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Abstract—While large language models (LLMs) excel at code
generation, translating abstract descriptions into robust and
functional code remains a significant challenge. Despite dedicated
efforts, existing works for refining code generation with LLMs
have demonstrated limitations, either constrained by the static
rules or computational overhead of additional training, ultimately
proving insufficient to meet the intricate demands of real-
world code quality. This paper proposes a method to improve
code generation ability with LLM by combining reinforcement
learning from human feedback (RLHF) with crowd-sourced
computation, referred to as cRLHF. Our goal is to enhance
code quality through diverse end-user feedback. Traditional
RLHF, relying on a single evaluator, risks biases and overlooks
insights, hampering LLMs’ growth. The cRLHF framework,
powered by Bayesian inference, ensures objective code evaluation
from multiple evaluators. Our experiments exhibit significant
improvements in code correctness, showcasing the efficacy of
crowd-sourcing with reinforcement learning.

Index Terms—AI alignment, Bayesian analysis, Reinforcement
learning, Inductive bias, Code generation

The advent of Artificial Intelligence (AI) has ignited a

transformation in human-machine interaction, notably through

the advancement of natural language processing (NLP). Over

recent years, the evolution of large language models (LLMs)

that are capable of comprehending and producing language

has opened up innovative avenues in content comprehension

and generation [1], [2]. An especially compelling application

of LLMs is in AI-assisted programming, enabling develop-

ers to expedite innovation in software development [3]–[7].

However, ensuring that LLMs generate code that meticulously

aligns with desired requirements and specifications poses a

significant challenge. Beyond basic requirements, capturing

the more delicate details of developer preferences and address-

ing implicit considerations remain major hurdles for LLMs,

limiting the ability to generate truly tailored and efficient code.
Inductive bias shapes LLM performance and generalization

by embedding assumptions into the model architecture, yet

can also impose limitations. By harnessing diverse human

inputs, crowd-sourced evaluations or feedback can effectively

counteract the inherent biases in LLMs. The collective wisdom

of a crowd can enable the identification and correction of

biases encoded during training, thereby enhancing adaptability

and generalization capabilities [8]–[12]. Integrating human

feedback into LLM development and refinement presents a

promising approach to mitigating inductive biases and tackling

the LLM alignment challenge. This includes reinforcement

learning (RL), human-assisted computation, and fine-tuning

x

Fig. 1: Integration of the cRLHF framework workflow with the

reinforcement learning framework utilizing proximal policy

optimization (PPO) for code generation.

algorithms. RL from Human Feedback (RLHF) uniquely inte-

grates human insights into training, enabling effective handling

of complex tasks [13]–[15]. However, depending solely on

raw human feedback may prove counterproductive, especially

when RL systems encounter high uncertainty and unreliable

input. Given the constraints of human evaluators, crowd-
sourcing aims to extract maximum value from their input,
minimizing user involvement while maximizing learning gains
for RL agents.

This paper introduces cRLHF, a novel framework harness-

ing crowd-sourced human feedback from diverse sources. By

optimizing the final reward score, it simplifies the conventional

RLHF feedback process shown in Figure 2 by eliminating

the requirement for an additional reward modeling [16]. We

establish a crowd-sourced framework rooted in Bayesian in-

ference for self-assessment from multiple sources, targeting

explicitly code generation tasks. The open nature of cRLHF

empowers a diverse community of participants to collabo-

ratively refine LLM outputs through their annotations. This

framework proves particularly valuable when prior knowledge

is limited, as it empowers a diverse collective to actively

uncover errors. We fine-tune baseline LLMs and evaluate their

performance on code generation tasks, both with and without

cRLHF integration, to measure the impact of our framework

on benchmark scores directly. In summary, the contributions
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Fig. 2: Comparison between traditional RLHF and crowd-sourced human feedback strategy for code generation. The upper part

shows the traditional method with a single annotator ranking outputs forwarded to the reward model. The lower part depicts

the crowd-sourced strategy involving multiple annotators, computing consensual outputs based on ranking or reward scores.

of our work in this study are as follows:

• We present cRLHF, a unique framework for integrating

crowd-sourced human feedback in RLHF via Bayesian

inference. This approach combines input from multiple

annotators without requiring extra reward modeling, lead-

ing to notable enhancements in code quality.

• We design a systematic computational approach based on

Bayesian inference, specifically for code annotation tasks

within our cRLHF framework.

• We demonstrate that cRLHF improves the base model

on an established benchmark by different experiments,

achieving code quality improvement compared for LLMs.

I. RELATED WORKS

Code generation encompasses methods like code under-

standing and generation [6]. More recently, transformer-based

LLMs through attention mechanism [17] have demonstrated

remarkable prowess in code generation tasks [18]. Code

generation can be considered as the sequence generation

task, which can be optimized by the RL approaches [19].

Recent progress has been achieved in utilizing human feedback

[13]–[15], a paradigm incorporating human insights into the

learning process. Unlike solely depending on rewards from the

environment, this method uses human preferences as a guiding

direction. Human feedback can be gathered and prioritized

through interactions with dialogue agents, as demonstrated in

previous works [20], [21]. Humans play the role of providing

feedback or ranking the generated output in the learning

process of the RL system. The input of human feedback

enriches the capacity of the system to align its decisions with

human expectations. Several recent studies have focused on

the aspect of alleviating the process with RLHF. In the study

by [22], a new alignment algorithm was introduced within the

alignment pipeline for generative models, encompassing not

only LLMs. For instance, [23] proposed integrating natural

language feedback into the RL process to enhance code

generation, while [24] introduced a new policy optimization

algorithm as a substitute for policy gradient methods to better

align LLMs with human preferences.

II. METHODOLOGY

A. Problem Description

To begin, we provide a formal description of the problem in

this study. We mainly follow the setting in [25] for utilizing

human feedback with LLM in this study. The workflow of

our cRLHF framework is illustrated in Figure 1. Given a

programming problem description x ∈ X , the supervised

fine-tuned model πSFT aims to translate the description from

natural language into a code snippet or program y. A reward

function R(x, y, s) with a reward score s computed from our

crowd-scouring framework based on all human feedback. Our

objective is to fine-tune a model πθ, initially set as πSFT from

supervised fine-tuning (SFT), so as to generate responses that

return maximal rewards.
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def hcf(a, b):
 while b != 0:
       c = a
       b = a % b
       a = b
 return a

def hcf(a, b):
    while b != 0:
          c = a
          b = a % b   
          a = b
    return a

def hcf(a, b):
    while b != 0:
          c = a
          b = a % b   
          a = b
    return a

Annotate

Annotate

Annotate

Validate

def hcf(a, b):
    while b != 0:
          c = a
          b = a % b   
          a = b
    return a

def hcf(a, b):
 while b != 0:
       c = b
       b = a % b
       a = c
 return a

Fig. 3: An overview of the process for evaluating pi across all annotators. Displayed alongside descriptions and code examples

on the left-hand side of the figure, each annotator, along with their corresponding pi values, is tasked with identifying errors

within the code. Subsequently, the system evaluates the accuracy of the annotations and adjusts the pi values accordingly.

B. Crowdsourced Feedback Alignment for Code Generation

In this section, we describe cRLHF for aligning crowd-

sourced human feedback to rank the generated output from

LLMs. cRLHF computes the s from multiple annotators as

a reward function. For input {x1, x2, . . . , xq, . . . , xt} ∈ X ,

the collection of all generated code snippets from πθ can be

represented as (y1, y2, y3, . . . , yn) of y ∈ Y , where n signifies

the count of generated outputs. For the input {x1, x2, . . . , xq},

we know the exact correctness for each generated output. Our

human feedback is procured from a group of m annotators,

denoted as (a1, a2, a3, . . . , am) of a ∈ A. These annotators

then are tasked with providing annotations for each y. In this

work, our annotation methodology revolves around evaluating

each line l of the program, wherein y ∈ {l1, l2, l3, . . . , lk}
with k denoting the number of lines. Workers annotate each

line of code using labels such as “correct” for error-free code

or “wrong” for buggy code, which are represented by values

{1,−1}. For each line of code, it has a prior probability

of being correct and the prior probability is 1
2 . For li, the

correctness is represented by L0, where

L0 =

{
1 if the li is true

−1 otherwise.
(1)

We begin with the assumption that the system has no prior

knowledge of the value of L0, and its task is to compute the

likelihood of li being true (P (L0 = 1)) based on the input of

annotators. Let the prior probability of li being true be p0, i.e.

p0 = P (L0 = 1) =
1

2
.

Consider the response from an annotator a1 as L1, with a

corresponding probability of correctness denoted as p1:

p1 = P (L1 = 1 | L0 = 1) = P (L1 = −1 | L0 = −1).

From Bayes’ Theorem, we have:

P (L0 = 1 | L1 = 1) =
P (L1 = 1 | L0 = 1)P (L0 = 1)

P (L1 = 1)
,

which, using p0 and p1, can be further rewritten as:

P (L0 = 1 | L1 = 1) =
p1p0

p1p0 + (1− p1)(1− p0)
.

By introducing the logit function [26], we can further

simplify the probability into:

P (L0 = 1 | L1 = 1) = logit−1(logit(p0) + logit(p1)), (2)

where the logit function is defined as logit(·) = log( ·
1−· ),

and logit−1(·) = exp ·
1+exp · . Similarly we have:

P (L0 = 1 | L1 = −1) = logit−1(logit(p0)− logit(p1)). (3)

Combining (2) and (3), we get:

P (L0 = 1 | L1 = ε1) = logit−1(logit(p0) + ε1logit(p1)).
(4)

Given that the available options for annotators are restricted

to {1,−1} within this system, it follows that logit(p0) = 0.

With this insight, we can simplify (4) to:

P (L0 = 1 | L1 = ε1) = logit−1(ε1logit(p1)). (5)

We then consider another annotator a2 contributes their

response as L2 with an independent probability p2 of being

correct, and we can regard the posterior probability P (L0 =
1|L1 = ε1) as our revised prior. Thus, we have:

P (L0 = 1 | L1 = ε1, L2 = ε2)

= logit−1(logit(P (L0 = 1|L1 = ε1) + ε2logit(p2))

= logit−1(ε1logit(p1) + ε2logit(p2)). (6)
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Building upon the analysis involving two annotators as

discussed earlier, we now incorporate feedback obtained from

n annotators regarding l1:

P (L0 = 1 | L1 = ε1, · · · , Ln = εn) = logit−1(
n∑

i=1

εilogit(pi)).

(7)

We have thus established a human-assisted computational

procedure (e.g., [27]) to evaluate the pi values as illustrated in

Figure 3. To calculate the pi value for each annotator, we start

with a parameter ν as the initial value of pi. With the initial

set of q annotation tasks, the system receives correct answers

from the dataset X , which it uses to refine each annotator’s pi
values based on the problem sets and annotator responses. In

this fine-tuning process, the annotators’ pi values are adjusted

incrementally based on the accuracy of their annotations for

the q tasks, using a constant step size. The adjustment’s

magnitude is dictated by the p̄ value, acting as a modulating

factor for the adjustment scale. This modulation guarantees

that the degree of adjustment corresponds to the system’s

confidence in its initial response. Following the annotation of

each program within the set of p tasks, the system then updates

each annotator’s pi using the approach:

p∗i = logit−1(logit(pi) + λμ logit(p̄)), (8)

where p∗ is the updated prior probability value, μ is the

correctness of the annotator’s response to the particular li (μ =
1 for correct annotation, μ = −1 for incorrect response), λ is

a hyper-parameter, and p̄ is the certainty that the response

used by the system for annotator is correct. For the initial

questions and the evaluation questions, p̄ would be 1, meaning

that the system is absolutely sure about the answer. For other

questions, p̄ would be the value obtained from (6).

For the generated outputs, denoted as y and comprising a set

of possible lines of code {l1, l2, l3, . . . , lk}, where k represents

the total number of lines, we can evaluate the accuracy of

each line using equation (7). The resulting count is labeled

as c, serving as the basis for calculating the correction rate
on a line-to-line basis. We can integrate this score, denoted as

s = c/k, into the system without relying on reward modeling,

similar to existing preference-based RL approaches [28], [29].

The aligned score for each y in the system ranges of [0, 1].
We then construct a dataset S, comprising triplets (x, y, s)
that capture annotators’ feedback for all generated outputs of

y to rank score directly, which is to map a given description

and its corresponding code to a reward value s. Once the

system computes the s for each generated output from the

annotators, it follows the approach outlined in [25] to integrate

the proximal policy optimization (PPO) algorithm [30] into the

RL system. To integrate our framework, as shown in Figure

1, we illustrate the algorithmic procedure in Algorithm 1.

III. EXPERIMENTAL EVALUATIONS

In this section, we describe the experimental setup, the

baselines and evaluation metrics for performance evaluation.

Algorithm 1 cRLHF with LLM for Code Generation

Input: Dataset X , SFT Model πSFT

Output: Tuned Model πθ
Parameters: Threshold τ

1: πθ ← πSFT

2: for Problem Input {x1, x2, . . . , xq, . . . , xk} ∈ X do
3: if {x1, x2, . . . , xq} then
4: for Annotators a ∈ A do
5: {p} ← Update by eq. (8)

6: end for
7: else
8: {y1, y2, y3, . . . , yn ∈ Y } ← πθ(x)
9: for Generated Output y ∈ Y do

10: c, k ← 0
11: for Annotators a ∈ A do
12: {ε} ← Annotate(y)
13: end for
14: for Each Line l ∈ y do
15: k ← k + 1
16: if eq. (7) > τ then
17: c← c+ 1
18: end if
19: end for
20: s← c/k
21: for Annotators a ∈ A do
22: {p} ← Update by eq. (8)

23: end for
24: end for
25: πθ ← PPO(x, y, s)
26: end if
27: end for

A. Human Feedback Collection

To generate crowd-sourced human feedback for evaluation

purposes, we structure annotation tasks akin to assigning

coursework on an online platform designed for code anno-

tation, as illustrated in Figure 4. To obtain diverse feedback

for software bug identification, we enlist 30 human annotators

to evaluate 20 programming descriptions per baseline model,

each containing 10 code outputs with defined correct answers.

While annotators are selected to represent varying skill lev-

els, individual annotator accuracy pi is dynamically adjusted

during the experiment using the method in Section II-B for

evaluation. To initialize pi for each annotator, we assign them

five tasks with known correct answers, following the approach

in [27]. Next, for every problem description, we provide

four generated code options. Annotators are then tasked with

identifying any errors present within these provided codes.

B. Dataset and Evaluation Metric

We focus mainly on code generation tasks by fine-tuning

the baseline models on the code generation dataset from

[31]. We evaluate cRLHF on established code generation

benchmarks from HumanEval [32] and MBPP [33]. We use
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Fig. 4: An online crowdsourcing platform for code annotation

tasks. Annotators will receive various code snippets generated

by LLMs with the corresponding descriptions. Their task

involves annotating lines of the program that contain errors.

the pass@k metric in [32] to measure functional correctness,

which quantifies the percentage of problems solved.1 To

maintain consistency throughout our experiments, we assess

pass@1, pass@10, and pass@100 using fixed temperature

values of 0.2, 0.6, and 0.8 for all evaluations.

C. Baseline Models

We leverage eight publicly available pre-trained language

models for our code generation experiments with cRLHF.

The first baseline, POLYCODER [34], utilizes the GPT-2

with parameters set at 400M and 2.7B. The second model,

CODEGEN-MULTI [35], is trained on distinct datasets of

different scales, featuring parameter sizes of 350M and 2B.

Furthermore, CODEPARROT [36], derived from GPT-2, em-

ploys parameter sizes of 110M and 1.5B. Finally, GPT-NEO

[37] with 1.3B and 2.7B parameters is included in our study.

In our study, ensuring a fair evaluation is paramount,

particularly given the potential for certain baseline models to

be trained on benchmark data. To mitigate any biases that may

arise from this, all models undergo SFT are then integrated as

πSTF within our cRLHF framework. This step is crucial for

maintaining fairness in evaluation.

1Pass@k is the unbiased estimator for the probability that the correct answer
is within k samples given a total number of n samples and c unit tests, i.e.,

pass@k = E

[
1− (n−c

k

)
/
(n
k

)]
[32].

Models
Baseline w/cRLHF

HumanEval MBBP HumanEval MBBP

1 10 100 1 10 100 1 10 100 1 10 100

PolyCoder-400M 1.65 4.57 11.3 0.08 0.71 1.40 1.86 5.12 11.6 0.12 1.33 4.26

PolyCoder-2.7B 5.94 10.0 17.1 1.48 7.80 25.2 6.03 10.2 17.3 1.50 8.71 26.8

CodeGen-350M 5.53 10.9 17.3 2.87 16.0 35.0 6.31 12.1 20.0 3.27 18.3 40.0

CodeGen-2.7B 11.7 25.7 39.8 10.6 32.6 54.1 13.3 29.3 45.4 12.1 37.2 59.7

CodeParrot-110M 3.66 6.25 11.3 0.13 0.12 6.40 4.13 6.33 12.4 0.22 1.60 8.33

CodeParrot-1.5B 4.42 8.47 15.7 0.40 3.15 13.0 4.91 9.41 17.4 0.66 4.31 16.4

GPT-Neo 1.3B 4.24 6.26 7.85 0.34 2.90 14.2 4.71 6.95 8.72 0.58 4.17 16.8

GPT-Neo 2.7B 5.76 10.8 20.1 1.56 7.72 21.6 5.97 11.2 20.7 1.61 8.00 22.4

TABLE I: Evaluation results on the HumanEval and MBBP

benchmark. Each pass@k[%] for each model is computed

with three sampling temperatures (t = 0.2, 0.6, 0.8) and the

highest one among the three are displayed. The table is divided

into two sections: Baseline models and models with crowd-

sourced feedback. Each cell in the table represents the pass

rate percentage for a particular model, metric, and k value.

IV. FURTHER DISCUSSIONS

A. Numerical Results

The main numerical results from our experiments with

different models are presented in Table I. This table provides

a summary of the outcomes obtained from the benchmarks for

both the original LLM and the model incorporating cRLHF.

The fine-tuned models with the cRLHF outperformed base-

lines on established code generation benchmarks, highlighting

the effectiveness of crowd-sourced RLHF. The results pro-

vide a comprehensive overview of how different-sized LLMs

performed in generating code from natural language descrip-

tions, highlighting the improvements achieved by our cRLHF.

CodeGen models demonstrated a stronger performance boost

in the larger model (45.4% from 39.8% for CodeGen-2.7B

vs. 20.0% from 17.3% for CodeGen-350M on HumanEval

with k = 100), while CodeParrot models exhibited a more

pronounced improvement in the smaller model achieving a

9% improvement and the larger model exceeding 10% on

HumanEval, emphasizing the conditional nature of cRLHF’s

influence. For cRLHF, akin to the baseline, models with

larger parameters consistently demonstrate better performance

across all benchmarks. However, even models with similar

parameters, such as model with 2.7B size, can yield signifi-

cantly varied outcomes dues to differences in their architecture

and the pre-trained dataset used. Remarkably, CodeGen-350M

manages to achieve best performance for all smaller models

on two benchmarks, surpassing even larger models.

B. Discussion

Our findings suggest a significant impact of cRLHF on code

generation. The consistent and notable improvements observed

when integrating cRLHF into existing baseline models across

various benchmarks enhance the quality and relevance of

generated code. Through Bayesian analysis, we show that
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human feedback can affect the generalizability of LLM code

generation by encompassing differences in architecture, pre-

training or fine-tuning datasets, parameter size, and the in-

herent randomness of generated output. Our findings offer

some initial theoretical insights into bridging the gap between

human-in-the-loop frameworks and modern LLM frameworks.

V. CONCLUSION

This paper introduces cRLHF, a framework that integrates

RL and human feedback to enhance code generation in LLMs.

Our cRLHF framework uses Bayesian statistics to combine

rankings from different assessors, guaranteeing accurate re-

ward scores without the need for complex additional reward

modeling. This advancement improves AI-assisted program-

ming, enabling developers to tackle complex system devel-

opment using LLMs. Our comprehensive evaluation using a

widely recognized benchmark with human annotators demon-

strates consistent improvements over existing baseline models

in various code generation tasks, highlighting the efficacy and

practical utility of the cRLHF framework. Future research

could extend our framework to enhance software security

within code generation by leveraging human feedback to guide

the creation of secure and robust software implementations.
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