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Abstract—The increased demand for Smart Home control tech-
nologies and the rapid growth of AI-based approaches provide
an opportunity to develop systems that improve conveniences
and reduce potential barriers to adopting renewable technologies,
including Electric Vehicles, Photo Voltaic Solar Panels, and
Household Batteries (or Energy Storage Systems). Reinforcement
Learning is an AI tool for training systems to perform complex
tasks and achieve challenging goals. This paper introduces a
human-centric RL-based Home Energy Management System
that manages a homeowner’s requirements while maximizing
comfort and convenience. The homeowner can alter the system’s
behaviour depending on existing situations and needs. The system
can control the home’s energy resources in the presence of the
uncertainty and variability of solar power generation, the varying
electricity demands, and the priorities of a homeowner.

Index Terms—Reinforcement Learning, Energy Management,
V2X, Human-Centric RL

I. INTRODUCTION

Reinforcement learning (RL) algorithms represent com-

petent mechanisms for training agents in various complex

environments, such as control systems and gaming. In the

realm of control systems, RL is effective in optimizing pro-

cesses and managing dynamic settings. RL algorithms are

particularly skilled at managing the variability often seen

in these applications and unexpected situations. One distinct

advantage of RL agents is their ability to learn without the

need for extensive datasets. They can be trained in simulated

environments, acquiring essential skills before being deployed

in actual scenarios.

RL methods have been extensively explored in building

energy management and microgrid energy management sys-

tems [1] [2]. The applications include model-based energy

management [3], micro-grid energy management with flexible

demand [4], battery control under cycle-based degradation [5],

and energy storage arbitrage with degradation [6].

With the increasing importance of green solutions for homes

and emerging Vehicle-to-Anything (V2X) technologies [7],

there is a growing need for developing intelligent and human-

friendly Home Energy Management Systems (HEMS). One

of the most promising approaches is based on applying RL

technologies. Numerous studies focusing on agents controlling

various household appliances and the home energy storage

system or charging of electrical vehicles (EVs) have been

published [8] [9], [10] [11] [12]. In these home energy

management systems, the agents are trained to control various

home devices, including HVAC, lighting, and appliances such

as washers and dryers. It results in a challenging deployment

as agents require different decision processes. Their actions

attempt to reach a balance between user comfort and the cost

of electricity. However, it results in inconvenient situations –

for example, the agents may prevent users from using certain

appliances at times they would like to.

Further, to our knowledge, no studies consider factors

that influence human-like decision-making processes, such as

emotions and contextual issues. Such factors can significantly

affect how the users view their goals; in one instance, they may

prioritize saving money on their electricity bill; in another, the

fear of grid instabilities may supersede the need to be cost-

efficient or, yet in another case, the ability to go for a long

trip replaces the cost efficiency.

In this paper, we expand on our previous work [13] to

examine a human-centric home energy management system.

The method proposed investigates training multiple agents to

perform their tasks in diverse situations with three specific

goals: ensuring cost efficiency, guaranteeing uninterrupted en-

ergy supply, and maximizing EV driving range. The operations

of agents are interactively identified via a human setting up

the goals of the RL agent.

II. HOME ENERGY MANAGEMENT AGENT

A. Problem Formulation

Let us envision a household that is equipped with an

energy storage system (ESS) and photovoltaic (PV) panels.

Additionally, the homeowners have just bought an electrical

vehicle (EV). Such a house – not very futuristic yet energy-

wise – would already benefit from an automated system/agent

managing all sources and sinks of energy. It would eliminate
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the owner’s need to continuously monitor and control how

energy is utilized, the state of devices requiring charging, and

the cost of electricity.

The ultimate goal of our agent is to maximize the home-

owners’ comfort and security. We anticipate the agent has to

work optimally in a number of different scenarios. To address

such needs, we develop an agent capable of achieving the

following, so-called, scenario-goals:

• Cost-awareness: to reduce the overall electricity cost via

intelligent management of all sources of energy;

• Range-awareness: to secure readiness of the EV, i.e., to

keep its state of charge to guarantee its full driving range

as quickly as possible after returning to the house;

• Outage-awareness: to manage energy sources to main-

tain an uninterrupted energy supply even in case of

outages.

The proposed system involves agents trained to prioritize

one of the primary goals described above; the system will

allow the homeowners to identify their primary goal(s) by se-

lecting one of the scenarios. This paper focuses on comparing

the performance of each operating mode. In addition to the

primary goal, the agent will maintain some performance in

the remaining two of the three scenario goals.

B. Training Environment

To develop an RL-trained energy managing agent that helps

or even substitutes the homeowner’s need to monitor, we

need a data-driven simulator to train and test the agent. Such

an RL simulator is modelled as a set of states, a set of

activities or actions, and a reward function. The states (or

observations) represent what the agent can observe/know about

the environment. The actions are the methods that an agent

performs to interact with an environment; these could be low-

level control signals. A reward function provides feedback

values representing how an agent’s actions influence/change

the environment. The RL mechanism ‘teaches’ our agent to

choose the best action in a given state via maximizing the

reward.

In the case of the household energy management system, the

environment is composed of the household load, PV, ESS, and

EV. The household load is the electrical load of a single home

(this includes all potential loads connected to the household

electrical panel) taken from [14] plus the energy consumption

of the EV. The ESS specifications are based on the Tesla

Power Wall 2 with 5 kW with a discrete set of charging and

discharging actions, each a specific power setting (±10%

intervals) and a 13.5 kWh capacity. The PV system for the

simulated household is a 20-panel system, each capable of

generating 325W of power with a total system output of

6.5kW. The panels are assumed to be 100% efficient, and

the solar generation is based on [15]. The EV’s specs are

based on a Tesla Model 3 with an 82 kWh battery with a

maximum charging and discharging of 11.5 kWh. In this case,

the charging is controllable via a discrete action space, ±10%

intervals up to the maximum charging and discharging levels,

similar to ESS.

The agent manages the house’s energy based on the previous

24 hours of electricity usage and PV (solar) generation, the

state of charge (SoC) of the EV and the ESS, and whether or

not the EV is connected to be charged. The agent controls the

charging/discharge rate of the EV(s) and ESS.

The charging and discharging of the EV and ESS batteries

are modelled using the formula (the same for EV and ESS)

Ct+1 =

⎧⎪⎨
⎪⎩
Cmax, if Cmax − Ct ≤ η

pB,t

Pmax

Cmin, if Cmin − Ct ≥ η
pB,t

Pmax

Ct + η
pB,t

Pmax
, otherwise.

(1)

Ct is the SoC of the battery at time-step t, η is the charg-

ing/discharging efficiency (assumed 100%), pBt is the charge

or discharge power during t, while Pmax is the capacity of

the battery in kWh. Cmax and Cmin are the maximum and

minimum charging values of the battery; for now, these are

set to 0 and 100%. The equation ensures the batteries cannot

be charged or discharged on Cmax and Cmin.

Power is drawn from or returned (sold) to the grid every

time step and obeys the following power balance equation

putil,t = pt + pEV,t + pESS,t − pPV,t (2)

where putilt is the power to/from the grid, pPV,t is the power

generated from the PV system at time-step t, which is always

negative since the PV always generates energy. The powers

pEV
t and pESS

t can be positive (sink) or negative (source).

Negative putilt means excess energy ‘produced’ by a household

is sold to the grid.

Further, the cost or profit associated with the drawn or

generated power is represented as

ft = (
λt − λ∗

2
|putil,t|+ λt + λ∗

2
putil,t) (3)

where ft is the total electricity cost, λ∗ is the fixed utility

buyback rate $0.082 /kWh and λt is the electricity price at a

time-step t. The price λt follows a time-of-use model shown

in Fig. 1. The peak rate is $0.170/ kWh, mid-peak rate is

$ 0.113/ kWh and the off-peak rate is $0.082/ kWh. If putilt

is positive, then ft = λt ·putilt , the agent (household) is buying

power from the grid. If it is negative ft = λ∗ · putilt , the

agent is selling it to the grid. An important aspect of the

Fig. 1: Time-of-use electricity pricing used in the simulated

smart home environment. [16]

training environment is the operation of the EV. The trips are

randomized to ensure the agent can see a variety of situations.

The electric vehicle takes a trip at a random time of day for
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a random duration to simulate realistic driving patterns, not a

predictable 9-5 schedule. The EV’s SoC is reduced according

to the distance travelled during a trip. Fig 2 shows the distance

travelled is modelled based on a gamma distribution of a

frequent driver in the US [17].

Fig. 2: Gamma Distribution for Driving Distances to Model

EV Trips.

During a testing process and for comparison purposes, all

scenarios executed during testing runs see consistent depar-

tures, arrivals, and driving distances of the EV throughout each

run.

C. Reward Function

The reward function per time step rt is defined below, and

for each agent, the coefficients are changed depending on the

human’s goal.

rt =ft + gEV,t + gESS,t

{
P if putil,t > 0

α · p2util,t if putil,t ≤ 0

+ ρEV · |pEV,t|+ ρESS · |pESS,t|

+

{
γs,0 · SsEV if |sgn(pEV,t)− sgn(pEV,t−1)| �= 2

γs,1 · SsEV otherwise

+

{
γs,0 · SsESS if |sgn(pESS,t)− sgn(pESS,t−1)| �= 2

γs,1 · SsESS otherwise

(4)

where ft is the utility cost/profit, the outage anxiety penalty

(representing uncertainty of accessing power during an outage)

occurs only during an outage (at that time ft is zero) – it is

a fixed value P if the power requirements are not met, or

α ·p2util,t if excess energy is used. ρ is the battery degradation

coefficient and pEV,ESS,t is the energy use of EV and/or ESS,

all at the time t.
To address the issue of insufficient charge of EV and ESS,

we introduce the concept of range and backup anxieties. They

represent the fear that SoC of EV and ESS, respectively, are

too low to be useful. The mathematical equation modeling

anxiety is depicted as

gEV,t = β ∗max(CEV,Req − CEV,t, 0) (5)

gESS,t = β ∗max(CESS,Req − CESS,t, 0) (6)

gt is the charge anxiety or backup anxiety at time-step t, β is

the anxiety coefficient that represents the household anxiety

about having EV and ESS sufficiently charged to meet the

capacity requirement or backup power requirement, Cn,t is

the capacity of the battery in kWh and CReq is the required

battery capacity in kWh. The EV charge requirement is 80%,

and the ESS requirement is 40% for the simulated home.

The agent is biased towards action instead of holding a

state-of-charge (SoC) at a constant value, typically at 0%

and 100%. It would mean that the agent performs charging

and discharging actions that offset each other. These repeated

charge and discharge actions are inefficient and, in the real

world, would result in a shorter battery lifetime due to in-

creased battery degradation. During experimentation, we found

out that the degradation terms ρEV · |pEV,t and ρESS · |pESS,t

in 4 alone has been ineffective when solving the agent’s bias

to action. To mitigate that problem, we have implemented a

growing and decaying switching penalty term in the reward

function.

In our RL reward function, the term switching is defined

as consecutive charge/discharge actions executed on EV or

ESS. The more such switching actions occur, the more the

penalty Ss,... increases for the corresponding device scaled by

the switching coefficient γs...,0 increases. Ss,... o The increase

happens each time an alternating action occurs. If the agent’s

action is to wait or charge/discharge for more than three time

steps, the penalty coefficient decays at a rate of γs...,1 each

time the actions are not opposing. Such a mechanism helps

reduce inefficient switching actions resulting in a net-zero

change in SoC.

III. TRAINING AND RESULTS

In the reported experiments, agents using the Stable-

Baselines3 Masked PPO Algorithm [18]. Each training episode

starts with a randomly selected date regarding the load [15],

and solar-based generation [14]. The episode runs for one

month, i.e., 2880 time steps of 15 minutes each. At the

beginning of each month, the EV and the ESS SoC are

randomly initialized. At the beginning of each day, a trip(s)

is randomly scheduled – the EV will leave at a random time

during the day and be away for a random amount of time. The

distance traveled on the trip is determined based on a gamma

distribution [17].

A. Training for Diverse Situations

Let us illustrate the agent’s performance for each of the three

scenario goals. The energy management carried out for cost-
awareness goal is presented in Fig. 3 (top). It shows a single

day of operations. The agent uses excess power available in

the EV at the beginning of the day to sell power to the grid.

Once the EV leaves (10:45), the agent begins to utilize the

ESS to continue to sell power. When energy pricing switches

to the off-peak rate, the agent begins to rely on the electricity

grid to power the home and leverages the low rate to recharge

the ESS and the EV when it is back (20:30).
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Fig. 3: Comparative analysis of RL-based agent performance in different scenarios: maximizing cost savings and profit (top);

maximizing energy security during an outage (middle); and maximizing EV range (bottom).

The range-aware agent’s operation can be seen in Fig. 3

(middle). In this case, it can be seen that the agent’s primary

goal is to charge the EV; it makes little use of the ESS and

excess EV charge to sell back to the grid. During the day, the

solar power generated by the PV is used directly to power the

home, with the excess being sold. The agent uses the ESS to

offset the load during peak rate between 17:00 and 19:00.

The agent’s performance operating in the outage-awareness
mode is shown in Fig. 3 (bottom). In this case, there is an

outage from 15:30 to 2:00, and the agent supplies energy from

the EV and ESS to meet the household power needs during

the blackout. The agent maintains a cost-awareness goal as

shown in Table III and maintains change beyond 75%. Fig. 3

(bottom) indicates that the EV is charged when the electricity

price is low. When excess charge is available in the electric

vehicle at the beginning of the day, some of the electricity is

used and sold back to the grid before leaving the home for

the day. Finally, in the afternoon, the agent charges the ESS

above the backup battery requirement set point to ensure that

the ESS is sufficiently charged for any potential outages.

B. Comparison of Agent and User Performances

To illustrate the effectiveness of our RL-trained agent,

we compare agent performances obtained for each goal,

and to the performances achieved by a rule-based energy-

conscious homeowner, called baseline cases. The homeowner’s

behaviour is modelled in our environment based on the fol-

lowing policy. We assume the homeowner in each baseline

test case acts according to the following rules. Note. that the

average winter and summer monthly costs for a household

with only solar panels, no EV, no ESS and no outages are

$61.74 ± 28.35 and $ − 6.25 ± 18.19, respectively. The high

variance in the cost is due to the variance in the household

load and solar data.

The cost-focused baseline; a homeowner rules are as fol-

lows: they manually charge their electric vehicle during off-

peak hours to save money; this means a maximum charging

rate when the electric vehicle is connected and the electricity

rate is low. The ESS is charged while electricity is generated

from the PV panels and discharged when the PV panels do not

produce electricity. Thus, when PV panels generate electricity,

the ESS is charged. The ESS is discharged when the sun goes

down.

For the range-focused baseline; a homeowner executes the

following rules: the EV is connected and charged when it

arrives at home regardless of the electricity rate. Similar to the

cost-focused homeowner, the ESS is charged when electricity
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is generated from the PV panels and discharged when no solar

electricity is generated. Any excess solar electricity generated

powers the home or is sold back to the grid depending on the

load at a given time.

For a homeowner in the outage-focused baseline, the ESS

is not discharged during regular operation, but only during

outages. During outages, the EV is only charged when it is

below 50%. The ESS is charged when there is excess solar

energy during an outage. In practice, the homeowner can also

manually monitor their home solar system and the ESS SoC

to determine when to use the EV as a power source.

The agent with cost-awareness goal has been trained to

experience minimal power outages. The range-awareness
agent has been trained to prioritize EV SOC over cost by

increasing the charge anxiety coefficient. Finally, the agent

with outage-awareness goal has been trained to experience

an outage at a 50% chance. Each agent and user has been

‘exposed’ to the same load and solar data for testing, and each

test case experiences the same EV trip schedule (set with a

random generator with the same seed).

Our experiments show that RL agents are much more flex-

ible and can utilize the EV and ESS to help reduce electricity

costs, maximize EV range, or secure power during periods of

grid instability based on the homeowner’s preference.

In the baseline cases, i.e., homes with limited or no RL-

based control, there is a significant time without power during

blackouts as shown in Tables II and III. With no Smart Control,

the homeowner must maintain power during an outage. Thus,

a homeowner must significantly adjust their habits to ensure

that critical appliances (Modem, Heat Pump, Refrigerators,

or Freezers) are powered throughout the outage. If not, they

risk running out of energy stored in the ESS. For the fairness

of the comparison, it is assumed that for both the simulated

baseline case and the agent test case, the household load does

not change from regular operations during an outage, i.e., the

homeowners are not taking any additional actions to maintain

power beyond the rules described above. Thus, the actions

carried out to manage the ESS and EV are the only ones used

to meet the household load demands.

The performance of the trained RL agents is evaluated over

the three-year period. It focuses on the cost of electricity, the

average EV charge when connected, the average ESS charge,

and the number of time steps without power. Three scenarios

are examined. The first one, with no outages experienced,

simulates perfect grid operation. The second one introduces

2% probability of outage. Finally, a scenario with 50%

probability of losing power represents an area of a highly

unreliable electricity grid due to extreme weather events or

unreliable grid infrastructure.

The obtained values for the electricity cost and EV SoC for

the scenario with perfect gird operation are shown in Table I.

We can see a significant decrease in monthly electricity cost

with minimal effect on the EV SoC when leaving for a trip in

the case of agents with cost- and range-awareness goals. The

most significant decrease is observed with the cost-awareness

agent – its actions save an average of $10 per month with a

very negligible effect on the SoC when the EV is leaving, in

practice a 90% SoC when leaving would only be significant

before a long trip. Note that the outage-awareness agent sees a

higher average energy bill when compared to the baseline case;

it is because it focuses on keeping the ESS and EV SoC at as

high a level as possible. The range-awareness agent performs

as well as the range baseline case but with an average savings

of $4 per month.

Table II shows the performance for the same operations in a

grid with a 2% chance of an outage. We see significant savings

of $15 for the cost-awareness agent during winter months. It

shows that the agent efficiently manages the EV and ESS to

reduce costs when there is lower solar generation in winter.

Solar generation primarily drives cost savings in the summer

months. The range-awareness agent performs similarly to the

baseline case. The most significant impact of using the RL

agent for this test case is observed when there is no power.

With the agent, its value decreases to only 12.77% as opposed

to 48.29% for the baseline case and 54.09% for the cost-

awareness agent.

The last baseline case is for a grid showing an extreme

uncertainty – 50% probability of outage, Table III; it would

illustrate a severe weather situation. From a cost and range per-

spective, all agents perform as expected. The outage-awareness

agent can provide continuous power to the entire home for

87.23% of the time the grid is out. The agent efficiently uses

the time when the grid is up and takes advantage of the solar

panels, ESS, and EV during outages to ensure power can be

provided in case of an outage.

IV. CONCLUSION

The paper investigates using Reinforcement Learning (RL)

algorithms to develop a human-centric home energy man-

agement system (HEMS). The findings from our simulation

results, with the Stable-Baselines3 Masked PPO Algorithm,

reveal the capabilities of RL agents in balancing such aspects

as minimizing energy costs, ensuring an uninterrupted power

supply, and maximizing the electric vehicle (EV) range.

The RL agents are trained on different scenarios with

varying primary goals, such as cost optimization, uninterrupted

energy supply during outages, and maximizing the EV range.

The results, as depicted in Figs. 3a and 3b, demonstrate the

agents’ effectiveness in managing energy usage and storage,

showing their superiority over traditional rule-based systems.

In scenarios with no power outages, our cost-awareness goal

agent optimizes energy costs while maintaining EV readiness,

making this operating mode perfect for day-to-day usage. The

outage-awareness agent, although resulting in higher energy

costs, ensured the preparedness of the ESS and EV for

potential outages, highlighting its focus on providing needed

power without interruptions. Finally, the agent with the range-

awareness goal is an ideal operating model for occasions

when more extensive EV trips are required. The outage-

awareness agent’s performance is particularly notable. In more

challenging scenarios with a 2% and 50% chance of power

outages, it has significantly reduced the time without power
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TABLE I: Comparison results for simulated environments with p = 0% outage probability.

Test Case Winter Monthly Cost ($) Summer Monthly Cost ($) Avg. EV SoC@leaving (%)
Baseline Agent Baseline Agent Baseline Agent

Cost- 133.71±31.79 118.83±27.48 52.44±21.99 51.57±20.12 100.0±1.0 88.0±9.0
Range- 141.04±32.15 136.12±29.18 59.64±21.76 62.18±20.49 100.0±0.0 99.0±2.0
Outage- 126.06±29.68 154.52±29.02 52.50±20.55 80.41±20.36 100.0±0.0 99.0±3.0

TABLE II: Comparison results for simulated environments with p = 2% outage probability.

Test Case Winter Cost ($) Summer Cost ($) Avg. EV SoC@leaving (%) Avg ESS SoC@OutageStart (%) Time w/o Power (%)
Baseline Agent Baseline Agent Baseline Agent Baseline Agent Baseline Agent

Cost- 125.08±33.22 110.83±29.18 55.64±17.82 59.62±15.73 97.0±12.0 78.0 ±21.0 57.0±47.0 75.0±24.0 63.29 50.25
Range- 141.04±32.15 122.49±34.7 59.64±21.76 69.87±16.15 100.0± 5.0 96.0±14.0 57.0±47.0 70.0±26.0 66.22 54.39
Outage- 143.94±30.86 191.31±31.54 87.99±21.82 121.26±31.95 100.0±5.0 91.0±15.0 98.0±9.0 94.0±13.0 39.73 10.13

TABLE III: Comparison results for simulated environments with p = 50% outage probability.

Test Case Winter Cost ($) Summer Cost ($) Avg. EV SoC@leaving (%) Avg ESS SoC@OutageStart (%) Time w/o Power (%)
Baseline Agent Baseline Agent Baseline Agent Baseline Agent Baseline Agent

Cost- 120.97±28.31 104.57±23.14 62.12±18.77 57.09±14.35 98.0±8.0 75.0±23.0 64.0±42.0 75.0±25.0 63.16 54.09
Range- 141.04±32.15 122.28±27.94 59.64±21.76 68.6±14.73 100.0±3.0 95.0±13.0 64.0±42.0 73.0±26.0 64.39 54.20
Outage- 141.83±29.89 192.01±28.89 82.45±18.07 134.55±24.36 100.0±3.0 88.0±20.0 97.0±12.0 92.0±15.0 48.29 12.77

by efficiently managing the EV and ESS. This capability is

crucial in areas with unstable power grids or prone to extreme

weather events, helping provide backup emergency power to

homeowners.

The agents’ flexibility in utilizing both the EV and ESS to

meet various goals based on homeowner preferences further

emphasizes the potential of RL in smart home energy man-

agement. This flexibility was evident in all tested scenarios,

ranging from perfect grid operation to extreme grid instability.

Yet, the research also highlights areas for future development.

While RL agents offer significant improvements over rule-

based systems, further refinement is needed to fully capture

the complexity of real-world scenarios and integrate human

habits, power usage and driving patterns, and homeowners’

decision-making.

REFERENCES

[1] Z. Wang and T. Hong, “Reinforcement learning for
building controls: The opportunities and challenges,” Applied
Energy, vol. 269, p. 115036, Jul. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0306261920305481

[2] Q. Fu, Z. Han, J. Chen, Y. Lu, H. Wu, and
Y. Wang, “Applications of reinforcement learning for building
energy efficiency control: A review,” Journal of Building
Engineering, vol. 50, p. 104165, Jun. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2352710222001784

[3] J. Arroyo, C. Manna, F. Spiessens, and L. Helsen, “Reinforced
model predictive control (RL-MPC) for building energy management,”
Applied Energy, vol. 309, p. 118346, Mar. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0306261921015932

[4] T. A. Nakabi and P. Toivanen, “Deep reinforcement learning for energy
management in a microgrid with flexible demand,” Sustainable Energy,
Grids and Networks, vol. 25, p. 100413, Mar. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2352467720303441

[5] K.-b. Kwon and H. Zhu, “Reinforcement Learning Based
Optimal Battery Control Under Cycle-based Degradation Cost,”
Jun. 2022, arXiv:2108.02374 [math]. [Online]. Available:
http://arxiv.org/abs/2108.02374

[6] J. Cao, D. Harrold, Z. Fan, T. Morstyn, D. Healey, and K. Li, “Deep
Reinforcement Learning-Based Energy Storage Arbitrage With Accurate
Lithium-Ion Battery Degradation Model,” IEEE Transactions on Smart
Grid, vol. 11, no. 5, pp. 4513–4521, Sep. 2020, conference Name: IEEE
Transactions on Smart Grid.

[7] N. S. Pearre and H. Ribberink, “Review of research on V2X
technologies, strategies, and operations,” Renewable and Sustainable
Energy Reviews, vol. 105, pp. 61–70, May 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364032119300516

[8] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang,
Y. Zhang, and T. Jiang, “Deep Reinforcement Learning for Smart
Home Energy Management,” IEEE Internet Things J., vol. 7, no. 4,
pp. 2751–2762, Apr. 2020, arXiv:1909.10165 [cs, eess]. [Online].
Available: http://arxiv.org/abs/1909.10165

[9] A. Forootani, M. Rastegar, and M. Jooshaki, “An Advanced Satisfaction-
Based Home Energy Management System Using Deep Reinforcement
Learning,” IEEE Access, vol. 10, pp. 47 896–47 905, 2022. [Online].
Available: https://ieeexplore.ieee.org/document/9766361/

[10] P. Lissa, C. Deane, M. Schukat, F. Seri, M. Keane, and E. Barrett, “Deep
reinforcement learning for home energy management system control,”
Energy and AI, vol. 3, p. 100043, Mar. 2021. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2666546820300434

[11] H. Ding, Y. Xu, B. Chew Si Hao, Q. Li, and
A. Lentzakis, “A safe reinforcement learning approach for multi-
energy management of smart home,” Electric Power Systems
Research, vol. 210, p. 108120, Sep. 2022. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0378779622003443

[12] Y. Ye, D. Qiu, X. Wu, G. Strbac, and J. Ward, “Model-Free
Real-Time Autonomous Control for a Residential Multi-Energy System
Using Deep Reinforcement Learning,” IEEE Trans. Smart Grid,
vol. 11, no. 4, pp. 3068–3082, Jul. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9016168/

[13] Z. Tchir, M. Z. Reformat, and P. Musilek, “Home Energy
Management with V2X Capability using Reinforcement Learning,”
in 2023 IEEE Conference on Artificial Intelligence (CAI). Santa
Clara, CA, USA: IEEE, Jun. 2023, pp. 89–91. [Online]. Available:
https://ieeexplore.ieee.org/document/10195059/

[14] S. DANE, “30 Years of European Solar Generation.”
[Online]. Available: https://www.kaggle.com/datasets/sohier/30-years-
of-european-solar-generation

[15] U. M. LEARNING, “Household Electric Power Consumption.”
[Online]. Available: https://www.kaggle.com/datasets/uciml/electric-
power-consumption-data-set

[16] “Electricity rates | Ontario Energy Board.” [On-
line]. Available: https://www.oeb.ca/consumer-information-and-
protection/electricity-rates

[17] H. Schwartz, “The computer simulation of automobile use patterns
for defining battery requirements for electric cars,” IEEE Trans. Veh.
Technol., vol. 26, no. 2, pp. 118–122, May 1977. [Online]. Available:
http://ieeexplore.ieee.org/document/1622367/
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