impact of random selection,

we conduct 3 experiments on each quantity m and take the

TABLE III
PERFORMANCE OF DMINET WITH DIFFERENT AUGMENTATION

OPERATION SELECTION POLICIES ON BCD AND LEVIR. THE BOLD
VALUE IS THE BEST.

Method
BCD LEVIR

F1 ↑ IoU ↑ OA ↑ k ↑ F1 ↑ IoU ↑ OA ↑ k ↑
Random 92.81 86.59 99.48 92.54 91.03 83.54 99.10 90.56
Uniform 92.90 86.73 99.48 92.62 91.18 83.78 99.12 90.71
AdaAug 93.55 87.89 99.52 93.31 91.24 83.89 99.12 90.78

average results as the final results. As shown in Table IV,

change detector (i.e., DMINet) with a small number of policies

perform poorly in the real world. m = 8 achieves the best

performance on both BCD and LEVIR datasets. Thus, we fix

m to 8 in our experiment.

3) The effect of warm-up epoch number: Directly using

ADAAUG in the training of a change detector makes the

change detector hard to converge. Thus, we adopt a warm-

up strategy in our experiment to provide better feedback on

the quality of the augmentation policy. In the warm-up phase,

we train the change detector with original data. As shown

in Table V, we observe the performance of DMINet during

the warm-up stages of 3, 6, and 9 epochs. We can find that
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TABLE IV
ABLATION STUDY OF THE NUMBER OF AUGMENTATION OPERATIONS. THE

BOLD VALUE IS THE BEST.

Number
BCD LEVIR

F1 ↑ IoU ↑ OA ↑ k ↑ F1 ↑ IoU ↑ OA ↑ k ↑
4 92.99 86.91 99.48 92.73 91.09 83.64 99.10 90.62
6 93.50 87.79 99.52 93.25 90.46 82.58 99.05 89.95
8 93.55 87.89 99.52 93.31 91.24 83.89 99.12 90.78

different warm-up epochs have different impacts on the change

detection performances. In particular, the best performance

is achieved with epochs of 6 and 9 on BCD and LEVIR,

respectively.

TABLE V
RESULTS OF ADAAUG WITH DIFFERENT WARM-UP EPOCHS. THE BOLD

VALUE IS THE BEST.

Epoch
BCD LEVIR

F1 ↑ IoU ↑ OA ↑ k ↑ F1 ↑ IoU ↑ OA ↑ k ↑
3 92.33 85.76 99.44 92.04 90.99 83.48 99.11 90.52
6 93.55 87.89 99.52 93.31 91.18 83.79 99.12 90.71
9 93.07 87.03 99.49 92.80 91.24 83.89 99.12 90.78

V. CONCLUSION

We have proposed a novel adaptive data augmentation

method, ADAAUG, for change detection. We formulate the

data augmentation as reinforcement learning by treating data

augmentation operation selection as action selection according

to the state. Thus, our method can choose an optimal augmen-

tation operation for the image pair. The augmented image pairs

make the change detector easier to learn the optimal parame-

ters to improve the final detection performances. In addition,

we have proposed a mask guided mixing for change detection

data augmentation. It mixes the change regions of the current

training sample based on the prediction results and labels

to generate high-quality samples with more positive samples.

Extensive experimental and visualization results demonstrate

the superiority of our method over other data augmentation

methods on the change detection task.
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