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Abstract—Turbine engine monitoring is an essential enabler
for predictive maintenance strategies. Among popular monitoring
techniques, estimating performance indicators is a long-standing
subject from which a variety of methods have been proposed—
including recent applications of machine learning. Traditionally,
indicators estimation is viewed under the single-point perspective:
at one fixed operating condition, mapping observed measurement
data to indicator values. In this perspective, while state-of-the-art
methods have promising results in some favorable testing scenar-
ios, none of them have completely resolved under-determined cases
in which the number of indicators to-be-estimated is larger than
the number of observed measurements.

In this work, we study a use case in monitoring aircraft
engines that falls into an under-determined setting. In order to
mitigate this, we adapt a multi-point perspective that leverages
measurements at multiple pre-determined steady-state operat-
ing conditions. It is noteworthy that we relax the condition-
independence hypotheses made by previous multi-point models to
better align with real scenarios. Unlike previous works under the
multi-point perspective, we focus on machine learning methods
as resolutions; in particular, we conduct a series of experiments
with artificial neural networks in the considered use case. Our
first contribution is to demonstrate that the estimation precision
provided by tested models is significantly improved in the
multi-point perspective in comparison with the single-point case.
Secondly, we explore a scenario involving temporal data (i.e., data
from consecutive flight missions) and show that neural networks
with appropriate architectures can well exploit such “multi-time”
data structure.

Index Terms—Turbine Engine Monitoring, Indication Con-
struction, Artificial Neural Networks.

I. INTRODUCTION

Monitoring and analyzing performance of turbine engines

has a long history, as long as the engine itself. Performance

monitoring is essential in assuring the engines’ operation and

their safety as well as in optimizing their designs. Moreover,

performance monitoring plays a key role in recent devel-

opments of predictive maintenance and prognostic activities,

especially in the aeronautic industry [1], [2].

There exists a variety of engine performance monitoring

methods with a wide range of approaches and principles.

For example, elements of engines can be monitored by vi-

bration analysis or by tracking down informative measurable

quantities (such as exhaust gas temperature or fuel consump-

tion rate). Among the most popular performance monitoring

technique, constructing and estimating performance indicators
from operational data receives a lot of attention as it does

not require operation interruptions and it is capable of giving

information at modular levels (hence, allowing a better fault

localization and diagnosis). The history of this approach can

be tracked back to as early as the 60s and 70s with gas path

analysis methods [3], [4]; then in the last several decades,

it was further developed with applications of filtering-based

algorithms [5], [6] and especially machine-learning oriented

methods [7], [8].

In this work, we particularly focus on modular efficiencies
and modular corrected air mass flow rates—these are two most

well-used types of performance indicators that are considered

in the literature. Typically, they are defined as combinations

of physical quantities, such as temperature and pressure,

measured at inlet and outlet positions of each engine module

with respect to an operational regime [9], [10]. While these

indicators are richly informative for maintenance activities,

it is costly (and sometimes even impossible) in practice to

measure or calculate them directly. Instead, the consensus

of the literature is to leverage the sensors’ measurements
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during flight missions to help indirectly derive or estimate

efficiencies and flow rates. This is known as the turbine engine

performance’s inverse problem, described as follows.

a) Turbine engine performance’s inverse problem: The

dominant perspective of the literature is to first establish a

forward model Su (typically, a thermodynamic simulator)

at a known operating condition u (e.g., altitude, speed) to

map each state x of performance indicators (i.e., values of

efficiencies and flow rates) to some selected measurements y,

i.e., y = Su(x); then, given a set of real sensors data yreal, one

estimates the values of performance indicators corresponding

to yreal as an inverse problem of the Su model. Several pos-

sible approaches are summarized in Section I-B. A practical

example is given in Table II.

Table I
A PERFORMANCE INVERSE PROBLEM OF A TURBOFAN ENGINE (FROM

LEFT TO RIGHT) AND ITS ASSOCIATED FORWARD MODEL (FROM RIGHT TO

LEFT). NOTATION: η = EFFICIENCY, Γ = AIR MASS FLOW RATE, TURB =
TURBINE.

Measurable quantities
Core rotation speed (N2)
Compressor inlet temperature (T25)
Compressor outlet temperature (T3)
Exhaust gas temperature (EGT)
Compressor outlet pressure (PS3)
Combustion chamber fuel flow (WF)

→
←

Performance state
η Fan
Γ Fan
η Booster
Γ Booster
η Compressor
Γ Compressor
η Low-pressure Turb
Γ Low-pressure Turb
η High-pressure Turb
Γ High-pressure Turb

b) A case study and main challenges: In practice, the

number of sensors available on aircraft engines is often very

limited due to physical constraints (temperature, space, and

weight) and so is the number of corresponding measurable

quantities. As a consequence, the inverse problem defined

above often falls into an under-determination setting as the

number of indicators to-be-estimated is larger than the dimen-

sion of data. In this work, we consider the following real-life

under-determined scenario (see Section II-B for more details):

How to better estimate efficiencies and flow rates of each of
the 5 modules of an aircraft engine (i.e., 10 indicators

to-be-estimated) from data coming from 6 sensors measured
at a handful of operating conditions?

While state-of-the-art methods, including machine-learning-

based approaches, have promising results in some favorable

testing scenarios, their performances are subpar in such an

under-determination case (see e.g., turbofan example in [7]).

This is one of the reasons why there is a contradiction between

the diversity of methods proposed and a limited number of the

algorithms applied in real systems.

c) Multi-point approach: A workaround solution that

somewhat mitigates the difficulties of under-determination is

the so-called multi-point perspective proposed by Stamatis

[11] and further developed in [12]–[14]. The key principle

is to leverage sensors’ measurements at different operating

conditions. While this approach increases the dimension of

measurements data, it relies upon hypotheses about certain

types of independence of efficiencies and flow rates with

respect to operating conditions. For example, the differences

between values of these indicators and a nominal reference are

assumed to remain constant during a flight, regardless of oper-

ating conditions [11]. While there exist scenarios where such

assumptions might hold (e.g., deformation of indicators w.r.t.

engines’ physical wear), they are theoretically questionable as

definitions of efficiencies depend on quantities of operating

conditions. We will further discuss this issue in Section II-A.

A. Contributions

In this work, we investigate the uses of several standard

machine learning techniques in resolving the engine perfor-

mance’s inverse problem under a multi-point perspective, with

the aircraft engine use case described above as a demonstra-

tion example.

Our first contribution is to conduct a series of numeri-

cal experiments to test the performance of several artificial

neural network (ANN) models in our considered use case.

In particular, we show a steady improvement in performance

of tested ANN models with multi-point data than the case

with classic single-point measurements. We also show that

different combinations of measurements have different impacts

on algorithmic performances. We select a neural network

model trained with data at 4 operating conditions (takeoff,

cruise and 2 climbs conditions) as a show case and analyze

the respective results.

Secondly, we consider a scenario where temporal data

is available; in particular, when we have access to mea-

surements from two different flight missions of the same

engine. We name this the multi-time scenario. Instead of using

previous machine models to separately estimate the values

of performance indicators at these missions, we provide an

alternative framework in estimating the variation between the

engine’s states in these missions. We analyze the advantages

of this multi-time framework and investigate some potential

approaches in exploiting more measurements data.

B. Literature Review

In this section, we briefly present the main resolution meth-

ods existing in the literature of the turbine engine performance

estimation problem.

a) Gas Path Analysis (GPA): GPA refers to the group

of strategies searching for a best match (in an optimization

framework) between measurements changes and associated

indicators changes. Linear GPA (LGPA) [3], and then its

non Linear versions [15], [16] relying on a linearization of

the system, perform well in a number of favorable scenarios

[17]–[19]. However, GPA underperforms in under-determined

systems, and is subject to the “smearing effect” 1 [13], [15]

and it unavoidably depends on the initialized point. Despite

this, NLGPA remains the basic framework for several other

methods, including multi-point techniques (discussed below).

1GPA tends to smear the defaults of one module over the others.
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b) Bayesian Filtering: When time-series data are avail-

able, a well-known approach is look at the estimation as a

filtering problem, notably, using Bayesian Filtering (BF). It

requires an a priori degradation model and an observation

model and balances between these models’ predictions with

the real observations in a probabilistic framework. The most

well-used examples are the Kalman Filters (KF), with many

years of publications on the subject [5], [20]–[25]. and particle

filter (PF) [26]–[29]. BF methods strongly rely on their a

priori models. KF is optimal in linear cases but falls short

in systems with a high level of non-linearity (even with non-

linear versions of KF such as extended KF or unscented KF)

and PF has a high computational cost due to treating multiple

particles at each time step.

c) Neural Networks: The popularity of neural networks

(NN) methods have grown exponentially in many fields in-

cluding in the engine performance’s inverse problem [30]–

[33]. This approach relies on leveraging physical models to

build a training dataset. Once this is obtained, the performance

indicators estimation task is posed as a regression problem,

where measurement data are the inputs and indicators estima-

tions are the outputs. Recent works using NN show promising

results in several tested cases. In particular, De Giorgi et al.

[30], [31] use a simple one-hidden-layer neural network to

estimate discretized values of performance indicators. On the

other hand, estimations made by NN are shown to outperform

a polynomial regression in [8] and [33]. Similarly, Menga et

al. [32] use Extreme Machine Learning to obatin a relative

error around 5% on efficiencies.

In general, once an NN model is trained, it gives advantages

in execution time and does not require knowledge of physical

models or additional tuning. Importantly, it is observed that

NN’s precision declines in such scenarios but the relation

between measurements and observability is not addressed [33].

d) Multi-point perspective: Multi-point technique also

has a long history, traced back to [11], [34]. These works as-

sume an independence of performance indicators on operating

conditions. This hypothesis is considered to be questionable by

later works [13], [14]. To mitigate this, [13], [14] and its more

recent development [35]–[38] proposed the artificial multi

operating point analysis (AMOPA) variant based on the so-

called artificial operating conditions. This approach discards

the independence hypothesis; however, it still has limitations

as not all artificial points are meaningful [14].

Pinelli et al. [12] propose another relaxation of multi-point

perspective that aims at estimating deformation coefficients

[39] (also known as scalar scale factors) of efficiencies and

flow rates. In this context, a component map, which consists

of a series of curves representing the performances of a

specific reference engine, serves as benchmarks and the scalar

coefficients reflect how this performance map is deformed

in the event of degradation. Unlike other classic multi-point

approaches, Pinelli et al. only impose the independence hy-

pothesis on scalar coefficients. Therefore, efficiencies and

flow rates are permitted to vary across different operating

conditions, but the amount of changes in each operating

condition remains constant. It is noteworthy that all state-of-

the-art works that leverage the multi-point perspective focus

solely on gas-path analysis methods.

Despite considerable advantages, neural networks
underperform in under-determined cases [8], [33] and have
not been applied to multi-point and/or multi-time scenarios.

II. ESTIMATION OF PERFORMANCE INDICATORS WITH

OPERATIONAL DATA

A. Performance Indicators and Scalar Coefficients

a) Classic definition of efficiencies and flow rates: In

the literature of engine performance’s inverse problem, two

most well-used types of indicators are modular efficiencies

and modular corrected air mass flow rates. Hereinafter, for

the sake of brevity, we refer to them simply as efficiencies
and flow rates. Intuitively, efficiency is defined as the ratio

between work done by a module and the energy it receives

and flow rate is the mass of substances passing a module per

unit of time (normalized to ambient conditions). Their specific

definitions vary between different modules and across different

types of engines (see [9], [10] for concrete examples).

In this work, we will not delve into explicit formulations

of efficiencies and flow rates, and only keep a general form

for conceptualization purpose. In particular, let θM denote an

ambiguous degradation state of a module M (e.g., fan, booster,

compressor, turbines) and θ := (θM )∀M is the state of the

whole engine. At each state θ, we denote

• u a (multi-dimensional) vector reflecting measurable ex-

ogenous physical quantities (e.g., ambient pressure, flight

speed), often called operating conditions.

• yθu a (multi-dimensional) variable representing measur-

able endogenous physical quantities (e.g., inlet and outlet

temperature of a module)—often called measurements,

Denote by Hθ
u,M a performance indicator (either efficiency or

flow rate) at a module M of an engine being in a state θ and

operating in a condition u, in general, it can be defined by the

following relation:

Hθ
u,M = gu,M

(
yθu, ω

)
, (1)

where gu,M denotes a function representing certain thermo-

dynamic relations and ω denotes other related quantities that

are not measured in the system (i.e., not included in y or

u), which can be intuitively understood as factors generating

uncertainties of the considered estimation problem.

In classic engine performance’s inverse problem [33], [40],

the purpose is to estimate values of indicators in a set

{Hθ
u,M , ∀M} (for an unknown θ) given a data point

(
yθu, u

)
.

b) Deformation coefficients of component map: In real-

ity, it is impossible to track Hθ
u,M at all possible conditions

and modules’ states. Instead, a common practice is to first

establish a reference component map, representing relations

between efficiencies, flow rates and other relevant quantities,

at a reference state θref (e.g., a new and clean engine) and

some pre-determined conditions uref; then, apply a model on
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Figure 1. A compressor map (adapted from [12]): Efficiency and corrected
mass flow in ”new and clean” condition (solid line) and in a degradation state
with deformation coefficient 0.02 (dash line).

how such component map is deformed with variations in

degradation states.

In particular, the dominant perspective of the literature is to

hypothesize that when θ changes, all representation curves in

the component map are shifted uniformly with respect to that

of θref. These shifts are characterized by a scalar, namely the

deformation coefficient. Mathematically, let us denote ηθM the

deformation coefficient (associated with an indicator Hθ
M ), we

have the generic relation:

Hθ
uref,M = pshift

uref,M

(
ηθM ,Hθref

uref,M

)
, (2)

Here, pshift
uref,M

is an empirical model on the shifts of component

maps. An example is given in Figure 1. As a consequence,

given values of the scalar deformation coefficients ηθM , it is
possible to retrieve the value Hθ

u,M of the classic indicator
(i.e., efficiencies or flow rates) as long as the corresponding

component map of the reference state is available with oper-

ating condition u.

B. Problem Statement: An Aircraft Engine Use Case

In this work, we investigate a use case of estimating

performance indicators of a turbofan engine from operational

data. In particular, we have access to a dataset Dθ ={(
yθ1 , u1

)
, . . . ,

(
yθN , uN

)}
recording the measurements and

operating conditions of the engine at an unknown degradation

state θ. In particular, each data point containing 6 measure-

ments of 6 sensors (i.e., yθi ∈ R
6, ∀i) and each operating

condition is a pre-determined steady state in one of flying

phases (such as takeoff, climbs, and cruise); the details are

given in Table II. Note that by this formulation of Dθ, we

implicitly assume that there exists a time period that the con-

sidered engine is operated in all conditions u1, . . . , uN without

a change in engine’s degradation states (e.g., remaining as

constant θ during a flight).

We assume that there exist deformation coefficients ηθM ,

corresponding component maps and known functions pshift
ui,M

for each i ∈ [N ] such that one can retrieve efficiencies and

flow rates of the engine corresponding to Dθ by following

Equations 2 (and replacing uref by ui).

From the data set Dθ, we aim to estimate ηθ—a vec-
tor representing 10 deformation coefficients associated with

efficiencies and flow rates of five modules: fan, booster,

compressor, low-pressure turbine and high-pressure turbine.

Table II
MEASUREMENTS IN THE CONSIDERED USE CASE.

Notation Measurable quantities Unit

N2 core rotation speed rpm/s
T25 compressor inlet temperature ◦K
T3 compressor outlet temperature ◦K
EGT exhaust gas temperature ◦K
PS3 compressor outlet pressure bar
WF combustion chamber fuel flow kg/s

Finally, we assume the availability of a thermodynamic
simulator, denoted S, of the considered engine. In particular,

given pre-determined values of η and a steady operation

condition u, S gives simulated values y. In the sequel, we

will use S to construct a dataset for training and validating

the performance of several machine learning models.

Remark 1 (Under-determination). The classic single-point

perspective aims at estimating efficiencies and flow rates

which, by definition, vary according to operation conditions’

changes. As a consequence, if we consider the problem

described above in this perspective, for each point (yθi , ui)
in the dataset—which is a 6-dimensional vector, it requires to

estimate 10 to-be-estimated variables (of the form Hθ
ui,M

). It

is clear that the problem described above falls into an under-

determined setting.

Remark 2 (Multi-point perspective and relaxed hypotheses).
The model described above follows a multi-point perspective,

i.e., we will leverage simultaneously all the points in the Dθ

dataset. In other words, for each dataset Dθ—which is a (6×
N)-dimensional vector, we estimate 10 variables which are

the deformation coefficients.

It is also noteworthy that previous works in multi-point per-

spective and deformation coefficients [12] assume a shifting

model uniformly across all considered operating conditions

(i.e., in Equation 2, pshift
uref,M

is fixed regardless of uref). In this

work, we do not use this assumption as we observe in our

empirical data that shifts at various operating conditions can

differ from one another.

Remark 3 (Comparison with state-of-the-art machine learning

approaches). As discussed in Section I-B, previous works that

use NN as a resolution for the engine performance’s inverse

problem only follows the single-point perspective [8], [30]–

[33]. As a consequence, applying directly such approaches in

under-determined cases, such as our use case, will encounter

difficulties. To highlight this, in Section III, we will demon-

strate the under-performance of NN in the case where N = 1
(i.e., there is one data point in Dθ) which is equivalent to the

single-point perspective.

Moreover, previous works often aim at establishing a surrogate

model for a thermodynamic simulator; hence, the tested NN

model is trained with data at many different operating condi-

tions. This is questionable because most of available simula-

tors are only stable at steady (designed) states and in practice,

data are rarely abundant as they are recorded by on-board
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equipment. In particular, in our use case, measurements data

are only available at a handful of pre-determined operation

conditions (steady states). Note that in this work, we do not

focus on the problem of selecting operating conditions which

should be considered as a pre-processing task; see e.g., [13]

for a discussion.

III. EXPERIMENTAL RESULTS: MACHINE LEARNING

METHODS IN ESTIMATING PERFORMANCE INDICATORS

We first conduct a series of experiments to investigate the

performance of neural networks in our considered use case

of engine performance’s inverse problems. Note that in all

the experiments reported below (and in Section IV), we let

the tested neural networks converge with a common stopping

criterion on validation losses (in mean absolute errors).

a) Data generation: We generate several datasets by

using a thermodynamic simulator—designed and operated by

Safran (based on Janus language)—of a turbofan engine. As

previously stated, this simulator, served as a physical model,

can be considered as a forward model of the inverse problem

at hand; in other words, we first choose a set of values of

deformation coefficients and a set of operating conditions

then input these quantities into the simulator to retrieve the

simulated data of measurements.

In particular, in this work, we focus on a set, denoted by

U , containing 4 specific operating conditions namely Takeoff,

Cruise, Climb1 and Climb2. In particular, each operating

condition carries the information of quantities such as ambient

temperature, ambient pressure, flight speed (mach), pilot’s

control, power extraction and valves’ position.

In the proposed experiments, we will construct different sce-

narios by selecting specific subsets of U when generating data.

Additionally, for each U ⊂ U , we create a training dataset of

size Strain = 10e4 and a test set of size Stest = 2 × 10e3
by sampling values of deformation coefficients via a Latin

hypercube sampling scheme [41] in the range [0.95, 1.00]10.

It is noteworthy that by this sampling scheme, we ensure that

there is no intersection between training and test sets. We

summarize the data generation step in Figure 2.

Figure 2. Data generation via a thermodynamic simulator including the
processing of constructing training and test sets.

In practice, measurements data are subjected to noises

(due to the uncertainties of sensors and unknown factors

surrounding the system). To better simulate real-life situations,

we incorporate such noise into our dataset. Specifically, for all

training sets, we introduce independent zero-mean Gaussian

noise to each measurement element. The variances of these

noises are determined based on empirical data from related

sensors. Additionally, we create two types of test sets: one

without any added noise and the other with zero-mean Gaus-

sian noises similar to those introduced in the training set. Note

that most state-of-the-art works following neural networks

approach in estimating engine performance indicators [31],

[33] are only tested with noiseless simulated data.

Finally, note that in this work, we only tested the concerned

methods on a handful of instances of possible datasets (and

report below results corresponding to only one of them); in

future works, we will conduct more complete tests with the

variations of involved elements and report more complete

results in these cases.

b) Choices of neural network architectures: In all subse-

quent experiments, unless indicated otherwise, we report the

results from a simple neural network, having 3 hidden layers

of size 100, integrated with RELU activation functions, Adam

optimizer and L1-loss, with dropout (probability=0.2) on the

last layer. Note that in all these experiments, we also tested

other neural networks by varying other hyperparameters such

as the size (100, 200, 300 nodes per layer) and the depth

(up to 10 hidden layers), as well as the drop-out probability,

activation functions and types of optimizer (e.g., with a step-

size scheduler); we also alternatively trained these networks

with the mean squared error loss instead of L1-loss. As these

results are quite similar to that of the network mentioned above

and due to space constraint, we opt to only present results of

this simple network. At the moment, we do not see compelling

evidences for the needs in testing with more complicated and

advanced architectures (given the trade-off in their increasing

complexities) and leave this as a future research direction.

c) Experiment 1: double-point data: In the first experi-

ment, for each subset of U that contains two operating condi-
tions, we construct a training dataset and test sets; each having

a 12-dimensional input (corresponding to measurements at the

two operating conditions) and 10-dimensional output. We call

this the double-point scenario. In Figure 3, we report the mean

absolute error (MAE) of estimations given by our chosen

neural network. From this figure, we observe that different

combinations of data associated with different combinations of

operating conditions have different impacts on the estimation

errors of the tested neural network. In particular, among all

double-point data, a combination of measurements at Takeoff

and Climb2 conditions helps our neural networks have the

best precision.

d) Experiment 2: variations in sizes of multi-point data:
In contrast to the previous experiment where the number

of operating conditions (N ) remained fixed, this experiment

compares the performance of neural networks trained with a

varying N . Figure 4 illustrates the estimation errors of tested
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Figure 3. Estimation errors of neural networks trained with double-point
(noisy) data and validate with noiseless test data.

neural networks trained with single-point (data from only

one operating condition, therefore being under-determined),

double-point, triple-point (data from a set of 3 operating con-

ditions), and quadruple-point data (data from all 4 operating

conditions in U ). The results demonstrate that as N increases,

the performances of the associated neural networks improve.

This aligns with the intuitive expectation that training with

more information about the system reduces the challenges

posed by the under-determined setting.

Figure 4. Estimation errors of neural networks as the number of operating
condition N varies. We only report the results associated with the combination
that gives the best precision among all scenarios in each type: single-point,
double-point and triple-point data.

e) Experiment 3: Further analysis in quadruple-point
scenario: Finally, we select the most favorable scenario in

our previously tested case, i.e., when we have access to

measurements at all 4 operating conditions in U . In order

to highlight the improvements given by this particular multi-

point scenario, in Table III, we report the estimation errors cor-

responding to each considered deformation coefficient. From

these results, we observe that our tested neural network can

obtain acceptable precision in estimating most of the required

indicators (and are significantly improved in comparison to

single-point perspective). The two cases with the highest errors

are the coefficients corresponding to efficiencies of fan and

flow rates of low-pressure turbine. This reflects the fact that

measurements in our dataset (even enriched via the multi-

point perspective) do not give tremendous information about

these modules.

Table III
ESTIMATION ERRORS OF NEURAL NETWORKS TRAINED WITH

QUADRUPLE-POINT DATA: MAE ON TRAINING SET, NOISELESS TEST SET

AND NOISY TEST SET. IN PARENTHESES: IMPROVEMENTS IN COMPARISON

TO NETWORKS (OF THE SAME ARCHITECTURE) TRAINED WITH

SINGLE-POINT DATA.

Elements of η MAE train MAE test (no noise) MAE test (noisy)

ηE Fan 0.00786 (-0.0034) 0.00806 (-0.0043) 0.00917 (-0.0032)

ηF Fan 0.00028 (-0.0044) 0.00021 (-0.005) 0.0003 (-0.0049)

ηE Booster 0.00283 (-0.0040) 0.00178 (-0.0062) 0.00309 (-0.0049)

ηF Booster 0.00136 (-0.0017) 0.00087 (-0.0027) 0.00148 (-0.0021)

ηE Compr 0.00127 (-0.0017) 0.00081 (-0.0026) 0.00137 (-0.0021)

ηF Compr 0.00218 (-0.0029) 0.00133 (-0.0045) 0.00235 (-0.0035)

ηE HPTurb 0.00385 (-0.0015) 0.00385 (-0.0022) 0.00445 (-0.0016)

ηF HPTurb 0.00054 (-0.0004) 0.00015 (-0.0001) 0.00055 (-0.0004)

ηE LPTurb 0.00458 (-0.0061) 0.00335 (-0.0085) 0.00494 (-0.0069)

ηF LPTurb 0.00642 (-0.0027) 0.00656 (-0.0038) 0.00747 (-0.0029)

Notation: ηE = deformation coefficient of efficiency, ηF = deformation coefficient of

flow rate, Compr = compressor, HPTurb = high-pressure turbine, LPTurb =

low-pressure turbine.

As a conclusion, in this initial set of experiments, we

showed that data derived from various combinations of oper-

ating conditions significantly influences the precision of the

tested models. Particularly, dataset encompassing measure-

ments from a higher number of operating conditions offers an

improved performance (notably, training in multi-point data is

significantly better than using only single-point data).

IV. LEVERAGING MULTI-TIME DATA

In Section III, we explored a scenario wherein data remains

static: each data point represents a single degradation state of

the engine. For brevity, we will refer to this as “single-time”
data in subsequent sections.

On the contrary, in real-life scenario, we often have access

to time-series operational data, i.e., data from different flight

missions of the same engine (that correspond to different

degradation states). A straightforward approach involves treat-

ing these data points as independent and using neural networks

trained on single-time data to estimate them separately (as

discussed in the previous section). However, this method

disregards temporal information entirely. As a consequence,

a natural question arises: “Can we enhance the performance
of neural networks by treating measurements at different times
of an engine as a whole data point for learning?”

To distinguish with single-time scenario, we refer to this

way of exploiting time-series data as the “multi-time” perspec-
tive. In this section, we investigate some approaches in using

neural networks with multi-time data. As a demonstration,

we will focus on comparing single-time quadruple-point and

double-time quadruple-point scenarios (with the set U ). It is

noteworthy that while such temporal information is exploited

by Bayesian Filtering methods (see Section I), existing neural

network methods have yet to address this aspect.

a) Multi-time data generation: We construct a new

dataset corresponding to pairs of degradation states: the first

state being at a specific instant in the life of the engine,

and the second one being a degradation of this engine after

100 flights. Mathematically, we first sample a value, called
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η1, of deformation coefficients (similarly to previous experi-

ments, we also leverage Latin hypercube sampling). Then, we

generate the degradation directions, i.e., the 10-dimensional

vectors indicating how performance indicators in η1 decrease

after 100 flights (for this reason, all these directions belong

to the R
10
≤0 space). In particular, we select ten degradation

directions Δ at random such that Δ ∼ N (λ, varλ) where

λ ∈ R
10
≤0 represents the associated mean and varλ represents

the associated variance (according to our empirical data). For

each pair of η1 and Δ, we compute

η2 = η1 +Δ. (3)

Finally, we input η1 and η2, together with the operating set

U to the simulator S to achieve a (6 × N × 2)-dimensional

measurement data. We call such this the double-time dataset.

b) Experiment 4: Comparisons of estimations made from
single-time and double-time data: In this experiment, we

construct a new neural network model, having 3 hidden

layers of size 200, integrated with RELU activation functions,

Adam optimizer and L1-loss, with dropout (probability=0.2)

on the last layer to train with double-time data. Note that this

architecture was also used in the single-time setting (but with

a slightly bigger size since the input is twice the size).

In Figure 5, we report the estimation errors given by this

new neural network in estimating either η1 or η2 in comparison

with that of the neural network trained on single-time data

described in Section III. We see clearly that the performance

is improved by using multi-time data. This aligns with the

intuition that multi-time data is more informative than single-

time data. We can also see that η2 is slightly more difficult to

estimate than η1, which is expected as η2 has more variations

than η1 due to our choice of generating data.

Figure 5. Estimation error in using single-time and double-time input to learn
single-time output.

c) Experiment 5: Learning to give double-time estima-
tions: In this experiment, we explore several new neural

networks employing a similar architecture to the previous

ones but designed to generate outputs of different sizes. In

particular, we construct a network learning to estimate a 20-

dimensional vector (η1, η2) and another network learning to

estimate another 20-dimensional vector of the form (η1,Δ)
(Note that all neural networks described before this point

have a 10-dimensional output). In words, the former aims at

simultaneously give estimations of both values of deformation

coefficients in the pair of degradation states and the latter aims

at estimating the first state and the degradation speed (that will

be used to derive the second state).

In Figure 5, we report the estimation errors given by these

two neural networks. We saw that adding explicit information

about the Δ in output does not improve performances.

As a conclusion regarding multi-time data, we observe that

letting a network learning point-by-point (with double-time in-

put or single-time input) is better than learning simultaneously

both points of η1 and η2. Our hypothesis is that to have the

same degree of accuracy, the considered networks should be

bigger as the size of output is larger.

Figure 6. Estimation error in using double-time input to learn double-
time output.

V. CONCLUSION

In this work, we study a use case of engine performance’s

inverse problem. While previous works have employed neural

networks to tackle similar issues, they primarily focused on

the single-point perspective resulting in an under-determined

setting and leading to subpar performances. In order to mit-

igate this, we adapt a multi-point perspective to train neural

networks with more enriched data. We demonstrate, by con-

ducting a series of experiments, that the estimation precision

provided by tested models is significantly improved in the

multi-point perspective in comparison with the single-point

case. Finally, we also investigate the usage of several possible

approaches in leveraging multi-time data, which also resulting

in improved performance of certain tested neural networks.

We note that in this study, our experiments were confined to

operating conditions within a pre-determined set representing

the operating conditions observed in the real-life scenario that

we investigated. We speculate that the performance of neural

networks could be augmented by training them with data from

a wider range of operating conditions. We leave this for future

investigations. Similarly, to better exploit time-series data, a

possible approach for future study is to use Bayesian filters

(such as Kalman filter or particle filter)—that are classic in
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the application context of engine monitoring—to post-process

outputs of neural networks in order to take the best-of-both-

world advantages.
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