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Abstract—Estimating the causal effect due to an intervention
is important for many applications, such as healthcare. Un-
observed counterfactuals make unbiased treatment effect esti-
mation non-trivial. Among existing approaches, counterfactual
generation which augments observational data with generated
pseudo counterfactuals has been found promising for reducing
the bias. These methods typically take a two-stage approach for
the counterfactual generation and treatment effect estimation.
Therefore, the counterfactual generation could be sub-optimal.
To this end, we propose to jointly optimize the auxiliary models
for generating the counterfactuals and the outcome estimation
models. In particular, we demonstrate the viability by first
connecting a counterfactual outcome generator with a reparam-
eterized VAE model, and then learning them in an end-to-end
fashion using the EM algorithm. Our evaluation results based
on synthetic and semi-synthetic datasets show that a simple
causal effect VAE model learned together with the counterfactual
outcome generator can outperform a number of SOTA models
for treatment effect estimation1.

Index Terms—treatment effect estimation, counterfactual gen-
eration, causal inference

I. INTRODUCTION

Estimating the causal effect of an intervention is a funda-

mental problem across diverse domains. Applications include

predicting a patient’s health status after a therapy or the eco-

nomic growth of a society after economic stimulus. Apart from

understanding the effect of an intervention on a population

level, there is much interest in developing methods to estimate

the effect at the individual level, which can be crucial for life-

critical areas such as healthcare [1], [2], [3], [4].

Leveraging available observational data for individualized

treatment effect (ITE) estimation has been widely explored,

as this can avoid the need to collect data from costly or

sometimes infeasible randomised experiments. Yet unbiased

estimation of treatment effect from observational data is non-

trivial where issues like selection bias and confounding factors

should be carefully handled. The former one refers to the bias

in selecting the subjects and thus the observational data. The

latter refers to the factors affecting both the treatment and the

outcome, which in turn may also induce selection bias when

1The source code for the implementation of our proposed
method can be found on GitHub (https://github.com/FeilongWu/
Unbiased-Treatment-Effect-Estimation/tree/main/CEMVAE)

the set of variables that predispose selection into the treatment

are also related to the outcome.

To address the unbiased estimation challenge, the counter-

factual framework has been commonly explored. Once we

observe the outcome of applying a treatment to a particular

subject, we will not be able to observe the outcome if the

treatment is not applied (a.k.a. counterfactuals). As treatments

are typically given to the subjects based on the anticipated out-

come, selection bias becomes unavoidable. Various approaches

have been proposed in the literature to address the challenge,

including inverse propensity weighting [5], [6], [7], confusion

regularization [8], [9], data augmentation [10], [11], [12], etc.

Among them, the data augmentation approach has been shown

effective in some recent works [2], [11], [13], [10], [12]. For

example, GANITE [10] generates counterfactuals to augments

with observed data to be fed to an ITE generator for learning

the model in a GAN setting. Meta-learning methods [11], [12],

[13] make use of the pseudo treatment effects obtained using

the models learned for the treated and the control separately

to train the second-stage models. Yet, the aforementioned

methods are based on the two-stage design and thus lacks the

mechanism to guide the generation of pseudo counterfactuals

to achieve better model estimation in the second stage of

training.

In addition, some confounding factors can be hidden and

further complicate the unbiased estimation. Deep generative

models have been explored to alleviate the bias, includ-

ing the representative causal effect variational autoencoder

(CEVAE) [14] and its variants (e.g., TEDVAE [15]). They

infer latent confounders through the observed proxy vari-

ables, requiring only weak assumptions on the nature of the

confounders and the data generation process. Despite their

promising results, how to learn these VAE-based models

from the observational data with unobserved counterfactuals

properly considered remains open.

To this end, we explore the possibility to train the pseudo

counterfactual generator and the ITE estimation model end-

to-end with the objective to reduce the bias. In particular, we

extend the CEVAE with a refined model parameterization and

a pseudo counterfactual generator, and train them end-to-end.

Our proposed model named CEMVAE explicitly represents the

observed factuals and unobserved counterfactuals where the

170

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00040



unobserved counterfactuals are taken as missing information.

The model is then learned using the EM algorithm so that the

unobserved counterfactuals can be estimated via the iterations

of the E-step and the M-step.

To demonstrate the effectiveness of CEMVAE, we ap-

ply it to both synthetic and semi-synthetic (healthcare) data

and compare its performance with some state-of-the-art ITE

estimation methods which also adopt the data augmenta-

tion approach. Our results obtained show that the proposed

CEMVAE which merely adopts the basic causal effect VAE

model together with a learnable counterfactual generator can

outperform most of the SOTA estimation methods.

II. RELATED WORK

In this section, we provide an overview of methods proposed

for addressing the selection bias challenge as presented in

Section I. They can be categorized into three mainstream

approaches: i) inverse propensity weighting (IPW) which tries

to balance the objective loss by weighting its terms with

the inverse of the propensity score [16], which refers to a

conditional density that treatment is assigned to a subject given

its features (covariates) and is constant for any covariates from

an unbiased dataset, so that the resulting objective will be

the same to the loss calculated using data from a random-

ized control trial [5], [6], [7]; ii) confusion regularization
which manipulates the feature projections via regularization

so that the treatment group representations in the projected

space are indistinguishable from those of the control group

[8], [9]; and iii) data augmentation where the training data

is augmented with pseudo counterfactual outcomes/treatment

effect to achieve deconfounding [10], [11], [12]. In general,

these approaches, in the first stage, use auxiliary models

to generate fixed pseudo counterfactual outcomes/treatment

effect. In the second stage, a main estimator is trained based

on the augmented dataset. Our approach differentiates from

those in that its pseudo counterfactual outcomes are adaptively

improved along with the main estimator through end-to-end

training.

Regarding treatment effect estimation, various models have

been proposed in the literature. Causal trees [17], [2] are used

to estimate treatment effect by dividing the feature space into

partitions, each representing a path to a leaf node indicating

the treatment effect. The partitions can be constructed in a

recursive and greedy manner. Alternatively, deep generative

models like CEVAE [14] have been proposed when latent

variables were introduced as proxies of the underlying con-

founding factors. TEDVAE [15] introduces additional latent

variables to capture also instrumental and risk factors to

achieve a better unbiased estimation. GANITE [10] learns

the ITE estimation model using the generative adversarial

network (GAN) setting with the objective to achieve better

generalization performance.

Our proposed method (CEMVAE) is similar to the methods

like GANITE [10] in the sense that we leverage pseudo coun-

terfactual generation for balanced training as the supervised

loss regarding outcomes due to control (e.g., no treatment)

(a) Causal Model
(b) Graphical model
adopted by CEMVAE

Fig. 1: The white nodes refer to a hidden variable and black

nodes indicate observed variables. (a) The causal model for

our problem setting. (b) The graphical model for our proposed

method based on the augmented dataset.

can be computed for treatment group and vice versa. The

performance then depends on the quality of the generated

pseudo counterfactuals w.r.t the ground truth.

Fig. 2: Both generative and inference networks constitute

the overall architecture of CEMVAE. The white boxes repre-

sent the parametrized deterministic neural network transitions,

while the gray boxes correspond to drawing samples from

the respective distribution, and the white circle represents the

concatenation of data.

III. PRELIMINARIES

Let X ∈ RDx denote the feature vector of a subject with a

size Dx, for which x denotes its realization. Let T ∈ {0, 1}
denote the binary variable indicating the treatment given to

a subject, and t the realized value. T = 1 implies treatment

is given to the subject, and T = 0 indicates no treatment

(control). With a realized value of y, Y ∈ R denotes the

outcome variable of a subject to some treatment. We consider

a set of observations Dobs = {xi, ti, yi}ni=1, where each

factual treatment is observed with a propensity score π(ti|xi),
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a conditional density [16]. Since the outcomes due to T = 0
and T = 1 can be generated by distinct processes, we let the

variable Y0 ∈ R denote the potential outcome due to T = 0
and variable Y1 ∈ R denote the potential outcome due to

T = 1. Their realized values are respectively denoted as y0 and

y1. The conditional average treatment effect (CATE) is defined

as τ(X) := E[Y |X, do(T = 1)] − E[Y |X, do(T = 0)]. In an

observational dataset, only the factual outcome yt is observed

and the counterfactual outcome y1−t is hidden.

In this paper, we consider the same causal graph as in [14]

(Fig. 1a), where the variable Z is introduced as the latent

confounder for confounding both T and Y . Also, similar to

[14], [15], we assume the following:

Assumption 1 (Overlap). Every subject has a non-zero prob-
ability to receive a treatment, i.e., 0 < P (T = 1|Z = z) <
1, ∀z ∈ Z.

This is a common assumption to ensure that the potential

outcome can be identified for both T = 0 and T = 1.

IV. METHODOLOGY

In this section, we first provide an overview of the key ideas

behind the proposed CEMVAE model where the data aug-

mentation approach is incorporated into a VAE-based model

for unbiased treatment effect estimation. Then, we present the

detailed deep model architecture for the implementation and

the training algorithm.

A. Overview

The unavoidable selection bias in observational data can

result in situations unfavorable for unbiased estimation. For

instance, the size of the treatment group and that of the control

group can be highly imbalanced in the observational data.

Also, the population distribution of the treated P (X|T = 1)
and the control P (X|T = 0) for training can be unrep-

resentative to the whole population P (X) which could be

encountered during testing. This is a result of P (Z|T =
0) �= P (Z|T = 1) when X becomes a proxy variable of

the latent variable Z (see Fig. 1a). The selection bias can

be reduced if P (Z|T = 0) = P (Z|T = 1) = P (Z). Data

augmentation methods typically make use of auxiliary models

for generating counterfactual outcomes to alleviate the bias on

estimating the potential outcomes (POs) or treatment effect

[11], [10], [13], [12]. Most of the existing methods adopt the

two-stage approach under which the augmented data is fixed

after generation in the first stage, followed by learning the

estimators in the second stage. The accuracy of the augmented

data can affect the performance of the estimators to be learned.

In this paper, our conjecture is that instead of taking the

two-stage approach, methodologies which can generate more

relevant counterfactuals are expected to improve the overall

treatment effect estimation. Particularly, one-stage algorithms

can be explored to allow iterative improvement on the accuracy

of the generated counterfactuals by jointly optimizing the

auxiliary models and main estimators. To achieve that, we first

make reference to the CEVAE where the selection bias is yet

to be addressed as mentioned in [14]. We then reparameterize

the corresponding causal model (Fig. 1a) to form a graphical

model as shown in Fig. 1b. Different from the CEVAE, the

reparameterized graphical model has separate variables to

represent the outcomes with or without treatment. We show in

Section IV-B that the treatment effect is still identifiable given

the reparameterized graphical model.

Figure 2 shows the corresponding deep model architecture

of our proposed implementation. In particular, a single network

is learned to estimate the latent variable Z given the feature X .

Then, the outcomes with or without treatment are estimated at

the same time, where only one of the outcomes can be factual

and the other is counterfactual. This is fundamentally different

from models like the CEVAE. For the CEVAE, two networks,

one is for the treated and one for the control, are learned

separately via a switching mechanism. Such design makes the

quality of the counterfactual outcome estimation hard to be

considered during the model training. For our proposed model,

as depicted in Figure 2, two auxiliary models are introduced in

the inference network for generating counterfactual outcomes.

To learn the auxiliary models and the potential outcome

estimators together under an end-to-end learning framework,

we adopt the EM algorithm. Details of the overall model and

the learning algorithm are presented in Section IV-C.

B. Identifiability

The treatment effect has been shown identifiable in CE-

VAE [14] if P (Z,X, T, Y ) can be recovered. Similarly, the

identifiability of conditional average treatment effect (CATE)

can be achieved if P (Z,X, Y0, Y1) is recovered by our method,

which leverages on data augmentation (see Appendix A).

C. Learning With Counterfactuals

We denote the observed data by Dobs = {xi, ti, yi}ni=1 and

the unobserved counterfactuals by Dcf = {xi, 1 − ti, yi}ni=1,

where n is the dataset size. Each xi in Dcf takes the same

value as that in Dobs while the treatment is reversed (i.e., 1−
ti). The value of yi in Dcf is missing and to be imputed. If the

“complete” data with both observed data and the unobserved

counterfactuals, that is Dobs

⋃Dcf , could be available, we can

achieve the propensity score π(T = 1|X) = π(T = 0|X),
which resonates an unbiased dataset. The graphical model for

the VAE model becomes Fig. 1b.

As observing the potential outcome with or without treat-

ment for each subject together is impossible, what we would

like to achieve is to estimate the counterfactual one as far as

possible via imputation. To this end, we propose to estimate

the imputed values by maximizing the training objective that

takes expectation over counterfactuals on the evidence lower

bound (ELBO) of the observational data. Inspired by [18],

an unsupervised missing data recovery framework learning

representations of heterogeneous data, CEMVAE adopts the

idea of missing data recovery and connects it with downstream

supervised learning tasks for estimating potential outcomes in

an end-to-end manner. As a result, the pseudo counterfactual

labels can be adaptively improved.
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We parameterize the causal model as follows. Similar to

CEVAE [14], the details of the VAE factors adopted are:

p(zi) =

Dz∏
j=1

N (zi,j |0, 1) p(xi|zi) =
Dx∏
j=1

p(xi,j |zi)

p(yti,i|zi, T = ti) = N (μ = μ̄ti , σ
2 = σ̄2

ti)

with Dz and Dx corresponding to the dimensions of zi and xi,

for which i denotes the index of the i-th subject. We represent

pψ(xi|zi), pε0(y0,i|zi, T = 0), and pε1(y1,i|zi, T = 1) as the

generative models parameterized by ψ, ε0, and ε1, respectively.

The distribution parameters μ̄(·) and σ̄2
(·) are calculated by

the associated models. According to Fig. 1b, the posterior

distribution of Z depends on both POs and X . Hence, we

have the following posterior approximation:

q(zi|xi, yti,i, y1−ti,i) =

Dz∏
j=1

N (μj = μ̂z,i,j , σ
2
j = σ̂2

z,i,j).

Again, we let θ represent the parameters of the inference

model qθ(zi|xi, y0,i, y1,i). The parameters μ̂(·) and σ̂(·) are

estimated by the associated models. Note that only y0,i or y1,i
is available in a given dataset during training.

To impute the counterfactual outcome, we need the follow-

ing auxiliary models:

qφT=ti(yti,i|xi, T = ti) = N (μ = μ̂ti,i, σ2 = σ̂2
ti,i)

where φT=0 and φT=1 (or simply as φ0 and φ1) are model

parameters. Since the ELBO used for training is derived

from the given data, we can take the expectation over the

counterfactual outcome [18] by employing the EM algorithm

to recover the counterfactuals iteratively in an end-to-end

fashion. We thus define the expected ELBO for training as:

L′
ELBO(x, yt) = Ey1−t

[Lθ,ψ,ε0,ε1,φ0,φ1
(x, yt, y1−t)].

Since only the conditional counterfactual likelihood and the

posterior latent variable likelihood depend on y1−t, the above

lower bound can be expanded as:

L′
ELBO(x, yt) =

n∑
i=1

Ez[Ey1−ti
[log pε1−ti

,φ1−ti
(y1−ti,i|zi)−

KL(qθ(zi|xi, yti,i, y1−ti,i)|p(zi))]]
+ Ez[log pεti (yt,i|zi) + log pψ(xi|zi)], (1)

where KL(·) is the Kullback–Leibler divergence.

For the E-step, as direct calculation of the counterfactual

outcomes is intractable, we employ the two aforementioned

auxiliary models qφ0
(y0,i|xi, T = 0) and qφ1

(y1,i|xi, T =
1). During training, the counterfactual outcomes can be

generated by sampling from the distribution modeled by

qφ∗
1−ti

(y1−ti,i|xi, T = 1−ti) where ∗ indicates the parameters

learned up to the current iteration.

For the M-step, Eq.1 is maximized. The samples from

the factors qφ0(y0,i|xi, T = 0), qφ1(y1,i|xi, T = 1), and

Fig. 3: This figure shows the t-SNE projections of the inferred

E(Z∗) for the three VAE-based models during training and

testing based on the synthetic dataset. The projection is done

individually for each model. For CEVAE, Z refers to either

Z0 or Z1 depending on the given actual treatment [14]. For

TEDVAE [15], Z is a concatenation of Zc and Zy . To quantify

the difference of Z distributions between training and test sets,

the Wasserstein distance (Wa.) is calculated as reported in the

sub-figures.

qθ(zi|xi, y0,i, y1,i) can be drawn using the reparametrization

trick [19]. All the parameters {θ, ψ, ε0, ε1, φ0, φ1} can then be

optimized. To ensure the accuracy of the auxiliary models, we

further add the following auxiliary objective function:

Laux =

n∑
i=1

log qφti
(yti,i|xi, T = ti), (2)

and thus the overall objective function becomes:

LCEMVAE = L′ELBO + αLaux, (3)

where α ∈ R+. We call our proposed model Counterfactual

Expectation Maximization VAE (CEMVAE). Fig. 2 shows the

overall deep model architecture. Note that both the auxiliary

models and the VAE backbone may have different convergence

rates, so the auxiliary models can be pre-trained for better

stability (see pseudo code in Appendix B).
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V. EXPERIMENTS

We evaluate the performance of the proposed method using

a synthetic dataset where Z can be controlled, and two semi-

synthetic datasets, IHDP [20] and eICU [21], where the X
and T are real.

A. Datasets

a) Synthetic data generation: We generate a synthetic

data according to causal graph shown in Fig. 1a, where the

generation process for each sample is given as follows:

zi ∼N (1, 0.5);

xcon,i|zi ∼N (z3iMcon, 0.01);

xbin,i|zi ∼Bern(σ(ziMbin));

ti|zi ∼Bern(σ(z · vt − 1));

yi|zi ∼N (μti , 0.02),

where each entry in zi ∈ R8 is sampled from N (1, 0.5), xi is

the feature vector with two sub-vectors xcon,i of continuous

values and xbin,i of binary values, z3i is an element-wise cubic

vector of zi, Mcon and Mbin are a 8 × 10 matrix and a

8 × 3 matrix respectively, σ(·) denotes a logistic function,

1 is a vector of ones, μti = 0.8(zi − 0.5) · (zi − 0.5) · vy +
2.2(ti−1)(1·zi)

5 +1, and vy ∈ R8. The elements of Mcon, Mbin,

vt as well as vy are all sampled from N (0, 1), which are kept

fixed during the data generation process. In synthetic data,

CATE is a linear function of Z, while the nonlinear situation

is simulated in the following datasets.

b) Semi-synthetic datasets: IHDP dataset is constructed

based on the Infant Health and Development Program [20].

The confounders are the measurements of children and their

mothers collected in a randomized experiment studying the

effect of home visits by specialists on future cognitive test

scores of low birth weight, premature infants. The work [20]

then “de-randomizes” the treatment assignment by removing

children with non-white mothers from the treated group and

simulates a treated and untreated outcome for each subject,

allowing us to evaluate the performance of treatment effect

estimation. We use the same data-preprocessing and evaluation

strategy as in [14].

The large-scale database eICU has records of ICU patients

from multiple hospitals across the continental United States

[21]. We use the mean blood pressure as a corresponding

outcome (Y ) to the vasopressor as the treatment (T ). Also, the

patient features (X) include five static features (age, height,

weight, race, and gender) and 25 dynamic features.

Among all hospitals we extract data of eight hospitals with

the greatest data size to construct our dataset. Following [21],

we use the sepsis cohort. We only select the data of each

ICU admission within the first hour as time-dependency is

not considered. The total number of selected records is 1,824.

To synthesize the outcome given real treatment and patient

features, we use the exact response surface B (except for the

choice of ωB) in IHDP [20] by which the outcome is in

nonlinear response to covariates. Normalized patient features

are used in the response surface below:

yi|T = 0 ∼ N (exp(xi +W ) · βB , 1)

yi|T = 1 ∼ N (xi · βB − ωB , 1)

where W = 0.5 1, βB is a vector of regression coefficients

where each coefficient is randomly sampled from (0, 0.1, 0.2,

0.3, 0.4) with probabilities (0.6, 0.1, 0.1, 0.1, 0.1), which has

the same dimension as X , and ωB = 5.

B. Baselines and Experimental Settings

We compare our model against the baselines below:

• CT [2] is a recently proposed causal tree model.

• GANITE [10] is a model based on generative adversarial

networks (GANs) with counterfactual label generation

during training.

• CEVAE [14] is one of the representative VAE-based

models proposed to estimate causal effect.

• TEDVAE [15] is a VAE-based model with multiple

disentangled latent variables incorporated.

• R-Learner [13] is a two-stage meta-learning algorithm

with a nuisance component estimating propensity scores.

• X-Learner [11] is a two-step meta-learning algorithm

which imputes treatment effect to augment the dataset.

• CEMVAE-D is a variant of the proposed model trained

using the two-stage approach where the auxiliary models

are disconnected from the backbone VAE model. In stage

1, Eq. 2 is used to train the auxiliary models until

convergence, after which their parameters remain frozen.

In stage 2, only Eq. 1 is used to train the backbone VAE

model.

In our experiments, we use the same data replications

from the GitHub page of [14] and follow the procedures

according to [14] to evaluate the metrics (see Appendix

C for more dataset details). To implement the causal tree

and meta-learners, we use associated Python open packages

(CTL for causal tree [2] and causallib for meta-learners [11],

[13]). Since we use multi-layer perceptrons as the nuisance

components for the meta-learners, we denote X-Leaner as

X-MLP and R-Leaner as R-MLP. Empirical implementation

shows that it takes less than five minutes for the most of time

to train a CEMVAE model with one NVIDIA Ampere A100-

80G GPU on eICU dataset.

During testing, to compute the outcomes of p(Y |do(T ), X),
we average 250 samples from the approximate posterior

q(Z|X) =
∫
q(Z|X,H)q(H|X)dH where the variable H is

a concatenation of [Y0, Y1].

For performance evaluation, we adopt two commonly used

metrics, namely Precision in Estimation of Heterogeneous

Effect (εPEHE) and the absolute error of Average Treatment

Effect (εATE), defined as:

εPEHE =
1

n

n∑
i=1

(τ(xi)− τ̂(xi))
2
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TABLE I: Performance comparison on accuracy of treatment effect estimation based on three datasets.

Method
IHDP eICU Synthetic√

εwithin-s.
PEHE εwithin-s.

ATE

√
εwithin-s.

PEHE εwithin-s.
ATE

√
εwithin-s.

PEHE εwithin-s.
ATE

CF 3.27±1.67 0.37±0.15 1.89±0.03 0.28±0.03 0.66±0.03 0.39±0.01
GANITE 6.86±2.59 4.25±0.69 7.46±0.48 1.25±1.10 0.95±0.03 0.25±0.17
CEVAE 2.20±1.07 0.22±0.10 1.88±0.07 0.03±0.01 0.34±0.01 0.09±0.01
X-MLP 1.83±0.49 0.15±0.04 1.74±0.10 0.47±0.16 0.36±0.03 0.07±0.05
R-MLP 2.93±1.19 0.40±0.09 1.87±0.30 0.18±0.09 0.40±0.04 0.08±0.05

TEDVAE 1.64±0.84 0.21±0.08 0.42±0.07 0.06±0.03 0.23±0.01 0.02±0.01
CEMVAE-D 1.56±0.74 0.27±0.08 0.62±0.08 0.30±0.10 0.29±0.06 0.09±0.09

CEMVAE 1.39±0.63 0.23±0.07 0.41±0.02 0.01±0.01 0.21±0.01 0.02±0.01

Method
√

εout-of-s.
PEHE εout-of-s.

ATE

√
εout-of-s.

PEHE εout-of-s.
ATE

√
εout-of-s.

PEHE εout-of-s.
ATE

CF 3.33±1.70 0.59±0.37 2.06±0.10 0.25±0.10 0.70±0.05 0.41±0.04
GANITE 6.54±2.25 4.56±.939 7.73±1.06 1.39±1.28 1.16±0.02 0.26±0.17
CEVAE 2.75±1.70 0.25±0.07 1.78±0.14 0.08±0.04 0.33±0.02 0.09±0.02
X-MLP 1.63±0.30 0.23±0.04 1.82±0.07 0.40±0.10 0.38±0.04 0.08±0.05
R-MLP 2.62±0.92 0.39±0.11 1.63±0.28 0.14±0.14 0.38±0.02 0.07±0.05

TEDVAE 1.33±0.58 0.23±0.09 0.42±0.02 0.07±0.04 0.23±0.01 0.02±0.01
CEMVAE-D 1.39±0.52 0.25±0.07 0.57±0.09 0.31±0.10 0.29±0.04 0.10±0.09

CEMVAE 1.23±0.42 0.16±0.06 0.36±0.08 0.03±0.02 0.22±0.01 0.01±0.00

εATE =
1

n

n∑
i=1

τ(xi)− 1

n

n∑
i=1

τ̂(xi)

where τ(xi) refers to the ground truth treatment effect of a

subject, τ̂(xi) is the estimated treatment effect, and n is the

size of test set for a target subgroup.

For all the baselines and our proposed model, we carefully

conduct the grid search on their hyper-parameters and select

the best results among the combinations of hyper-parameters

based on the evaluation metrics.

C. Results and Analysis

We summarize the performance of the baselines and the

proposed method for treatment effect estimation in Table I for

comparison. The empirical results show that CEMVAE obtains

the best performance in terms of treatment effect estimation

as measured by
√
εPEHE and εATE for most datasets.

To show the merits of the data augmentation approach in

learning a more latent variable which can generalize better,

we plot the distributions of Z given the training and test data,

as shown in Fig. 3. According to the figure, we observe that

CEVAE has the greatest Wasserstein distance of Z between

training and test data, which can be attributed to its switching

mechanism that the variables of subjects from control and

treatment groups are separately encoded. This results in that

only the estimation head q(y|t, z) is trained during training.

In contrast, both q(y|t, z) and q(y|1 − t, z) of CEMVAE are

trained during training. TEDVAE can give a smaller Wasser-

stein distance as the variables of subjects from both control

and treatment groups are encoded by the same encoders and its

disentangled factors of Z reduce the selection bias. CEMVAE

gives the least Wasserstein distance because it learns unbiased

laten representations. Since P (X|T = 0) = P (X|T = 1)
given Dobs

⋃Dcf , a sufficient condition for q(Z|X,Yt, Y1−t)
to be the same between t = 0 and t = 1 is that the coun-

terfactual outcome Y1−t becomes oracle estimation, which

indicates that the selection bias can be reduced between groups

of treatment and control. In other words, for CEMVAE, the

challenges of both generating accurate Y1−t and reducing

selection bias via learning unbiased Z can be addressed

simultaneously by only addressing the former. In contrast,

maximizing the component of log q(T |Z) in the learning

objectives by both CEVAE and TEDVAE can be counterpro-

ductive to reduce selection bias as the discrepancy of latent

representations between groups of treatment and control is

preserved. Additionally, the size of the treatment group and

that of control group are more balanced for CEMVAE, while

both CEVAE and TEDVAE are trained with only observational

data in which the size of the treatment group is much larger

than that of the control group.

To show that the accuracy of the imputed values can be

improved by the EM algorithm, we compare CEMVAE with

CEMVAE-D which is trained in a two-stage fashion. To

evaluate the accuracy for testing, we calculate the out-of-
sample RMSE:

RMSE-OOS =

√√√√ 1

n

n∑
i=1

1∑
t=0

[yi − E[(ŷi])2|xi, φt, t]

where n is the number of data points, yt is the ground

truth outcome, and ŷt is the expected value calculated by

qφt
(yti,i|xi, T = ti). For the accuracy of the generated

counterfactuals during training, we calculate within-sample
RMSE:

RMSE-Within =

√√√√ 1

n

n∑
i=1

[(yi − E[(ŷi])2|xi, φ1−ti , 1− ti]

where ti is a factual treatment in the training set.

According to Table II, it is observed that CEMVAE can

give a significantly lower RMSE than CEMVAE-D by a large

margin for all three datasets. This shows that the end-to-

end learning framework can improve the accuracy of imputed

counterfactuals on both training and test sets.
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TABLE II: Comparison between end-to-end learning and the setting with disconnected counterfactual generators.

Method
IHDP eICU Synthetic

RMSE-OOS RMSE-Within RMSE-OOS RMSE-Within RMSE-OOS RMSE-Within
GANITE — 5.89±2.16 — 8.19±8.49 — 0.95±0.06
X-MLP 1.39±0.27 1.55±0.32 1.58±0.09 1.44±0.03 0.30±0.01 0.35±0.02

CEMVAE-D 1.05±0.34 1.12±0.43 0.20±0.02 0.20±0.00 0.20±0.01 0.24±0.00
CEMVAE 0.94±0.42 0.68±0.25 0.18±0.02 0.17±0.01 0.18±0.01 0.22±0.00

VI. CONCLUSION

This paper proposes an end-to-end framework for jointly

learning a pseudo counterfactual generator and a VAE-based

model to reduce the bias in treatment effect estimation. We

formulate it as a missing data problem and reparameterize

the VAE model to be trained using the EM algorithm. The

proposed model named CEMVAE can generate counterfactuals

of higher quality leading to improved accuracy on estimating

the treatment effect. Rigorous empirical evaluation has been

carried out based on synthetic and semi-synthetic datasets to

demonstrate its superior performance over the SOTA methods.

Furthermore, CEMVAE is proposed for binary treatment with

the main objective to evaluate the effectiveness of the end-to-

end learning framework. Extending the framework to contin-

uous treatment effect estimation with dosage level considered

will be an interesting future direction.
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