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Abstract—The paper explores automated classification
techniques for classroom sounds to capture diverse learning and
teaching activities' sequences. Manual labeling of all recordings,
especially for long durations like multiple lessons, poses
practical challenges. This study investigates an automated
approach employing scalogram acoustic features as input into
the ensembled Convolutional Neural Network (CNN) and
Bidirectional Gated Recurrent Unit (BiGRU) hybridized with
Extreme Gradient Boost (XGBoost) classifier for automatic
classification of classroom sounds. The research involves
analyzing real classroom recordings to identify distinct sound
segments encompassing teacher's voice, student voices, babble
noise, classroom noise, and silence. A sound event classifier
utilizing scalogram features in an XGBoost framework is
proposed. Comparative evaluations with various other machine
learning and neural network methodologies demonstrate that
the proposed hybrid model achieves the most accurate
classification performance of 95.38%.

Keywords—classroom  activity, deep learning, sound
classification, audio processing, artificial intelligence.

L INTRODUCTION

Different types of sounds are present in a classroom
environment, reflecting the diverse learning activities
happening within. These encompass the teacher's speech,
student queries, group interactions, and ambient noises. For
researchers focusing on education, identifying patterns of
these activities can lead to greater understanding of student
learning in the classroom. Manually analyzing extensive
recordings to find these learning activities over many days or
weeks becomes challenging. Thus, this study delves into
exploring an automated method centered on classifying
sounds captured in classroom audio recordings.

Exploration in sound classification spans various fields
like automated speech recognition, music genre
differentiation, and ambient sound categorization [1]. To
analyze classroom sounds, the focus is on recording methods
that least disrupt the natural learning process. Typically, this
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involves situating a microphone in a single position within the
classroom rather than attaching individual close-talking
microphones (e.g., lapel mics) to each student and the teacher.
Previously, the authors devised a system for capturing
classroom video and audio to investigate technology-driven
learning [2]. These audio recordings, obtained from a singular
source near the teacher, encompass the teacher's speech,
student dialogues, and incidental sounds within the classroom.
Challenges arise due to background noise and varying
distances between the fixed microphone and moving students
or teachers during lessons, impacting the quality of these
recordings. Consequently, automatically classifying such
audio presents more complexity compared to other sound
classification endeavours.

Numerous deep learning approaches [3-7] have surfaced
for the supervised automated sound classification task. A
recent development in the DCASE 2022 Task 1 introduces an
extensive dataset crafted [8] for lower complex sound
classification, offering segment wise labelled data. Methods
centered on various device data partition into segments and
associate simulated data during the training phase. Presently,
there exists a research gap in evaluating and contrasting
limited weakly labelled training data preparation and segment
wise classification methodologies tailored for sound
classification. While convolutional neural networks (CNN)-
based methods have shown proficiency in audio tagging and
classification tasks, their limitation lies in effectively
capturing temporal relationships within an audio clip.
Techniques like CNNs as highlighted in [6, 9, 10] have been
employed to address this by incorporating prolonged temporal
information for supervised sound classification. However, one
drawback of CNNs is their sequential computation of hidden
states, lacking parallel processing capabilities.

In earlier studies, the author investigated using sound
power level attributes derived from the Decibel Analysis for
Research in Teaching (DART) algorithm [11] to categorize
classroom audio obtained through their developed system [2].
Other researchers have also delved into various methods for



analyzing classroom audio. For instance, a Multi-Scale Audio
Spectrogram Transformer (MAST) was created to identify
interactions between teachers and students during classroom
sessions [12]. However, this research primarily concentrated
on verbal exchanges between teachers and students,
overlooking other potential classes crucial for comprehending
key learning activities.

Current methods of categorizing classroom sounds [13,
14] involve training neural networks with features extracted
from labelled classroom sound recordings. The DART
technique relies on uncomplicated features derived from
sound power levels, akin to the approaches employed in [13]'s
neural networks. Conversely, time-frequency attributes
obtained from the audio recordings, like the mel-spectrogram
[14], are commonly utilized. Neural networks utilized for
classifying classroom audio in [13, 14] encompass Deep
Neural Networks (DNNs), Recurrent Neural Networks
(RNNs), and RNN variations like Long-Short Term Memory
(LSTM) and Gated Recurrent Unit (GRU) networks. This
classification aligns with the broader domain of
environmental sound or scene classification (for an elaborate
review, refer to [15, 16]).

This study introduces scalogram features derived from the
Continuous Wavelet Transform (CWT) as an innovative
approach for classifying classroom sounds. These features,
outperform traditional time-frequency-based features such as
mel-spectrum features in audio classification using neural
networks [17-19], present a promising alternative. An obstacle
in using classroom audio recordings for classification lies in
the scarcity of labelled training data, given the authentic
classroom settings. Training a single neural network model
under these circumstances poses challenges in achieving
optimal performance. Hence, this paper explores hybrid
methods that amalgamate CNN and Bidirectional Gated
Recurrent Unit (BiGRU), as BiGRU performs better than
LSTM and BiLSTM in terms of categorical classification [20]
networks to generate features, subsequently used an Extreme
Gradient Boost (XGBoost) classifier. Which is motivated
from the CNN-XGBoost combination having highest
classification accuracy of 99.22% in [21]. These techniques
aim to automatically categorize the previously mentioned five
sound classes, deviating from prior studies focusing on fewer
categories.

Section II outlines the classroom sound recording process,
signal pre-processing, feature extraction, and the proposed
classification systems. Section III encompasses an in-depth
analysis of the experimental evaluation, including the
optimization steps for the hybrid model and the performance
comparisons across different models. The paper concludes
with key insights and suggestions for future research.

II. CLASSROOM AUDIO RECORDINGS AND PREPROCESSING

This section provides an overview of the classroom audio
recording procedure and preprocessing.

A. Classroom audio recordings

The sound in a ninth-grade science classroom in a city-
based Australian high school was recorded. This research,
building upon a previous project, was approved by the
University of Sydney's ethics board and endorsed by the New
South Wales (NSW) Department of Education. Permission
was granted from the students, their parents, and the
instructor. The classroom implemented a Bring Your Own
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Device (BYOD) strategy, utilizing Microsoft OneNote for
studying and note-taking. It was furnished with four cameras
and audio recorders. There were 25 students and one teacher
in the class, meeting for 80 minutes four times weekly.
Recording devices were only activated during the scheduled
Year 9 sessions.

TABLE 1. PREPARATION OF CLASSROOM DATA

Training and validation set (1** and 2" hour) Ev(&;l:;&;:(i:::;)set
Class ID Classes Number of segments

1 Teacher 248 62

2 Student 216 54

3 Classroom 100 25

Sound
4 Babble Noise 256 64
5 Silence 100 25

B. Data pre-processing

The training dataset for the model was derived from a
specific two hours segment of genuine classroom recordings.
This segment underwent manual scrutiny and classification,
resulting in the creation of a database with 1150 five second
audio clips categorized into the five classes outlined in Table
1. These classes include "teacher," denoting moments when
the teacher delivers lectures or instructions, "student,"
indicating instances where a student asks or responds to
questions, "classroom sound," is a sound that occurs typically
in classroom environment such as Shoes sound, experimental
instrument sounds, some stroking sound on the bench,
laughing, shouting loud, "babble noise," corresponding
mainly to the beginning or end of the class, before or after the
lesson, and "silence," primarily encompassing periods when
students engage in silent learning activities as directed by the
teacher. The audio files, sampled at 32 kHz, were initially
stored as MP3 files compressed at 96 kbps; later, they were
down sampled to 16 kHz for integration into the classification
system. The next one hour of the data was used for evaluation,
which includes 230 five second slices.

Scalograms are created and expanded to prepare for
training and testing deep learning models. To properly assess
these models, the dataset is cross validated. Yet, it's important
to highlight that the sample distribution among classes isn't
consistent, as depicted in Table 1.
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The sound classification system illustrated in Figure 1
extracts scalogram characteristics from the audio input to fuel
an ensembled model that combines CNN-BiGRU-XGBoost
components. This study explores and contrasts the
performance of pre-trained models such as ResNet50,
VGG16, MobileNetV2, and InceptionV3 in the context of
transfer learning. As transfer learning has demonstrated
remarkable accuracy in environmental sound classification
[22] and other commonly used CRNN models like CNN-
LSTM, CNN-PSO, CNN-BiLSTM, and CNN-BiGRU.

CLASSROOM AUDIO CLASSIFICATION SYSTEM

A. Scalogram conversion

Unlike the fixed resolution of the Short Time Fourier
Transform (STFT), the Continuous Wavelet Transform



(CWT) (1) operates using adjusted versions of a base wavelet.
The scalogram, akin to a spectrogram, depicts the absolute
values of the CWT coefficients across time and scale in a two-
dimensional format [23]. This representation has
demonstrated superior efficacy compared to other time-
frequency characteristics employed in neural network-driven
audio classification [17].

()

CWTC(s,t)=f x(u)\/E S

Within this framework (1), x(u) is the input signal, s
represents the scale parameter which is contingent on the
frequency, ¥~ represents the conjugate of the main wavelet,
t is the translation parameter, which shifts the wavelet
function along the time axis, and u stands for the signal
segment.

B. Ensembled CNN-BiGRU model

The Ensemble CNN-BiGRU model represents a powerful
architecture merging Convolutional Neural Network (CNN)
layers with Bidirectional Gated Recurrent Unit (BiGRU)
layers. The model is designed to handle sequential data,
assuming an input format of 4D tensors. The model is
compiled using sparse categorical cross entropy as the loss
function. This ensemble strategy involves training multiple
instances of this architecture using Stratified K-Fold Cross-
Validation, storing the trained models in an ensemble. The
ensemble aims to leverage the spatial feature extraction ability
of CNNs and the temporal dependency capturing capability of
BiGRUs to enhance predictive accuracy and robustness in
identifying intricate patterns within sequential data. The CNN
(2) extracts feature from the scalogram. In each convolution
layer index by [, convolution operation and an additive bias
will be applied to the input, for a feature map indexed by f €

{1, ..., f(D}. The output y, of the 1" layer for the i
feature map, is derived from previous layer yi(l_l) [24].

fa-1 (2)
l l g l -1
j=

Where @ is rectified linear unit (ReLU), B is a bias
matrix, Ki(j.) is filter size.

The BiGRU processes the features from the CNN across
time steps in (5), through forward (3) and backward (4) states.

E = GRUpyq(he, Et+1) ©)
E = GRUbwd(ht’ ’_’Zt+1) )
he = h, + h; (5)

h—t) and 71; represents the forward and backward hidden states
generated by the BiGRU layer from the feature map.

C. K-Fold Cross-Validation

The model employs five Stratified K-Fold Cross-
Validation using the Stratified K-Fold method to create
stratified folds for robust model assessment, effectively
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splitting the dataset while considering associated labels.
Employing an enumeration loop through the generated folds
using enumerate skf.split, the data is systematically divided
into training and testing sets based on fold indices. This
segmentation operation results in the creation of distinct
subsets, where x_train and x_test represent the training and
testing data splits respectively, while y train and y_test
contain the corresponding labels for training and testing. This
process facilitates the evaluation of model performance across
different subsets of the data, ensuring a comprehensive
understanding of the model's behaviour and generalization
capabilities across various segments of the dataset. The whole
dataset was divided into two sets, first tow hours of the
recording annotated for training and cross validation.
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Fig.1. Process flow diagram of the proposed model

D. Integration of XGBoost

The integration of XGBoost models atop the CNN-
BiGRU ensemble aims to further refine predictions and
enhance model performance. The XGBoost model is utilized
to make predictions on the test data obtained from the CNN-
BiGRU model. This ensemble strategy leverages the unique
strengths of both CNN-BiGRU and XGBoost models to
improve overall predictive accuracy and generalize well on
unseen data [25]. It uses an ensemble of K classification and
regression trees. Each of which has K:|i € 1 ... K nodes. The
final prediction scores for each tree in 6.



K
5i=9G) =) il fe€F ©

Where the x; are the members of the training set and y;
are the corresponding class labels, f; is the leaf score for the
Kt tree and F is the set of all K scores for all classification
and regression trees. Regularization is applied to improve the
final result in (7).

L) =) 1Guy) + ) () 2

The first term [, represents the differentiable loss
function, which measures the difference between target y;
and prediction ¥;. The second term in (8) to avoid overfitting:

_ o LN (8)
af) =y"+ Eazjzlez

Where y, A1 are constants controlling the regularization
degree, T is the number of leaves in the tree and w is the
weight of each leaf. Gradient boosting is effective in
regression classification problems.

E. Evaluation metrics

Key metrics like Accuracy, Precision, Recall, and F1
Score are crucial in evaluating -classification model
performance. Accuracy ( ACC ) (9) measures overall
correctness, while Precision (10) assesses the accuracy of
positive predictions, and Recall (11) evaluates the model's
ability to identify all actual positive instances. The F1 Score
(12), a blend of Precision and Recall, is particularly useful for
imbalanced class distributions as it balances these metrics.
While Accuracy provides a general view, Precision and
Recall offer specific insights. The F1 Score, considering false
positives and false negatives, provides a consolidated metric
for a balanced assessment of Precision and Recall [26].
Together, these metrics help thoroughly assess a model's
predictive capabilities, revealing its strengths and weaknesses
in classification tasks.

ace - TP + TN ©
TP + FP + 7}]\[/)+ FN
Precesion = TP+ FP (10)
Recall = _TP (11)
TP + FN
Pl = Precesion . Recall (12)

Precesion + Recall

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this segment, outcomes from the training and testing
phases are showcased, employing evaluation criteria
including accuracy, precision, recall, and F1 scores.
Additionally, diverse neural network models, encompassing
transfer learning and different CRNN variations, were utilized
for comparative analysis and assessment.

A. Experiment setup

Pretrained models are retrained and tested with our own
dataset where the categorical cross-entropy loss function was
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used. It measures the difference between the predicted
probability distribution and the actual distribution of the
classes. This function penalizes the model more significantly
for larger deviations from the correct class, encouraging the
model to minimize the error in predicting the correct class
probabilities.

A sequential input layer started with three sets of Conv2D
layers with increasing filters (32, 64, and 128) and ReLU
activation. MaxPooling2D layers with a pool size of (2, 2)
after each Conv2D layer to reduce spatial dimensions.
Dropout layers with a dropout rate of 0.25 after each
MaxPooling2D layer to prevent overfitting. A Time
Distributed (Flatten ()) employed to flatten the data before
feeding it into the recurrent layer, two bidirectional GRU
layers with 64 and 32 units, respectively are added. Post-
training, the data is reshaped for integration with an XGBoost
classifier, which is fitted with the training data. The same loss
function is also used in our proposed model as pretrained
models. The code combines predictions from multiple
ensemble stages, averaging their outputs to produce final
predictions, evaluated for accuracy against test data in each
fold.

B. Training and validation results

The training results of Table II showcase the performance
of various models across accuracy, validation accuracy,
training loss, validation loss, and parameter counts. Among
these models, CNN-BiGRU-XGBoost achieved the highest
accuracy of 97.58% and a validation accuracy of 96.68%,
demonstrating its superior predictive capability. It showcased
the lowest training loss of 0.07 and validation loss of 0.10,
indicative of its ability to generalize well on unseen data.
Notably, Inception V3 and CNN-BiGRU also performed
admirably with accuracies of 93.65% and 92.97%,
respectively, showcasing strong classification capabilities.
MobileNetV2 exhibited high accuracy at 91.52%,
emphasizing its efficiency with significantly fewer
parameters (3.5 million). These results indicate the diverse
strengths and capabilities of each model, from high accuracy
with lower parameter counts (MobileNetV2) to more

complex architectures (Inception V3, CNN-BiGRU-
XGBoost)  achieving  remarkable  accuracy  and
generalization.

TABLE II. TRAINING PERFORMANCE OF THE MODELS

Models Accuracy Validation Trfoi:si"g Vali:)i:stiun Param
ResNets30 | 40.86% | 41.66% | 130 129 25 M
VGG16 | 6840% | 68.60% | 078 0.79 138 M
M""\‘IIZCN“ 91.52% | 90.47% 0.26 0.29 35M
Inci}’;“’n 93.65% | 91.19% | 0.19 0.27 23M
fsl,\%]v[ 88.0% | 92.33% | 037 023 | 031M
CNN-PSO | 81.72% | 84.35% | 048 038 | 031M
BiCLI\g“i\/I 85.03% | 84.84% | 042 032 | 072M
]BCiggiJ 92.97% | 91.50% | 021 028 | 024M
CNN-
BIGRU- | 97.58% | 96.68% | 0.07 010 | 024M
XGBoost

The Stratified K-Fold Cross-Validation of the CRNN-
XGBoost model in Table III, demonstrates consistent and



robust performance across five folds. Each fold's accuracy
ranged from 96.1% to 98.9%, with an average accuracy of
97.58%. Precision scores remained high, consistently above
0.97, indicating the model's ability to correctly identify
positive cases among the predicted ones. Similarly, recall
scores were consistently strong, hovering around 0.98 in most
folds, showcasing the model's proficiency in capturing all
positive instances. The F1 scores, reflecting the harmonic
mean of precision and recall, maintained a commendable
performance, averaging 0.970 across all folds. These results
collectively signify the model's stability, reliability, and
effectiveness in accurately classifying data while maintaining
a balance between precision and recall.

TABLE III. STRATIFIED K-FOLD CROSS VALIDATION SUMMARY

Folds ACC Precision | Recall F1
1 96.10% 0.965 0.961 0.959
2 97.30% 0.974 0.976 0.960
3 98.90% 0.982 0.979 0.982
4 97.50% 0.975 0.977 0.970
5 98.10% 0.980 0.981 0.979
Avg 97.58% 0.975 0.974 0.970

C. Evaluation of the models

In Table IV, The CNN-BiGRU-XGBoost model
exhibited exceptional performance when evaluated against
unseen testing data. With an impressive accuracy of 95.38%,
it outperformed various other models in the comparative
analysis. It showcased robustness and precision with a high
F1 score of 0.951, indicating a strong balance between
precision and recall. The model's precision of 0.943 signifies
its ability to correctly identify positive cases, while the recall
of 0.953 demonstrates its capability to accurately capture all
positive instances within the dataset. Overall, the CNN-
BiGRU-XGBoost model demonstrated superior predictive
ability, highlighting its effectiveness in handling real-time
predictions for the next hour's data.

TABLE IV. PERFORMANCE EVALUATION THE TESTING DATA

Models Accuracy | Precision | Recall | F1
ResNet50 28.26% 0.421 0.28 | 0.210
VGGI16 52.60% 0.423 0.526 | 0.456
MobileNetV2 | 81.73% 0.851 0.817 | 0.807
Inception V3 92.17% 0.945 0.921 | 0.925
CNN-LSTM 80.0% 0.753 0.80 | 0.782
CNN-PSO 71.32% 0.684 0.713 | 0.705
CNN- o
BiLSTM 80.21% 0.848 0.802 | 0.80
CNN-BiGRU | 90.70% 0.925 0.907 | 0.902
CNN- BiGRU-
XGBoost 95.38% 0.943 0.953 | 0.951

The confusion matrix in Fig.2 outlines the performance of
the CRNN-XGBoost model on the testing data. Each row of
the matrix represents the true labels, while each column
depicts the predicted labels. For instance, in the "Babble
Noise" class, the model correctly predicted 52 instances,
misclassifying 1 as "Classroom Sound," 9 as "Silence," and 2
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as "Student." Moreover, no instances from "Babble Noise"
were falsely predicted as "Teacher." Similarly, for the
"Teacher" class, the model accurately predicted all 62
instances without misclassification. The confusion matrix
provides a comprehensive view of other model’s
performance across different classes, revealing where the
model excels and areas where it may have challenges in
accurately predicting specific labels.

Confusion Matrix for Test Audio Files

60

Babble Noise
50
Classroom Sound
40
T
s
- Silence 30
&
E

Student =

10
Teacher

Babble Noise Classroom Silence
Sound

Student Teacher
Predicted label

Fig.2. Confusion matrix of the testing data

Overall, the proposed model demonstrates the highest
capabilities of classification across all classes in real-time
identification. Which can be seen from the above confusion
matrix.

Moreover, in Fig.3 Our sound classification model
displayed remarkable accuracy across diverse datasets,
achieving 95.38% on our own Classroom data, 96.25% on
ESC10, and 92.51% on ESC50. Notably, it excelled further
on the Urban Sound dataset, attaining an impressive accuracy
of 97.87%. These consistent high accuracies validate its
robustness and generalization ability across varied sound
environments.

99.00%
98.00%
97.00%
96.00%
95.00%
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93.00%
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91.00%
90.00%
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[ 4 S,
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o
92.51%

ESC10 ESC50 Urban

sound

Classroom
data

Fig.3. Accuracy comparison across diverse dataset

V.

The proposed ensemble learning strategy combines CNN
models with BiGRU layers and employs K-fold cross-
validation for training and validation. Each fold involves
constructing and training CRNN models, using their
predictions on test data as features for subsequent XGBoost
classifiers. The use of scalogram features for audio
representation is a significant advantage, contributing to

CONCLUSION



effective feature extraction in the CRNN model. This
ensemble approach synergizes the strengths of CNNs, RNNs,
and gradient boosting, enhancing predictive performance
across the dataset. Future work will involve testing the
classification model with different audio spectra, especially
in real-time classroom environments in Australia, with a
focus on incorporating larger training datasets for improved
accuracy and generalization.
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