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Abstract—As a highly protective biological structure, the
blood-brain barrier prevents the uncontrolled passage of
molecules to keep the central nervous system free from chem-
ical toxification and maintain brain homeostasis. Since most
substances are not allowed to freely penetrate the blood-brain
barrier, examination of the blood-brain barrier permeability
(BBBP) of drug candidates is highly essential in drug discovery.
To screen the BBBP of molecules, several computational methods
were developed with satisfactory outcomes. These methods,
however, have shortcomings that need to be addressed to im-
prove prediction performance. In our study, we propose iBBBP-
Ensemble, an ensemble deep learning model that combines two
types of neural networks: a convolutional neural network and
multilayer perceptrons, and three types of molecular representa-
tions: the Extended-Connectivity Fingerprint, RDKit molecular
descriptors, and Mol2vec-embedded features. Experimental re-
sults confirmed the effectiveness and stability of our proposed
model. The benchmarking analysis also indicated that iBBBP-
Ensemble outperformed all machine learning and deep learning
baseline models.

Index Terms—blood-brain barrier permeability, BBBP, deep
learning, ensemble learning, ADME, drug discovery

I. INTRODUCTION

Optimizing the pharmacokinetic and pharmacodynamic

properties of drug candidates is an essential stage in drug

discovery. Among these properties, the ability or inability to

penetrate the blood-brain barrier is crucial for investigating

drugs targeting receptors in the brain. The blood-brain barrier

(BBB) is a dynamic biological layer that strictly controls the

non-selective penetration of compounds to protect the central

nervous system (CSN) and maintain brain homeostasis [1],

[2]. The molecular structures of drugs are designed to ei-

ther enhance or suppress their ability to pass the BBB. To

effectively treat CNS disorders, drug candidates are driven to

have enhanced BBB penetration abilities. While treating other

diseases, drug candidates are designed to have suppressed

BBB penetration abilities or even BBB penetration inabilities

to reduce undesirable CNS-related side effects [1], [2]. Nu-

merous prospective drugs have been discontinued because they

The work of BPN was supported by the Faculty Strategic Research Grant
(FSRG) numbers 410132 & 411494 at Victoria University of Wellington
(VUW) and the Endeavour Fund (Smart Ideas) from the New Zealand
Ministry of Business, Innovation and Employment (MBIE) under contract
VUW RTVU2301. The work of THNV was partly supported by the Whitireia
and WelTec Contestable Fund.

can penetrate the BBB and exert their full effectiveness. One

hundred percent of large-molecule drugs and more than ninety

percent of small-molecule drugs are unable to penetrate the

BBB [3]. Therefore, it is essential to develop a framework that

can predict the BBB permeability (BBBP) of drug candidates.

Conventionally, the BBBP of drug molecules has been

determined via in vitro [4], [5] and in vivo [6], [7] methods.

Those approaches, however, are expensive, time-consuming,

and labor-intensive [8], [9]. As computer-assisted approaches

for analyzing BBBP offer significant benefits, including high

throughput, low cost, and great efficiency [10], many com-

putational models for BBBP prediction have been developed

using diverse techniques and features [11]. According to the

diversity of their underlying methodologies, these models are

divided into four categories: mathematical learning, statistical

learning, machine learning, and deep learning. The MPO [12],

MPO V2 [13], and BBB Score [14] are typical mathematical

learning models designed with specific probability functions

based on the physicochemical properties of molecules. Several

statistical learning models were constructed using different

techniques, such as multiple linear regression, partial least

squares, and linear discriminant analysis [15], [16]. Besides,

machine learning models were developed using distinct al-

gorithms, encompassing Logistic Regression [17], Random

Forest [18]–[20], Support Vector Machines [20], [21], Naı̈ve

Bayes [20], Light Gradient Boosting Machine [22], and eX-

treme Gradient Boosting [23], [24]. Multiple deep learning ar-

chitectures, comprising artificial neural networks (ANN) [25]–

[27], recurrent neural networks [28], and convolutional neural

networks [29], were utilized to develop models for BBBP

prediction. Besides, hybrid models combining several tech-

niques were released with promising outcomes [10], [27], [29].

Although the mathematical and statistical learning models are

explainable, their prediction efficiency is limited due to the fact

that their probability functions were derived using insufficient

data. Since these machine learning models were developed us-

ing larger datasets, they were more generalizable and accurate

at making predictions. However, the model creators did not

examine the class imbalance issue and how it affected model

precision. While the existing deep learning models are either

outdated [25], [26] or inappropriately formulated [27]–[29].

Wu et al. [27] created their model using a very small dataset
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of 260 training samples and 40 test samples. Alsenan et al.’s
model was overfitted due to data leakage [28]. They pre-

processed all the data before splitting it into training and test

sets [28]. Thus, an effective and robust computational model

for BBBP prediction is highly essential. The model needs

to be trained with an up-to-date, well-curated dataset under

an appropriate modeling strategy and evaluated by reasonable

metrics.

In our study, we propose an effective deep learning frame-

work called iBBBP-Ensemble to predict the BBBP of com-

pounds. Three types of features: Extended connectivity fin-

gerprints (ECFP) [30], RDKit molecular descriptors (RD-

KitMD) [31], and Mol2vec-embedded features (Mol2vec) [32]

are used as independent inputs of three separate neural net-

works. The outputs of these three neural networks are then

averaged to obtain the final outputs. Our proposed model is

also benchmarked with several conventional machine learning

and deep learning models to fairly assess its performance.

II. MATERIALS AND METHODS

A. Dataset

The chemical data used for model development and evalu-

ation were collected from the B3DB database, which contains

curated BBBP compounds [33]. The B3DB database has

4956 compounds that are able to pass the blood-brain barrier

(BBB+) and 2851 compounds that are unable to pass the

blood-brain barrier (BBB-). This database is currently the

largest BBB dataset, whose chemical records were collected

from numerous peer-reviewed publications and open-access

datasets until now.

Prior to constructing the model, a data curation process

was carried out to qualify the input data for both the de-

velopment and evaluation stages. We used the data curation

procedure developed by Fourches et al. [34] with slight

adjustments [35], [36]. The procedure consists of four main

stages: (1) validation, (2) cleaning, (3) normalization, and (4)

final verification. Stage 1 eliminates any molecules that are

classified as inorganic, mixtures, or organometallics. Stage 2

discards salts and resolves two kinds of charged molecules:

metal-containing and organic ones. While metal-containing

charged molecules are rejected due to possessing metal atoms

with positive charges, organic charged molecules are kept

unchanged because precisely defining the experimental set-

tings under which charged organic molecules are active is

infeasible. Hence, charged organic molecules are neutralized.

Stage 3 transforms all tautomers (detautomerization) and

stereoisomers (destereoisomerization) of the same molecules

into their unique, standardized forms to ensure no interconvert-

ible isomers are available. Any duplicates detected in these

three stages are removed at the end of each stage. Stage 4

removes any chemical data (molecules) holding conflicting

labels, or the so-called ‘conflicting record’. All chemical data

were formatted in canonical SMILES form before entering

any processing stages. All chemical data were formatted

in canonical SMILES form before entering any processing

stages. It is worth noting that BBB+ and BBB- samples were

TABLE I: Datasets for model development and evaluation

Dataset Number of molecules
BBB+ BBB- Total

Training 1764 1000 2764
Validation 311 177 488
Test 366 208 574

separately processed. Conflicting records may appear in one of

the following three cases: (a) two or more identical molecules

carrying different labels; (b) duplicate molecules carrying the

same label; and (c) two or more distinct molecules whose CAS

registry numbers are the same. While any records that match

cases (a) or (c) were discarded, records that match case (b)

were merged into one. Furthermore, all molecules were cross-

referenced in the PubChem and ChEMBL databases, the two

largest and most reliable chemical databases, to ascertain their

structural identities and validities.

After the chemical data were curated, we obtained 3826

curated chemical samples. Then, we used stratified random

sampling to select 15% of the total curated data to build an

independent test set. The remaining chemical data were used

as a training set (for developing machine learning models) or

continued to be divided into a training set and a validation set

with a ratio of 85:15 (for developing deep learning models).

Table I provides the numbers of curated chemical data for

model development and evaluation.

B. Molecular Representations

1) Extended Connectivity Fingerprints: Extended-

connectivity fingerprints (ECFPs) are a subtype of topological

fingerprints, also known as circular fingerprints or Morgan

fingerprints [30]. They were initially created for substructural

similarity searching before being upgraded to support

structure-activity modeling. The ECFP scheme allows users

to generate various types of circular fingerprints (ECFPD
with D as the diameter) by adjusting the radius and bit counts.

The BBB molecules were converted into 2048-dimensional

binary vectors using a radius of 2 so-called ‘ECFP4-2048’ or

‘ECFP4’ vectors. Since the ECFP4 vectors are sparse vectors,

they were transformed into their corresponding index vectors

used for deep learning models. The details of transforming

ECFP4 vectors into corresponding index vectors are clearly

explained in other studies [37], [38].

2) RDKit Molecular Descriptors: The RDKit molecular

descriptor (RDKit MD) set, which consists of 196 physico-

chemical properties, was calculated using RDKit, an open-

source cheminformatics library [31]. The feature set includes

4 molecular property descriptors, 58 MOE-type descriptors,

7 topological descriptors, 1 charged partial surface area de-

scriptor, 12 connectivity descriptors, and 106 constitutional

descriptors. The molecular descriptors of BBB molecules were

computed as vectors of size 1×196.

3) Mol2vec-embedded Features: Mol2vec [32] is a pre-

trained molecular encoder for converting molecular structures

into numerical vectors, also known as molecular embeddings.

These Mol2vec-embedded vectors can be used as input for
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machine learning models or other types of data analysis [39].

The concept of Mol2vec is based on the idea of a molecular

fingerprint. Learning to map molecular fingerprints to con-

tinuous vectors helps it to capture more complex structural

information than traditional fingerprints. This mapping enables

the use of molecular embeddings in various downstream

applications, such as virtual screening, drug discovery, and

quantitative structure-activity relationship modeling. The BBB

molecules were converted into Mol2vec-embedded vectors

with a dimension of 1×300.

C. Model Architecture

Our proposed deep learning model is designed with three

independent neural networks that accept three different types

of molecular representation vectors: ECFP-embedded vectors,

RDKitMD vectors, and Mol2vec-embedded vectors (Figure 1).

The neural networks for ECFP-embedded vectors, RDKitMD

vectors, and Mol2vec-embedded vectors are termed NN1,

NN2, and NN3, respectively. NN1 is a convolutional neural

network (CNN), while NN2 and NN3 are multilayer percep-

trons (MLP). The NN1 branch has one embedding layer, one

2D-convolutional (Conv2D) layer, one batch normalization

(BatchNorm) layer, one 2D max-pooling (MaxPool2D) layer,

and two fully connected (FC) layers. NN2 and NN3 are

similarly designed with three fully connected layers. The

first fully connected (FC1) layers of NN2 and NN3 accept

RDKitMD and Mol2vec-embedded vectors with dimensions

of 1×196 and 1×300, respectively. A dropout rate of 0.1

is applied after the first and second fully connected layers.

The outputs of NN1, NN2, and NN3 are probabilities that

are then ensembled to form the final predicted probability.

The Leaky Rectified Linear Unit (LeakyReLU) is the only

activation function used in all layers of these neural networks,

except for the final layers, which are activated by the sigmoid

function.

Our model was optimized using the Adam optimizer [40]

with a learning rate of 1×10−4 to iteratively tune the network

parameters. Since the problem is binary classification, we

employed binary cross-entropy as the loss function. All deep

learning models in our study were implemented using PyTorch

1.10.2 and trained on an i7-9700 CPU equipped with 32GB

of RAM and one NVIDIA Titan Xp GPU. Our models

were trained over a period of 20 epochs. The final model

selection was based on the epoch corresponding to the lowest

validation loss. The duration of training for each epoch was

approximately 2 seconds, while the duration of testing for each

epoch was approximately 0.25 seconds.

III. RESULTS AND DISCUSSION

A. Model Evaluation

To examine the effectiveness of the ensemble learning strat-

egy, we compared iBBBP-Ensemble to its component neural

network models. All models were developed and evaluated

using the same training, validation, and test sets. We assessed

the performance of all models with four evaluation metrics,

including balanced accuracy (BA), F1 score (F1), Matthews’s
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Fig. 1: Model architecture of iBBBP-Ensemble.

correlation coefficient (MCC), the area under the receiver

operating characteristic curve (AUCROC), and the area under

the precision-recall curve (AUCPR). Table II summarizes the

results of model evaluation on the independent test set. The re-

sults indicate that ensemble learning can improve the model’s

performance. Our proposed model outperforms its component

neural network models, with AUCROC and AUCPR values

of 0.9031 and 0.9426, respectively. Our model also achieves

an F1 score of 0.8730 and an MCC value of 0.6316. The

second-best model is the MLP developed with RDKitMD

features, followed by the MLP developed with Mol2vec-

embedded features, and the CNN developed with ECFP4-

embedded features.

B. Model Benchmarking

1) Benchmarking with Machine Learning Models: To ex-

amine the performance of iBBBP-Ensemble, we also com-

pared it with 20 conventional machine learning models de-

veloped by combining five learning algorithms: AdaBoost

Classifier [41] (ABC), Extremely Randomized Tree (ERT),

Gradient Boosting [42] (GB), Random Forest (RF) [43], and

eXtreme Gradient Boosting (XGB) [44], and three types of

molecular representations: ECFP4, RDKitMD, and Mol2vec-

embedded features. Since the construction of machine learning

models often requires hyper-parameter tuning via k-fold cross-

validation, we merged the training data and validation data

(used for training iBBBP-Ensemble) to create a new training

set. All machine learning models were tuned and trained on the

new training set. The independent test set remains unchanged.

Table III compares the performance of iBBBP-Ensemble

and that of 20 machine learning models on the independent test

set. It is unsurprising that the machine learning models trained
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TABLE II: The performance of iBBBP-Ensemble and other deep learning models

Model Feature Metric
ECFP4 RDKitMD Mol2vec AUCROC AUCPR BA F1 MCC

CNN + - - 0.8701 0.9198 0.7776 0.8388 0.5551
MLP - + - 0.8817 0.9168 0.7894 0.8632 0.5997
MLP - - + 0.8802 0.9231 0.7623 0.8531 0.5582
Ours + + + 0.9031 0.9426 0.8066 0.8730 0.6316

TABLE III: The performance of iBBBP-Ensemble and other conventional machine learning models

Model Feature Metric
ECFP4 RDKitMD Mol2vec AUCROC AUCPR BA F1 MCC

ABC + - - 0.7584 0.8240 0.5677 0.7987 0.2684
ERT + - - 0.8047 0.8726 0.6381 0.8230 0.4058
GB + - - 0.8125 0.8755 0.6467 0.8272 0.4258
RF + - - 0.8177 0.8795 0.6302 0.8223 0.4032
XGB + - - 0.8134 0.8854 0.6828 0.8303 0.4482
ABC - + - 0.8163 0.8601 0.6959 0.8350 0.4690
ERT - + - 0.8767 0.9172 0.7330 0.8501 0.5309
GB - + - 0.8766 0.9144 0.7413 0.8529 0.5427
RF - + - 0.8744 0.9170 0.7214 0.8408 0.5005
XGB - + - 0.8777 0.9184 0.7375 0.8445 0.5209
ABC - - + 0.8171 0.8764 0.6632 0.8264 0.4259
ERT - - + 0.8756 0.9261 0.6811 0.8329 0.4555
GB - - + 0.8652 0.9093 0.6911 0.8329 0.4605
RF - - + 0.8720 0.9203 0.6914 0.8347 0.4660
XGB - - + 0.8727 0.9107 0.7375 0.8504 0.5343
ABC + + + 0.8347 0.8866 0.6577 0.8267 0.4248
ERT + + + 0.8799 0.9261 0.6862 0.8367 0.4702
GB + + + 0.8807 0.9234 0.6996 0.8431 0.4964
RF + + + 0.8805 0.9251 0.7031 0.8437 0.4995
XGB + + + 0.8864 0.9306 0.7443 0.8575 0.5567
Ours + + + 0.9031 0.9426 0.8066 0.8730 0.6316

with three feature types show better performance compared

to their corresponding models trained with a single feature

type. Also, results indicate that among these three feature

types, RDKitMD is more effective than Mol2vec and ECPF4.

The machine learning models trained with ECFP4 features

work the least effectively, with all AUCROC values around

0.85. All the conventional machine learning models work less

effectively than ours, while their computational costs required

for model development are higher. Overall, the use of different

feature types can elevate the distinctly extracted features of

input molecules.

2) Benchmarking with Deep Learning Models: The perfor-

mance of iBBBP-Ensemble was also examined by compar-

ing it with three advanced deep learning architectures using

molecular graphs as input features. These graph-based deep

learning models are Graph Convolutional Network (GCN),

TrimNet [45], and Graph Multiset Transformer [46] (GMT).

The GCN model consists of three graph convolutional lay-

ers developed by Kipf et al. [47], followed by three fully

connected layers. The main idea of the TrimNet model is

the utilization of the multi-head triplet attention mechanism

in learning molecular graphs [45], while the GMT model is

specified by multi-head attention-based global pooling layers

capturing the node-node interaction based on their structural

dependencies. All deep learning models, including ours, were

trained and evaluated under the same training, validation,

and test sets. Table IV compares the performance of iBBBP-

Ensemble and that of three deep learning models on the

TABLE IV: The performance of iBBBP-Ensemble and other

advanced deep learning models

Model Metric
AUCROC AUCPR BA F1 MCC

GCN 0.8708 0.9165 0.7827 0.8495 0.5730
TrimNet 0.8669 0.9137 0.7606 0.8436 0.5409
GMT 0.8629 0.9103 0.7682 0.8489 0.5565
Ours 0.9031 0.9426 0.8066 0.8730 0.6316

independent test set. The generation of node features used

for developing the GCN, TrimNet and GMT models was

exactly based on their original source code. Results reveal

that among these three advanced graph-based deep learning

models, the GCN model has the highest performance, followed

by the TrimNet, and GMT models. However, these models’

performances do not exceed our model’s. The volume of

data is very likely one of the main reasons that affects the

efficiency of these advanced deep learning models. Under

this circumstance, our model proves its effectiveness with less

complex neural network architectures.

C. Leave-One-Compound-Cluster-Out Validation

To assess the model’s robustness and stability, we conducted

Leave-One-Compound-Cluster-Out (LOCCO) validation [48]

to explore the practical situation where the models predict the

BBBP of novel molecules. The Self-Organizing Map (SOM)

algorithm [49] was employed to create a two-dimensional map

of size 3× 3 of all the compounds featured by ECFP4 (using

1024 bits) in the curated dataset. The SOM algorithm can
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TABLE V: The performance of iBBBP-Ensemble and other models under the LOCCO validation

Model Feature Metric
ECFP4 RDKitMD Mol2Vec AUCROC AUCPR BA F1 MCC

ABC + + + 0.7054 0.7900 0.5948 0.7889 0.2788
ERT + + + 0.7857 0.8446 0.6209 0.8085 0.3568
GB + + + 0.7670 0.8318 0.5286 0.7737 0.1584
RF + + + 0.7924 0.8508 0.6417 0.8077 0.3821
XGB + + + 0.7892 0.8523 0.6660 0.8040 0.3841
GCN n/a n/a n/a 0.7795 0.8293 0.7021 0.7836 0.4267
TrimNet n/a n/a n/a 0.7396 0.8072 0.6795 0.7535 0.3646
GMT n/a n/a n/a 0.7742 0.8149 0.6762 0.7869 0.3983
Ours + + + 0.8070 0.8539 0.6991 0.7921 0.4317

be utilized for clustering as it can maintain the topological

structure of the chemical data [50]. With the two-dimensional

map of size 3×3, we obtained 9 clusters of all the molecules.

Each of the 9 clusters was iteratively chosen as the test

set, while the 8 remaining clusters were combined and then

randomly divided into a training set and a validation set with

a ratio of 85:15.

Table V shows the average test performance of the iBBBP-

Ensemble and eight models (five conventional machine learn-

ing and three advanced deep learning models) under the

LOCCO validation. For each test cluster, we calculated the

evaluation metrics and multiplied these values by the weight

of the test cluster’s size. Generally, the performances of

all models, including iBBBP-Ensemble, under the LOCCO

validation are lower than those under the random sampling

strategy. This situation reflects a practical approach in which

the chemical space of the test cluster is far different from

the chemical space of the training cluster. This experiment

was designed to examine the lower limit of the model’s

performance when the model has to predict structurally distant

molecules. Although the performance of all models slightly

declines, iBBBP-Ensemble is still dominant over other models

in terms of both AUCROC and AUCPR values. The results of

this experiment demonstrate the robustness and stability of our

model when predicting novel molecules.

IV. CONCLUSION

The determination of the blood-brain barrier permeability

(BBBP) of molecules is crucial in drug discovery, particu-

larly in the development of central nervous system drugs. In

our study, we developed iBBBP-Ensemble, an effective and

robust computational framework for predicting the BBBP of

molecules. This framework uses an ensemble deep learning

architecture combined with three molecular representations, a

combination that has been shown to enhance the predictive

power for screening BBB-permeable molecules. Benchmark-

ing results confirmed that our method outperformed other deep

learning and conventional machine learning models. Moreover,

the iBBBP-Ensemble model has a minimal computational

expense, allowing users to effortlessly make adjustments to

the model by incorporating supplementary data in the future

or to adapt it for alternative objectives.
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