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Abstract—Evolutionary Algorithms (EAs) have acquired sig-
nificant achievements in multi-objective optimization. Canonical
EAs are mainly based on fixed-length chromosome. However, cer-
tain optimization problems require variable-length chromosome
based EAs to solve. In this paper, our interest lies in solving
the minimalistic attack problem which is formulated as a multi-
objective optimization problem aiming to apply perturbations on
the input (pictures) of well-trained deep reinforcement learning
(DRL) policies. The objective is to mislead the DRL agent
to alter its predictions. To achieve this, we propose a novel
evolutionary algorithm with variable-length chromosome that
dynamically adapts the chromosome length. Experiments show
that the proposed algorithm converges more quickly and achieves
better results than the baseline algorithm.

Index Terms—multi-objective optimization problem, evolu-
tionary algorithm, variable length chromosome, multi-objective
minimalistic attack.

I. INTRODUCTION

With the rapid development of Artificial Intelligence (AI),

AI security has gained much concern, mainly on its inter-

pretability and vulnerability [1]. For the latter concern, re-

searchers conducted many experiments on existing AI models

[2] [3], for example, in computer vision, they find that with

some adversarial examples that are almost identical with the

original one to human eyes, well-trained neural networks

will alter its prediction from a temple to an ostrich. Another

example lies in the field of deep reinforcement learning (DRL),
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where well-trained agents are easily fooled with adversarial

attacks [4].

Adversarial attacks refer to imperceptible non-random per-

turbations applied to observations that can alter the network’s

predictions [5]. In the context of DRL, the main goal of

adversarial attacks is to generate perturbations that are as little

as possible and still be able to deceive DRL models like well-

trained neural networks, which can be further captured by the

term: minimalistic attacks [6]. The perturbations to be applied

on the inputs are alterations on grey-level pixels since the input

of DRL policy are certain frames that can be described as

grey-level pixel matrices. The attack itself can be measured

by two main parts: the number of attacked pixels and the

degree to which the pixels are altered. For both parts, the

fewer, the better. Intuitively, the two parts are exclusive. To

conduct an attack, the more pixels are allowed to be attacked,

and the more each pixel is allowed to be altered, the easier the

attack to be successful. This condition renders the problem a

multi-objective problem since it has two conflicting objectives

to be optimized. In this paper, we define this problem as a

multi-objective minimalistic attack problem since its goal is

to conduct a successful attack with as few perturbations as

possible, that is where minimalistic lies.

Multi-objective optimization (MOO) refers to the simultane-

ous minimization or maximization of multiple conflicting ob-

jective functions [7]. The primary goal of MOO is to acquire or

approximate a set of trade-off or compromise solutions, which

is commonly known as the Pareto set (PS). A more detailed

definition will be elucidated in Section II. There are many

ways to solve MOO problems, including the weighted sum

method, physical programming, and evolutionary algorithms

(EAs). As a population-based approach, EAs are capable of

simultaneously exploring different regions of the search space
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to find a diverse set of solutions. Therefore, they have been

well acknowledged as one of the most popular heuristics

for solving multi-objective optimization problems. Among

existing methods, a classic and popular method is NSGA-II

[8], which has been successfully applied to a wide range of

research fields and achieves promising results.

To the best of our knowledge, there have not been any

attempts to solve the multi-objective minimalistic attack. The

problem requires the representation of perturbations that vary

with the number of attacked pixels, which demands variable

length chromosome (VLC) for solution encoding.

To make the first attempt at solving this problem, we draw

inspiration from the setting of this work [6] and came up

with the following baseline algorithm: set a maximum and

a minimum length for the chromosome, and give it an initial

length (at a certain length or at random). At the beginning

of every generation, the chromosome length has a probability

to go up or down by a fixed step size (1 for example) . By

using mutation and crossover operators to change chromosome

length, this method is able to generate solutions that can launch

an attack.

The baseline algorithm differs from other EAs with VLC

[9], which is intuitive and does generates solutions that can

launch a attack, but it has two shortcomings:

1) If the step size is too big, it fails to converge and tends

to provide diverging solutions incurring expensive and

complex attack solutions.

2) If the step size is too small, it often gets stuck in the

local optima.

In response to the challenges of the fixed step size for

the multi-objective minimalistic attack problem, we propose a

new evolutionary algorithm with variable length chromosome

that dynamically adapts chromosome length based on the

framework of NSGA-II [8]. The proposed approach converges

more quickly than the original algorithm and acquires better

results.

The organization of the rest of this paper is as follows: Sec-

tion II presents some preliminaries, and Section III describes

the overall framework of the proposed algorithm. Section IV

analyzes the experimental results. Section V concludes the

paper.

II. BACKGROUND

This section presents some preliminaries of multi-objective

optimization and gives a formal definition of the multi-

objective minimalistic attack problem

A. Multi-objective Optimization Problem

The process of simultaneously optimizing a set of often

conflicting objective functions is called multi-objective opti-

mization or vector optimization [7]. Without loss of generality,

we consider all objective functions as minimization functions.

Given a decision space X ⊂ RD, a multi-objective minimiza-

tion problem can be defined as follows:

minimize F (x) = [f1(x), f2(x), ..., fk(x)]
T

subject to x ∈ X
(1)

where f1(x), f2(x), ..., fk(x) are k different minimization

objectives. F (x) is the overall objective vector, and x ∈ X is

a decision vector. For the sake of brevity, additional constraint

conditions have been suppressed in Eq. (1).
The feasible objective space Z is defined as the set

{F (x)|x ∈ X}. Each point in X maps to a point in Z,

but the reverse may not be true. The goal of multi-objective

optimization is to find a set of decision variables constituting

the Pareto set. In order to demonstrate the concept of Pareto

set, we need to introduce the notion of Pareto dominance first.
Definition1 : A solution x1 is said to dominate another

solution x2 if fi(x1) ≤ fi(x2) for all i ∈ {1, 2, ...m}, and

fj(x1) < fj(x2) for at least one j ∈ {1, 2, ...m}
Definition2 : A solution x∗ is said to be Pareto optimal,

if there are no other solutions that can dominate it.
The set of all Pareto optimal solutions is called the Pareto

set (PS), and the mapping of the Pareto set into the objective

space is called the Pareto front (PF). The main goal of multi-

objective optimization is to find a set of solutions that is as

close to PS as possible while at the same time maintaining

diversity so that decision-makers can pick what they want

according to their preferences.

B. The Formulation of Multi-objective Minimalistic Attack
Artificial Intelligence (AI) has made significant advance-

ments, but it has also introduced certain challenges, including

AI security. An example of this is highlighted in [6]. Mini-

malistic attack is a kind of deep reinforcement learning (DRL)

adversarial attack problems. Here, the difference between the

concept of minimalistic attack and sparse and imperceivable

adversarial attack [10] needs to be clarified.
Sparse and imperceivable adversarial attack refers to the

attack of well-trained neural networks that classify samples.

On the other hand, minimalistic attack refers to the attack of

well-trained DRL policies, which accomodates the three key

settings:
(1) black-box policy access: where the attacker only has

access to the input (state) and output (action probability) of

an RL policy;
(2) fractional-state adversary: where only several pixels

are perturbed, with the extreme case being a single-pixel

adversary;
(3) tactically-chanced attack: where only significant frames

are tactically chosen to be attacked.
The main objective of the attack is to deceive DRL policies

by perturbing pixels in selected keyframes. For each keyframe,

the goal is to maximize the discrepancy between frames before

and after the attack.
In an DRL environment, the agent takes action at based on

the state st and receives a reward rt from the environment

at time step t. Assuming a finite set of n available actions

a1t , a
2
t , ..., a

m
t , the action probability distribution π(·|st) over

those n actions can be described as:

π(·|st) = [p(a1t ), p(a
2
t ), ..., p(a

m
t )],

s.t.
m∑

j=1

p(ajt ) = 1.
(2)
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Herein, p(ajt ) represents the probability that the agent chooses

action ajt . As expected, the agent guided by a deterministic

policy selects the action o = argmaxj p(a
j
t ). With this, the

goal of minimalistic attacks is to maximize the discrepancy

between action distributions before and after the attack, which

can be formulated as follows:

max
δt

max
j �=o

π(·|st + δt)j − π(·|st + δt)o (3)

Where δt represents the perturbation to be added to the original

state st at time step t. Further, o and j represent the action

taken by the trained agent before and after the attack and

π(·|st)j represents the probability that the agent chooses action

j under the guidance of π(·|st). In the context of minimalistic

attacks, δt is limited to perturb only a small fraction of the

input state. The perturbation is composed of two parts: the

number of attacked pixels and the attack intensity(measured

by the pixel matrix difference before and after the attack).

Notably, a successful attack is achieved when the fitness value

in Eq. (3) is greater than 0, indicating that the agent has been

deceived and takes a different action.

Given the above introduction of our attack problem, we

define the objectives as follow:

minimize f1 = n,

minimize f2 = ||Ma −Mb||F
subject to Eq. (3) > 0 and n ∈ Z+

(4)

Here, n is the number of attacked pixels. Mb is the matrix

of pixel grey level before the attack, and Ma is the matrix

after the attack. The second objective is the Frobenius norm of

matrix difference before and after the attack. Both objectives

affect the intensity of minimalistic attacks (attack intensity).

III. PROPOSED METHOD

In this section, we discuss the detailed realization of our pro-

posed multi-objective minimalistic attack optimization method

that adapts the chromosome length dynamically. The goal hers

is to enhance the exploration capabilities and attack efficiency

of evolutionary methods without losing the ability to exploit.

The following will provide detailed insights into our method,

including the overall framework of the proposed algorithm.

A. Dynamic Adaptation of Chromosome Length

This part describes how the proposed algorithm adapts the

chromosome length dynamically.

As we mentioned in the introduction, the existing method

takes a different approach that differs from other VLC-based

EAs [9]. It overemphasizes the exploitation during the evo-

lution process, thus lacking exploration in the search space.

This is undesirable as the optimization methods are expected

to converge faster and by exploring more useful solutions

through the search space. In this work, our proposed algorithm

dynamically adapts the chromosome length, which renders a

quicker convergence trend and achieves better results in the

experiments conducted later. The main idea of the proposed

approach is to spread all individuals across the entire search

space, and then conduct detailed exploitation to find optimal

solutions. Readers can refer to Algorithm 1 for more details.

Algorithm 1 Chromosome Length Adaptation

1: Input: max length of chromosome max len, current

length of chromosome cur len and current generation

number g.

2: while stopping condition not satisfied do
3: if g <= round(

√
max len) then

4: step = round(
√
max len);

5: if rand(0, 1) >= 0.5 then
6: cur len = cur len + step;

7: else
8: cur len = cur len - step;

9: end if
10: else
11: step = round(

√
cur len)

12: if rand(0, 1) >= 0.5 then
13: cur len = cur len + step;

14: else
15: cur len = cur len - step;

16: end if
17: end if
18: end while

Here, max len is the maximum chromosome length.

cur len is the current chromosome length. If the chromosome

length exceeds the boundary length, it will take the value

of the boundary. In the first round(
√
max len) generation,

the population will take big steps to spread out to explore

the entire search space (lines 4-9). In the rest generations,

it will adjust its step based on its current chromosome length

round(
√
cur len) so as to conduct detailed exploitation (lines

11-16). By doing so, it dynamically adjusts the chromosome

length.

B. Overall Framework of the Proposed Algorithm

This part presents the overall framework of the proposed

algorithm. The proposed algorithm takes the framework of

NSGA-II [8] as the basic multi-objective optimizer. Details

of the entire framework are presented in the following Algo-

rithm 2.

Algorithm 2 Proposed Algorithm

1: Input: max generation G, population size N , and the

objectives of minimalistic attacks F (x).
2: Initialize population P0 with size N ;

3: Evaluate population P0 using F (x);
4: for g = 1 to G do
5: Apply crossover and mutation to generate offspring O;

6: Call Algorithm 1;

7: Evaluate the whole population Pg ∪O using F (x);
8: Conduct non-dominated sort and Compute crowding

distance for Pg ∪O;

9: Select next generation Pg+1 from Pg ∪O;

10: end for
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In this setting, let G represent the maximum generation, N
denote the population size, and F (x) stand for the objectives

of the minimalistic attack problem. At the very beginning,

initialize the population P0 with population size N and eval-

uate each individual using the objective function F (x) (lines

2-3). In every generation, the current population reproduces

new offspring O through crossover and mutation, and then

dynamically adjusts the chromosome length using Algorithm 1

(lines 5-6). Subsequently, the entire population undergoes non-

dominated sorting and their crowding distances are computed

(line 8). The population of the next generation is selected based

on the two criteria (line 9).

Many realistic multi-objective problems come with con-

straints, which is also true for multi-objective minimalistic at-

tacks. In order to conduct a successful attack, the algorithm has

to generate perturbations that satisfy Eq. (3) > 0. During the

application of genetic algorithms like NSGA-II to optimization

problems, occurrences of constraint violations are frequent. In

our proposed algorithm, we incorporate the same constraint

handling technique in [8].

IV. EXPERIMENTAL RESULTS

This section analyzes the experimental results of the base-

line algorithm and the proposed method on multi-objective

minimalistic attack problem.

A. Experimental Setup

In our experiments, we use actor critic using kronecker-

factored trust Rregion (ACKTR) [11] as our reinforcement

learning policy on two atari games: Qbert and Seaquest [12].

In order to facilitate the implementation of the algorithm

details, on the first objective, we specify that the maximum

number of attacked pixels is 100, the minimum number is 1

and the initial number is 80. On the second objective, we

encode every pixel attacked in three consecutive positions

on the chromosome, each representing the x-coordinate, y-

coordinate, and the magnitude of alteration applied on the pixel

in grey level number. In the first generation, the actual length

of the chromosome is still 100 * 3 (3 consecutive positions

for one attack pixel) but only the first 80 * 3 genes can

express its phenotype. The baseline algorithm mentioned in the

graph is the existing algorithm introduced in the introduction,

which takes the step size of 1 for ease of use. The proposed

algorithm mentioned in the graph is the algorithm discussed

in section III. Under such settings, we run the two algorithms

respectively. More details settings of hyper-parameters are

listed as follows:

1) Representation:

a) Objective 1: discrete.

b) Objective 2: real-valued coded.

2) Max chromosome length: 300.

3) Min chromosome length: 3.

4) Initial chromosome length: 240.

5) Population size: 10.

6) Max generation: 50.

7) Repetition: 30.

8) Evolutionary operators:

a) Single point crossover. [13].

b) mutation when reproducing next population: Gaus-

sian mutation with probability pm = 1/d (d is the

dimensionality of the target optimization problem)

and distribution index ηm=10.

B. Performance Metrics

Metric 1: average values of objectives 1 and 2 acquired by

the two algorithms at every 10 generations.

Metric 2: hypervolume (HV) [14]. Let y∗ = (y∗1 ,...,y∗m) be

a reference point in the objective space that is dominated by

all Pareto optimal solutions. Let P be the approximation to the

PF gained by the algorithm. The HV value of P with regard

to y∗ is the volume of the region which is dominated by P

and dominates y∗.

(a) (b)

Fig. 1. Convergence trend of discrepancy Eq. (3) for (a) Qbert and (b)
Seaquest

(a) (b)

Fig. 2. Convergence trend of HV for (a) Qbert and (b) Seaquest

C. Results Analysis

Fig. 1 shows the discrepancy before and after the attack,

i.e., the result of Eq. (3). Although both algorithms launch a

successful attack (Eq. (3) > 0) at almost the same generation,

we can see from the two tables that they launch the attack

with different objective values, which means the proposed

algorithm launches a successful attack at a smaller attack

intensity. This further demonstrates the effectiveness of our

proposed algorithm.

Table. I and Table. II describe the experimental results

of metric 1. We can see that both algorithms improve their

acquired solutions (with less attack intensity), but the proposed

algorithm converges more quickly because of its dynamic

adjustment of chromosome length, which indicates that the
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proposed algorithm takes smaller attack intensity and still

launches a successful attack to the RL policy.

In terms of the HV values, Fig 2 shows that the proposed

algorithm grows much quicker than the baseline algorithm due

to the fact that it explores the search space more swiftly and

therefore reaches global optima with expedition. This is also

because the proposed algorithm uses the rest generation to

exploit into details of the search space, thereby launching a

successful attack at an early stage.

TABLE I
RESULTS (OBJECTIVE1 VALUE, OBJECTIVE2 VALUE) OF BASELINE AND

PROPOSED ALGORITHM FOR QBERT ENVIRONMENT AT EVERY 10
GENERATIONS. THE BEST ARE SHOWN IN BOLD.

Algorithm
(f1, f2) (f1, f2) (f1, f2) (f1, f2) (f1, f2)

at gen 10 at gen 20 at gen 30 at gen 40 at gen 50

Baseline (79, 1305) (73, 1260) (65, 1193) (57, 1121) (49, 1025)

Proposed (66, 1140) (34, 747) (15, 368) (7, 238) (2, 155)

TABLE II
RESULTS (OBJECTIVE1 VALUE, OBJECTIVE2 VALUE) OF BASELINE AND

PROPOSED ALGORITHM FOR SEAQUEST ENVIRONMENT AT EVERY 10
GENERATIONS. THE BEST ARE SHOWN IN BOLD.

Algorithm
(f1, f2) (f1, f2) (f1, f2) (f1, f2) (f1, f2)

at gen 10 at gen 20 at gen 30 at gen 40 at gen 50

Baseline (79, 1308) (77, 1297) (73, 1261) (68, 1216) (62, 1156)

Proposed (72, 1221) (57, 1028) (41, 795) (29, 610) (19, 460)

V. CONCLUSION

This paper specifies an instance of the practical problem:

the multi-objective minimalistic attack problem, which comes

from the field of deep reinforcement learning (DRL). It is

a bi-objective problem aiming to deceive well-trained DRL

agent to change its predictions. It does so by perturbing the

input of DRL policy, which is typically pictures described

with pixel grey level value. The perturbations are composed

of two parts: the number of attacked pixels and the Frobenius

norm of the difference pixel matrix before and after the

attack. This is a problem that requires EAs with variable-

length chromosome to solve. The baseline algorithm changes

its chromosome length with a fixed step size, which makes it

perform badly. Therefore, this paper proposed a novel method

that dynamically adapts the chromosome length, thereby ex-

pediting its convergence trend while not losing the ability to

exploit already explored search space. Experiments showcase

the effectiveness of the proposed algorithm and demonstrate

its advantages.
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