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Abstract—Deep Generative Models (DGMs) have been suc-
cessfully employed to synthesize general images, e.g., animals,
human faces, and landscapes. This promising advancement leads
to the idea of utilizing DGMs to generate novel structural designs,
thereby facilitating industrial engineering processes. However,
industrial design data, e.g., blueprints or engineering drawings, is
fundamentally different from the images of natural scenes. They
contain rich structural patterns and long-range dependencies,
which are challenging for convolution-based DGMs to gener-
ate. We tackle this challenge by proposing the Self-Attention
Adversarial Latent Autoencoder (SA-ALAE), which allows for
generating realistic structure designs of complex engineering
parts. With SA-ALAE, users can explore novel variants of an
existing design and control the generation process by operating
in the learned latent space. We showcase the potential of SA-
ALAE by generating engineering blueprints in a real automotive
design task.

Index Terms—generative modeling, attention mechanism, la-
tent space manipulation, structure generation

I. INTRODUCTION

Generative Engineering Design (GED) [1], [2] is a novel

trend of generative design for a more function-oriented design

exploration using existing designs and algorithms. GED de-

rives novel designs depending on factors such as the initial

structure, desired performance, and specific project require-

ments. As an automated exploration of industrial designs,

GED shows great potential to assist engineers in developing

complex structures and speeding up industrial development

processes. Deep Generative Models (DGMs) [3]–[5] seem to

be a natural choice to facilitate GED, given their compelling

performance in synthesizing natural images, such as land-

scapes, human faces, and animals. However, the implemen-

tation of DGMs as such is unlikely to bring much benefit to

industrial engineering processes.

One reason is that most DGMs fail to provide a controllable

generation process. Recent top-performing DGMs tend to

use Generative Adversarial Networks (GANs) [4], [5] as a

framework, which derives a single-generator sampling proce-

dure and typically generates a novel image from a random

noisy input. Novel models [8]–[10] have been proposed to

condition GANs on additional input variables, hereby enabling

fine-grained control over the generation process. These input

variables are predefined attributes, such as gender, hairstyle, or

face shape, in the context of human face generation. However,
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Fig. 1: Vehicle A-Pillar 3D model (left) and various versions of

A-Pillar blueprints obtained by extracting cross-sections from

the 3D object.

it is difficult to preset input conditioning variables in industrial

use cases because of the lack of universal conventions used

to define design parameters and large, consistent labeled data.

Furthermore, the relationship between the parameters and the

engineering target often requires complex numerical methods

to be resolved. It is thus difficult to define relevant class labels

to condition the generation process. Alternatively, Adversarial

Latent Autoencoder (ALAE) [11] utilizes GAN’s adversarial

training strategy but provides an encoder-decoder network,

which allows for a mapping between image space and latent

space. Through our research, we have observed the huge

potential of this structure in facilitating generative engineering

design for industrial use cases, e.g., ALAE can extract latent

variables from a known design and utilize them to derive new

designs through controlled modifications.

Another challenge lies in the fundamental difference be-

tween structural images of engineering modeling and images

of natural scenes. The latter typically consists of rich textures

and continuously changing color gradients, while the former is

defined by geometric patterns, such as distinct edges, sparse

shapes, and their associated long-range dependencies. Most

DGMs rely heavily on the convolutional operator, which excels

in synthesizing realistic textures in local neighborhoods but

fails to model large objects [12], [13]. With convincing results,

recent research [13], [14] demonstrates the potential of a self-

attention mechanism in enabling DGMs to capture and model

large-scale features and long-range dependencies.

Finally, we propose a novel model called Self-Attention

Adversarial Latent Autoencoder (SA-ALAE), which builds
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on the ALAE architecture and employs additional tech-

niques, e.g., Spectral Normalization [22] and Residual Net-

work (ResNet) [26], to enhance the stability of the adversarial

training process. Most importantly, SA-ALAE incorporates the

attention mechanism to generate intricate structural features.

We show the potential of SA-ALAE by applying it in the

context of automotive design exploration, where structural

design is represented in engineering blueprints. SA-ALAE is

developed on the first version of the engineering blueprints,

as shown in the middle in Fig. 1. Since SA-ALAE yields

convincing results, we retrain and test SA-ALAE on the

second version of the blueprints, shown on the right in Fig. 1,

where SA-ALAE has also achieved impressive quality of

generated designs. To measure the quality of the synthesized

blueprints, we utilize Fréchet inception distance (FID) [15],

which quantifies the inception distance between the source

dataset and the generated image set. We further show with

one experiment that SA-ALAE enables a controlled generation

process by semantically modifying the encoded latent vari-

ables. The result of this experiment showcases the potential

of SA-ALAE in understanding the structural information in

engineering blueprints and exploring novel design alternatives

in desired ways.

II. RELATED WORK

Within the domain of Deep Generative Models (DGMs),

Generative Adversarial Networks (GANs) [4], [5] have

achieved state-of-the-art performances in many image synthe-

sis tasks [6], [7]. Novel models, e.g., Conditional Generative

Adversarial Networks (CGANs) [8], StyleGAN [9] and Info-

GAN [10]. Inspired by the use of latent space to control the

generation process [5], [16], [17], progress has been made in

enabling GANs to map images to latent variables. The most

successful trend is to combine GANs with encoders, which

has already yielded convincing models such as BiGAN [18],

Adversarially Learned Inference (ALI) [19] and Adversar-

ial Latent Autoencoder (ALAE) [11]. After identifying and

understanding the latent variables after training, semantic

modification in the latent space can influence the generation

process in desired ways. Among BiGAN, ALI, and ALAE, the

latter achieves the best image quality when tasked to recon-

struct MNIST [20] digits and also the highest accuracy when

applying MNIST classification to its generated outputs [11].

After training, ALAE provides an encoder-decoder inference,

allowing ALAE to map images and the latent space.

Moreover, GANs are known of suffering from training

instability [6], [21], [22]. Many methods focus on solving this

issue, e.g., zero-centered gradient penalty [23], Spectral Nor-

malization [22], Batch Normalization [24], [25], etc. Taking

Residual Networks (ResNet) [26] as a backbone enables the

training of deep architectures without suffering from vanishing

gradients and degradation in performance.

In Generative Engineering Design (GED) [27]–[30], DGM

has shown its potential in synthesizing airfoil shapes from the

UIUC database [31], in which the shape is a single 2D curve.

However, real-world engineering designs are often much more

complex, containing multiple clear edges, sparse shapes, and

long-range geometric constraints. Generating such complex

design images is still challenging for convolution-only neural

networks because the convolutional operator can only process

information within a local neighbourhood [12], [13]. Self-

Attention Generative Adversarial Network (SAGAN) [13]

introduces the self-attention mechanism into GANs. The im-

plemented mechanism, Scaled Dot-Product Attention [14],

constructs an attention map by computing the attention weights

between each feature vector and the other feature vectors.

This attention map presents the relationships among input

features. With this attention map, the model gains a global

understanding of the input features and can efficiently capture

long-range dependencies.

III. METHODS

In this work, we select Adversarial Latent Autoencoder

(ALAE) [11] as a baseline framework for its flexible sampling

process. We enhance the model robustness and develop an

improved version by introducing modern techniques, e.g.,

Spectral Normalization (SN) [22], ResNet [26], etc. We further

implement the self-attention mechanism [13], [14] to enable

the generation of structural patterns.

A. Background

The architecture of ALAE is shown in Fig. 2a. The ALAE

implements a mapper M that generates d-dimensional latent

variables �ω ∈ W ⊆ R
d from standard multivariate Gaussian

random noise �z ∼ N (�0, I), �z ∈ R
k. The latent variables �ω

serves as input to both the discrimination map (D : W → R)

and the generation map (G : W × R
d → X ), where X

stands for the space of data points. In addition, we denote by

�x ∼ D the distribution of the real data points. To generate a

data point, the map G(�ω, �η) takes as input a latent variable

�ω and an optional Gaussian noise �η ∈ R
d. Similar to an

autoencoder, ALAE transforms a data point data �x to its

latent representation with an encoder map (E : X → W),

where �x can be either a real data or generated from the map

G. Afterward, the encoded data point is validated with the

discriminator D.

Compared to GANs, the composition G◦M is equivalent to

the generator of GAN, and D◦E serves as the discriminator. In

this view, one can implement an adversarial training of all the

maps, i.e., to solve the following minimax problem w.r.t. the

weights of M,G,E,D:

min
M,G

max
E,D

V (G ◦M,D ◦ E), (1)

where the value function V takes the following form: V (G ◦
M,D ◦E) = E�x∼D f(D ◦E(�x))+E�z∼N (�0,I) f(−D ◦E ◦G◦
M(�z)). According to [11], ALAE implements f(·) as a Soft-
Plus function [32], i.e., f(t) = softplus(t) = log(1 + exp(t)).

Also, one can consider the maps G : �ω �→ �x and E : �x �→ �ω
as the encoder and decoder of the latent variable �ω, respec-

tively. Ideally, we wish to have E ◦G = IdW . Practically, we

minimize the discrepancy between the probability distribution
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Fig. 2: SA-ALAE in directed graphs. ALAE and SA-ALAE

share an identical training strategy. The sampling procedure

of SA-ALAE utilizes the off-the-shelf mapper M to sample

additional noisy latent variables ωnoise, hereby introducing

randomness in the sampling.

of �ω: p�ω = p�z(M
−1(�ω)) and its pushforward under E ◦ G,

i.e., (E ◦G)∗(p�ω) = p�z(M
−1 ◦G−1 ◦ E−1(�ω)):

min
E,G

Δ(p�ω, (E ◦G)∗(p�ω)), (2)

where Δ is a reconstruction error, e.g., Mean Square Error

(MSE) or KL-divergence. In the training phase, the optimiza-

tion task alternates between (1) and (2).

After training, the inference/generation task requires the

maps E,G,M , which take a source image �x and a noise

�η ∼ N (�0, I) as inputs and generates new images. Additionally,

feeding sampled noise z to the pair of networks (M,G) can

generate random samples.

B. Improved ALAE

The vanilla ALAE faces a major issue in its training for the

following reasons. First, the ALAE implements the adversarial

training strategy in image space, which exposes it to the

same training instability commonly encountered by GANs [6],

[21], [23]. We implement the following techniques to improve

the model robustness and propose a novel version of the

ALAE called ALAEimproved. Firstly, to ensure that generator

G receives effective gradients for the optimization, we need to

prevent the computed gradients from vanishing or exploding.

For this purpose, we apply Spectral Normalization (SN) [22]

in encoder E and discriminator D. Spectral Normalization is a

powerful method that constrains the Lipschitz continuity of the

functions optimized by E and D through layer-wise control

of the spectral norm, thereby constraining the scale of the

gradients. Spectral Normalization replaces every given weight

matrix W by Wsn with the formula:

Wsn =
W

σ(W )
, (3)

where σ(W ) is the greatest singular value of W . Moreover, to

stabilize the adversarial training, we implement batch normal-

ization in generator G, allowing for a larger range of learning

rates and learning the data distribution more efficiently. Lastly,

to address the degradation caused by increasing the depth of

the neural network, we modify generator G and encoder E
of ALAE to become Residual Networks (ResNet). ResNet

features in the so-called residual blocks of convolutional

operators contain a “skip connection” that can bypass the

error information in back-propagation, hence alleviating the

vanishing gradient problem in deeper architectures.

C. Self-Attention Adversarial Latent Autoencoder (SA-ALAE)

Convolution-based DGMs generate high-quality real-world

images. However, DGMs have difficulty in modeling structural

objects in engineering design images. The main cause is

possibly that the objects in structural images can be sparsely

located but are still strongly geometrically connected, e.g.,

in bicycle design, both wheels should be connected by an

axle and lie on the ground. In this simple example, the pixels

describing each wheel depend on one another but are far away

in the image. However, as a local operator on images, the

convolution mechanism cannot capture long-range dependen-

cies, suggesting that using convolutional layers alone is unsuit-

able for generating engineering design images. Self-Attention

Generative Adversarial Network (SAGAN) [13] leverages the

self-attention mechanism to gain a global understanding of the

input features, which enables the model to capture and model

long-range dependencies efficiently. Following the success of

SAGAN, we introduce the same mechanism respectively into

generator G and encoder E in the ALAEimproved framework

and propose a new model, Self-Attention Adversarial Latent

Autoencoder (SA-ALAE).

To achieve the stochastic generation of a novel image from

a source image in the vanilla ALAE, the latent variables ω
encoded from the original design are perturbed with sampled

noise �η ∼ N (�0, I). We note that this approach compromises

the quality of the encoded latent variables, which generates

blurry images. To avoid this, SA-ALAE leverages the trained

map M to sample random latent variables as a noisy perturba-

tion. The novel sampling procedure of SA-ALAE is displayed

in Fig. 2b. Adding randomly sampled latent variables as an

independent noise protects the quality of perturbed latent

variables so that the stochastic encoder-decoder inference does

not harm the quality of the generated image. The calculation

of the latent variables, used to explore the variants of existing

designs, is based on the following formula:

�ω = (1− μ)E(�x) + μM(�z), (4)

where μ ∈ [0, 1] is a tunable parameter, �x refers to an original

design and �z ∼ N (�0, I) is sampled noise.

IV. EXPERIMENTS

A. Datasets

To evaluate the performance of SA-ALAE for industrial

design exploration, we trained the model to generate blueprints

of vehicle parts from a real industrial design task. The whole

dataset consists of 157 234 blueprints from various automotive

parts, e.g., A-Pillars, B-Pillars, upper roofs, and side rails,
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Fig. 3: FID measured in terms of sample size. TL-0,1,2, and

3 stand for various target locations on vehicle A-Pillars where

the cross-sections are taken. For this experiment, all blueprints

are from Dataset1.

etc. The blueprints are grayscale pixel-based images with a

resolution of 256×256. They are produced by extracting cross-

sections from the vehicle structures at various target locations.

Among them, the sub-dataset that contains blueprints from A-

Pillars is the largest set with 12 876 samples, which is used in

this work as a simpler dataset due to its lower diversity.

In our work, we consider two types of blueprints: Dataset1
contains some irrelevant information/objects, such as a head-

form model used in a specific engineering process and wire-

frames, as shown in the middle in Fig. 1; Dataset2 is a

preprocessed dataset in which the head form has been re-

moved, images are centered on the structure, and specific

areas are filled with continuous grayscale color, as shown

on the right in Fig. 1. Updating the Dataset1 to Dataset2 is

helpful with evaluating the peak performance of the generative

model in generating detailed structures and testing the model’s

applicability on various datasets.

B. Evaluation methods

In the area of DGMs, developers often conduct qualitative

analysis because there is no ground truth. In our work, we

compare various models by assessing the visual quality of

the generated images in terms of blurriness, detailed struc-

ture, and readability. Additionally, we introduce a quantitative

assessment to evaluate model performance, where we follow

the recent research in the domain of image generation [3], [9],

[11], [13] and utilize Fréchet Inception Distance (FID) [15] to

quantify the improvement among models.

As a rule of thumb, FID is calculated with 50k generated

samples to evaluate the performance of a trained model [15].

However, generating images of this high number incurs signif-

icant computational costs. As shown in Fig. 3, the measured

FID values are very sensitive to the sample size until 1 000,

where we observe a plateau. Based on this observation, taking

a smaller set of 1 000 images for empirical assessment of our

dataset is safe. In quantitatively evaluating a target model, the

model samples 1 000 images for random noisy inputs, and

the FID is measured between the sampled images and 1 000

corresponding source images.

TABLE I: FID scores. The lower the better.

Objective FID↓
Using Dataset1 as source
Baseline 55.40
ALAE [11] 284.01

ALAEimproved 135.52
SA-ALAE [Ours] 90.09
SA-ALAEsub [Ours] 48.78
Using Dataset2 as source
Baseline 35.58
SA-ALAEsub [Ours] 30.10

Given that our work is conducted on a domain-specific

dataset without any previous comparative studies, it is essential

to establish an FID baseline for evaluation. In our work, we

measure the FID between two sets of real A-Pillar blueprints

as the FID baseline. Specifically, we compare 1 000 cross-

sections taken from two neighboring target locations. Since

the structural difference is minimal between two neighboring

target locations, the measured FID values serve as good

baselines for the evaluation, where we obtain an FID of 55.40
for Dataset1 and an FID of 35.58 for Dataset2.

C. Training configurations

For the training, the initial learning rates for the optimiza-

tions lr(D,E), lr(M,G), lr(G,E) are 10−4, 2× 10−4, and 10−4,

respectively. The batch size is set to 128; the dimension of

the Gaussian random noise �z is set to 128; the dimension of

the latent variable �ω is 64. We apply a self-attention layer

after each upsampling and downsampling module, where the

size of the output features is 16 × 16. From each target

dataset used, we randomly select 1 000 images as test data

and 100 images as validation data, while the remaining images

serve as training data. For computational efficiency, the FID

is measured between 100 source images and 100 generated

images after every epoch during the training to evaluate the

model performance. The training procedure is terminated if

the measured FID does not improve within 20 epochs.

D. Results

In this work, we compare various models for Dataset1:

• ALAE: training vanilla ALAE [11] model with blueprints

of all parts from scratch;

• ALAEimproved: training improved version of ALAE

model with blueprints of all parts from scratch;

• SA-ALAE: training our SA-ALAE model with blueprints

of all parts from scratch;

• SA-ALAEsub: fine-tuning the trained SA-ALAE model,

that is trained on blueprints of all parts, with blueprints

of A-Pillar;

As for Dataset2, instead of using blueprints from all parts,

we train the SA-ALAE model only on blueprints of A-Pillars

from scratch, hereby producing the model SA-ALAEsub. The

measured FIDs are listed in Table I and compared with
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(a) Source blueprints (of all parts) from Dataset1

(b) Blueprints reconstructed by vanilla ALAE [11]

(c) Blueprints reconstructed by SA-ALAE [Ours]

Fig. 4: Examples of source blueprints from Dataset1 and

generated blueprints.

the FID baselines determined in section IV-B. A lower FID

demonstrates a higher similarity to the source dataset.

Trained on the whole Dataset1, ALAEimproved significantly

reduces the FID value by 52% compared to the vanilla ALAE

model, while SA-ALAE shows a further improvement over

ALAEimproved, with a 34% decrease in FID. As generated

images shown in Fig. 4, SA-ALAE can accurately reconstruct

the input structural design, whereas vanilla ALAE generates

blueprints with blurry textures. However, the designs generated

by SA-ALAE are insufficient to support the engineering pro-

cess due to the presence of unrecognizable details. We conjec-

ture that it might be due to the diversity of the source vehicle

parts represented in the blueprints. Given that the A-pillar has

the largest amount of blueprints and SA-ALAE performs best

on the A-pillar blueprints in the previous results, we retrain

the SA-ALAE model only on the engineering blueprints from

vehicle A-Pillars. As a result, SA-ALAEsub achieves an FID

value of 48.78, which is 12% superior to the baseline. As

blueprints generated by SA-ALAEsub displayed in Fig. 5, SA-

ALAEsub can generate detailed blueprints and successfully

captures and represents structural information, e.g., rotations,

distances, and shapes. When using blueprints of A-Pillar from

Dataset2 as training data, our SA-ALAEsub outperforms the

baseline by 15% in terms of FID. As shown in Fig. 6,

SA-ALAEsub generates high-quality blueprints corresponding

to the input designs and containing recognizable structural

details. In addition to the reconstruction function, we evaluate

the ability of SA-ALAEsub in randomly generating A-Pillar

designs, which yields a sufficient diversity of novel designs

with detailed structures displayed in Fig. 6.

(a) Source blueprints (A-Pillar) from Dataset1

(b) Blueprints reconstructed by SA-ALAEsub

Fig. 5: Examples of source blueprints of A-Pillar from

Dataset1 and blueprints generated by SA-ALAEsub.

(a) Source blueprints (A-Pillar) from Dataset2

(b) Blueprints reconstructed by SA-ALAEsub

(c) Blueprints randomly generated by SA-ALAEsub

Fig. 6: Examples of source blueprints of A-Pillar from

Dataset1 and blueprints generated by SA-ALAEsub.

E. Interpolation in Latent Space

After training, SA-ALAE can generate novel design alter-

natives based on a given blueprint. To test the potential of

SA-ALAE in guiding the generation process and influencing

the generated outputs, we identify two source images in which

a similar object is rotated in the second image compared to the

first. We show that various linear combinations of the latent

variables used as input for the generator G of the trained SA-

ALAEsub model produce novel structures with various degrees

of rotation, as shown in Fig. 7. The linear interpolation [5], [9]

between the latent variables encoded from two source images

is obtained by the formula:

�ωinterpolated = (1− α)�ω1 + α�ω2, (5)

where α ∈ [0, 1] controls the interpolation and ω1, ω2 are the

encoded latent variables.
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Fig. 7: Interpolation in latent space performs a rotation of the

structure. The displayed image from left to right is sampled

with the variable α ∈ [0, 0.2, 0.4, 0.6, 0.8, 1].

V. CONCLUSION

DGMs are known to synthesize photorealistic images. How-

ever, research in this area has been focusing on generating

images of the natural world, such as faces and landscapes.

As a result, there has been insufficient research on the ef-

fectiveness of DGMs in supporting industrial development

processes. To address this challenge, our work proposes SA-

ALAE by combining the ALAE’s flexible framework, the

attention mechanism’s effect in large features, and modern

approaches to stabilize adversarial training. In contrast to the

previous work with GANs in synthesizing simple geometric

shapes such as 2D curves, our research focuses on delivering

an efficient solution for engineering processes. In addition to

generating high-quality design images of complex structures,

SA-ALAE allows users to extract latent variables from a given

structural design and modify the given design by editing the

latent variables. Despite the advances, several issues hinder an

efficient application of SA-ALAE in Generative Engineering

Design: (1) the current capability of SA-ALAE is insufficient

for exploring designs for multiple vehicle components with a

single model; (2) structural manipulation by modifying the la-

tent space necessitates significant effort to analyze the learned

latent variables and the structural attributes they represent.
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