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Abstract—In the present research, we tackle the problem
of query by example spoken term detection (QbE-STD) in
the zero-resource scenario. State-of-the-art methods typically
use dynamic temporal warping (DTW) to match templates. In
response, a novel approach is proposed that leverages term
frequency and inverse document frequency (TF-IDF) to search
over concise discrete representations of audio, obtained through
advanced audio representation learning techniques. TF-IDF not
only accelerates the search process but also enhances accuracy
as compared to DTW, offering a balanced solution for navigating
vast audio databases with improved efficiency and precision in
retrieval results.

Through rigorous experiments, the comparative results of
retrieval performance using TF-IDF and DTW shed light on the
method’s efficacy in the context of Query-by-Example Spoken
Term Detection (QbE-STD). This proposed approach showcases
a promising direction for addressing the challenges associated
with both the speed and accuracy of searching within large-scale
audio datasets.

Index Terms—Discrete representations, Dynamic time warping
(DTW), Inverse document frequency (IDF), Term frequency (TF),
Retrieval, STD, QbE.

I. INTRODUCTION

Detecting individual spoken queries within audio collections
using Query-by-Example Spoken Term Detection (QbE-STD)
is challenging, due to a variety of factors such as speaker
differences, environmental conditions, and language-specific
variations. Traditional approaches combine Automatic Speech
Recognition (ASR) systems [1] with text-based retrieval tech-
niques, which require a large volume of annotated spoken
data for effective detection. However, the annotation proce-
dure is time-consuming and requires linguistic competence,
making it especially difficult to retrieve spoken documents in
languages with few or no annotations. An alternate approach is
pattern discovery, which seeks to identify similarities between
spoken terms directly from acoustic feature representations.
This method distinguishes itself by not relying on annotations,
allowing for adaptability across languages and the capability to
handle tasks without extensive language-specific labeled data.

When a spoken language is unknown (or, conversely, when
numerous languages may occur), or when resources are insuf-
ficient to create reliable ASR systems [2], [3] pattern discovery
techniques become crucial for searching untranscribed, multi-
lingual, and acoustically unconstrained spoken materials.

The recent approaches for the spoken term detection com-
plete the job in two stages. First, the audio signal is used to

create an acoustic feature representation that highlights the
spoken content regardless of the speaker or environmental
variations. In the second stage, the features extracted are used
to capture the likelihood between the spoken query and spoken
documents by applying pattern discovery algorithms. In the
context of acoustic feature representations, spectral, posterior,
and bottleneck characteristics have been extensively studied
for the STD task. Dynamic Temporal Warping (DTW) -centric
methods [4]–[8] capture the similarity between spoken terms
by aligning their acoustic features in time. However, global
alignment presents challenges because it computes the optimal
alignment path globally and ignores local alignments due
to variability issues. Segmental DTW [9] was introduced to
address this problem by focusing on segmental-level similar-
ities. The DTW-centric systems despite being efficient, face
limitations in terms of time complexity during retrieval and
also suffer from the speech variability challenges that exist
in natural speech. The lack of efficient indexing techniques
results in linear searches across the entire database, impeding
scalability, especially with short queries. Locality-sensitive
hashes [10] and subspace-indexing attempt to tackle these
issues for speech data storage, still scalability remains a
challenge.

The proposed method also solves the problem in two stages
and effectively addresses the scalability challenges associated
with these systems. In the first stage, a self-supervised learning
framework for representations from raw audio data, such
as Wav2Vec2.0 [11] is employed to obtain concise discrete
tokens. In the second phase, after obtaining the discrete tokens
from unlabelled speech, term frequency and inverse document
frequency (TF-IDF) technique [12], [13] is used to index and
retrieve the spoken queries from the audio database. The effec-
tiveness, resilience to noise, and readability of TF-IDF make
it a flexible tool that can be used to extract important terms
from documents in a variety of domains. This distinguishes
it from DTW [14], which has drawbacks like quadratic time
complexity, noise sensitivity, and parameter dependency.

The main contribution of this research is the introduction
of a refined TF-IDF based framework for audio query search.
This system is specifically designed to navigate token se-
quences created from various audio representation learning
approaches, building upon earlier works [15], [16]. When
compared to earlier audio search techniques, the improvements
made in this new version of the query search framework are
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evident in better mean average precision (MAP), recall, actual
term weight value (ATWV), and decreased time complexity
per query search as compared to other approaches.

II. METHOD

A. Audio tokenization techniques

Audio tokenization, a critical step in the analysis of audio
data, involves the conversion of raw audio signals into a struc-
tured sequence of meaningful tokens. This process facilitates
the handling and interpretation of complex audio information.

Wav2vec2.0 learns representations of speech audio through
a contrastive learning approach. In the same way as masked
language modeling, this approach encodes spoken audio using
a multi-layer convolutional neural network and then masks
portions of the resulting latent speech representations. In order
to create contextualized representations, the latent representa-
tions are loaded into a transformer network. The model is
then trained using a contrastive task in which the true latent
has to be separated from distractions. For the purpose of
representing the latent representations in the contrastive task,
it learns discrete speech units using a gumbel softmax.

B. Pattern Matching Algorithms

From the token sequences

A = {ai | 1 < i ≤ N} (1)
ai = {(τ1, τ2, . . . , τn) | 1 < n ≤ M} (2)

where A is a set of audio files, ai portrays token sequence
for a single audio file from the collection and τn stands for a
token from the set of M unique tokens. The linguistic content
of every audio file stored in the database is represented
by these token sequences. After that, a TF-IDF matrix is
produced to assess each token’s importance concerning its
recurrence within a particular audio clip as well as its broader
context throughout the corpus. The TF-IDF matrix combines
Term Frequency (TF) [17] and Inverse Document Frequency
(IDF) [18] values. TF quantifies a token’s frequency within a
document, whereas IDF assesses its significance throughout
the entire database.

The TF of each token τn in a document is determined as the
ratio of the number of occurrences of τn to the total number
of tokens in the document.

TF(τn, ai) =
Frequency of τn in the document

Total number of tokens in the document
The IDF for each token τn is obtained by calculating the

logarithm of the ratio of the total number of documents in the
corpus to the number of documents containing τn.

IDF(τn) = log

(
Total number of documents in the corpus

Frequency of documents containing τi

)
The TF-IDF score for each token τi in a document is then

obtained by multiplying the TF and IDF values:

TF-IDF(τn, ai) = TF(τn, ai)× IDF(τn) (3)

Fig. 1. Proposed Method: The TF-IDF matrix (M × N) obtained from the
token sequences generated for an audio database. Similar process is undergone
by the query that is followed by a similarity operation between the TF-IDF
vector(1,M) of the query and the TF-IDF matrix (M, N) of the audio database.
This operation determines the top-ranked audio documents in terms of cosine
similarity.

Then the TF-IDF matrix M with dimensions M × N is
formed by repeating this method for all tokens and documents,
where N represents the total number of audio files and M
represents the count of unique tokens across the corpus.

Fig. 1 depicts the specific approach mentioned where, the
discrete token sequences of the audio database are obtained
from pre-trained Wav2Vec2.0 model and the subsequent for-
mation of the TF-IDF matrix of size (M × N), that allows
the model to capture the importance of tokens in the audio
data, emphasizing specific tokens that are significant within
the context of the entire set of audio documents.

C. Query Search

To maintain uniformity during the query search phase,
smaller audio queries are pre-processed using the pre-trained
Wav2Vec2.0 model to provide token sequences that correspond
to audio database tokens. The generated token sequences are
treated as independent documents, and each token’s TF-IDF
score is calculated by considering it as a term. Using this
method, one may describe the query as a TF-IDF vector in
the same vector space as the dataset. The next step is to use
a similarity metric, such as cosine similarity, to evaluate how
similar the query’s TF-IDF score is to the dataset entries’ val-
ues. The top-ranked token sequences or audio segments can be
retrieved from the dataset by identifying and sorting probable
matches using the resulting similarity scores. For comparative
analysis, DTW is also implemented on these query and audio
token sequences. TF-IDF provides a clear depiction of word
relevance in documents in relation to the database as a whole,
while DTW is less convenient and computationally expensive,
particularly for large datasets. Moreover, even in the face of
unpredictability or noise, TF-IDF’s robustness to small token
fluctuations guarantees consistent performance.

III. EXPERIMENTAL SETUP

A. Databases

• Hindi- The dataset comprises approximately 100 hours
of 44.1kHz speech data, incorporating around 17.6 hours
from the Common Voice Hindi (CVH) dataset. Annota-
tors made enhancements, including corrections, translit-
erations, and improvements. An additional 78.21 hours
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are sourced from the Prasar Bharati archive, covering di-
verse scenarios and are manually annotated. Time aligned
segments for keywords are done with the help of TeLeS
[19]. Thirty queries, each lasting roughly five seconds,
are selected from the aligned word segments, with an
average relevant occurrence of five, in order to aid in the
evaluation process.

• English- LibriSpeech dataset, derived from LibriVox’s
public domain audio books, is also used [20]. The dev-
clean subset of LibriSpeech is utilized to make search
corpus consisting of approximately 5 hours of 16kHz
audio with 2703 utterances. Time aligned word segmen-
tation on the data is performed using kaldi [21]. A query
approximately five seconds long has, on average, about
5 relevant occurrences in the database and thirty such
queries are chosen to be searched.

B. Overview of the proposed approach

The large audio database is tokenized using Wav2Vec2.0
[11] pre-trained model and then, clustering is done on the
frame level features to get concise, discrete and unique se-
quence of tokens. The model uses 256 unique tokens to capture
the inherent features of the audio provided. Fig. 1 shows the
form of token sequences generated for the audio database. For
spoken query also the same approach is performed to get its
token sequence. Inspired from the natural language processing
techniques the token sequences are considered as sentences
and the individual tokens as words, so an application of TF-
IDF becomes possible on these audio token sequences.

The proposed method is compared with the Unsupervised
query-by-example spoken term detection using segment-based
Bag of Acoustic Words (BoAW + DTW) [22]. Inspired by
the Bag of Words (BoW) approach, this paper presents an
unsupervised framework for identifying spoken terms in large
audio collections using a segment-based BoAW. The approach
uses DTW to recover sequence information during retrieval,
while disregarding it to efficiently index the database. The
proposed method highlights the significance of individual
audio segments within the total dataset using TF-IDF. This
improves the system’s ability to precisely locate particular
audio queries. BoAW technique, on the other hand, while
good, does not place as much emphasis on this feature,
potentially making its representation of audio segments less
comprehensive during the search process. Moreover, TF-IDF
offers distinct advantages by obviating the necessity for the
entire sequence during pattern matching. Instead, TF-IDF fo-
cuses on token importance, which effectively gauges similarity
with the corresponding document.

C. Evaluation Metrics

The ATWV score, computed over a set of queries, is
determined by the hit rate, miss rate, and false alarm rate. The
hit rate (Phit) is calculated as the ratio of correctly identified
spoken terms (Ncorrect) to the actual number of terms in the
corpus (Nactual). A higher hit rate suggests that the system
effectively retrieves a substantial proportion of the relevant

Fig. 2. Comparison of Term Weight Values for DTW and TF-IDF. The left
plot shows the performance on English Data and the right one displays the
performance on Hindi Data.

audio segments, minimizing the risk of overlooking pertinent
content. The miss rate (Pmiss) is the complement of the hit
rate, representing the proportion of undetected spoken terms.
The false alarm rate (Pfa) is determined by the ratio of falsely
detected documents (Nfalse) to the total number of documents
searched (NNT ).

Phit(τ, λ) =
Ncorrect(τ, λ)

Nactual(τ)
(4)

Pmiss(τ, λ) = 1− Phit (5)

Pfa(τ, λ) =
Nfalse(τ, λ)

NNT (τ)
(6)

where, (τ) is the particular term and λ is the decision thresh-
old confirming the spoken term availability in the retrieved
document. So,

ATWV(λ) = 1− F

Q
(7)

where,
Q is the total number of terms in the search corpus and

F =
∑
∀τ∈Q

Pmiss(τ, λ) + β · Pfa(τ, λ)

β =
ωmiss × Ptarget

ωmiss × Ptarget + ωfa × (1− Ptarget)

The β represents the weight factor computed based on the
cost of the miss (ωmiss) and false rates (ωfa) It is computed
as 0.009 by applying ωfa = 1, ωmiss = 100 and Ptarget =
0.0001 . In the proposed approach, the β is constant for all
terms. Fig. 2 compares the performance of DTW and TF-IDF
for ATWV scores. It is evident that our technique performs
better for both Hindi and English, achieving a maximum score
of 0.76 for Hindi and 0.60 for English. In an ideal QbE-STD
system, the ATWV score approaches unity.
The precision of the document D at the kth position in the
retrieved results is measured based on the number of hits in the
retrieved result against the total number of documents retrieved
till kth position.

166



TABLE I
COMPARISON OF PERFORMANCE FOR PRECISION AND MAP SCORES FOR DIFFERENT SEGMENT SIZES OF QUERY.

Method P@1 P@3 P@5 MAP
0.8s 1s 1.2s 0.8s 1s 1.2s 0.8s 1s 1.2s 0.8s 1s 1.2s

BoAW+DTW 0.5357 0.733 0.733 0.4405 0.5667 0.633 0.3643 0.4400 0.5200 0.329 0.4570 0.5051
TF-IDF 0.5714 0.857 0.875 0.4809 0.576 0.649 0.3742 0.4441 0.5472 0.3375 0.4575 0.558

Seg_size=0.8s Seg_size=1s Seg_size=1.2s
0
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K

P@1-BoAW-DTW
P@1-Proposed
P@3-BoAW-DTW
P@3-Proposed
P@5-BoAW-DTW
P@5-Proposed

Fig. 3. Comparison of P@K scores between BoAW + DTW and proposed
approach for different query groups based on segment duration.

Precision(Dk) =
hit

hit+ false alarm
(8)

Here, a ”hit” is considered true if the detected document
intersects with the actual relevant document; otherwise, it is
labeled as a false alarm. The average precision for a query term
with a given threshold (λ) is then calculated by averaging the
precision values across all documents in the ranked retrieval
result:

AveragePrecision(τ, λ) =

∑N
K=1 Precision(Dk)

N
(9)

The MAP score is computed by assessing the precision
at each hit in the retrieved results and then averaging these
precision values across all query terms. An optimal STD
system aims to maximize the MAP to attain a perfect score
of unity.

MAP(λ) =

∑
∀τ∈Q Average Precision(τ, λ)

Q
(10)

This formula captures the precision at various positions in
the retrieved results and provides a comprehensive assessment
of the method’s performance across multiple query terms.

Mean Reciprocal Rank (MRR) is calculated by taking
the reciprocal of the rank of the first correctly identified
relevant item. In the context of the audio search system, this
means determining the position at which the system correctly
identifies a relevant audio segment among the retrieved results.
The reciprocal of this rank is then computed. The MRR score
is obtained by averaging these reciprocal ranks across multiple
queries. A higher MRR score indicates that, on average, the
system tends to identify relevant audio segments closer to the
top of the ranked list.
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Fig. 4. Comparison of MAP scores between BoAW + DTW and proposed
method for different query groups based on segment duration.

TABLE II
EVALUATION METRICS FOR PERFORMANCE ANALYSIS FOR SPOKEN TERM

DETECTION

Results for English
Method MAP ATWV MRR
DTW 0.24 0.33 0.14

TF-IDF 0.55 0.55 0.35
Results for Hindi

DTW 0.36 0.36 0.20
TF-IDF 0.69 0.62 0.41

IV. RESULTS

Table I shows the effectiveness of the proposed method
over BoAW + DTW on a test set of 800 files taken from
TIMIT corpus using 30 queries of varying lengths [23]. A
query has, on average, about 5 relevant occurrences in the
database. Hence, the evaluation metrics used for comparison
are: i) P@1: Average precision of the top result returned by
the system; ii) P@3: Average precision of the top 3 results;
iii) P@5: Average precision of the top 5 results and MAP.
Fig. 3 and fig. 4 show that the suggested method performs
comparably better than BoAW + DTW across segment sizes
(0.8s, 1s, 1.2s) for P@K (K=1,3,5) and MAP, demonstrating
its capacity to obtain more accurate audio files for a query. The
method’s greater ability to weigh term importance leads to its
robust performance, making it a good choice for information
retrieval tasks. BoAW + DTW is reasonable, but it falls behind
TF-IDF, suggesting that it may not be able to capture complex
links between terms and documents.

Fig. 5 and fig. 6 shows the recall rate at top 10, 20 and
30 files retrieved from the 5 relevant files per query in the
audio dataset. Table II presents a comparative analysis of two
distinct methods, Dynamic Time Warping (DTW) and (TF-
IDF), within the domain of audio search for both English and
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Fig. 5. Comparison of the Recall Rate, or the percentage of query-relevant
documents that are successfully retrieved for DTW vs TF-IDF. The left
plot depicts the performance in English, while the right plot depicts the
performance in Hindi.

Hindi datasets. As can be observed in the case of Hindi, TF-
IDF consistently outperforms DTW, with higher values across
all metrics. The MAP for TF-IDF in Hindi is notably supe-
rior, indicating better precision in ranked results. Similarly,
ATWV and MRR also reflect TF-IDF’s superior performance.
Higher recall rates suggest that most of the relevant files are
being retrieved successfully by the TF-IDF based method.
The results for English follow a similar trend, with TF-IDF
surpassing DTW in all evaluated metrics. On comparing the
two languages, TF-IDF exhibits better performance in Hindi
than in English, as evidenced by higher values in MAP, ATWV,
and MRR.

V. CONCLUSIONS AND FUTURE WORK

This paper presents an efficient QbE-STD system that
improves search efficiency by applying TF-IDF to the discrete
tokens of audio generated from advanced audio representation
learning techniques. Extensive experiments demonstrate the
superior performance of the proposed method compared to
BoAW + DTW. The experimental results also demonstrate
that TF-IDF based QbE-STD not only accelerates the search
process but also enhances accuracy with less time complexity
over the search space as compared to DTW and its vari-
ants, providing a balanced solution for navigating vast audio
datasets with improved efficiency and precision in retrieval re-
sults. Further exploring the search approach with an integrated
audio tokenization process and experimenting on several other
languages opens a new direction of research.
The codes are available at https://github.com/madhavlab/2023
std akankss.git.
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