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Abstract— Marine vessels are complex interconnected systems 
and maintaining the health of individual components of the 
system increases uptime, boosts efficiency and safety of vessel 
operations. With recent transition from preventive to predictive 
maintenance of engineering assets and the prevalence of IoT 
sensors embedded within these assets, effective condition 
monitoring of engineering assets in marine vessels is now a 
reality. This paper aims at developing a solution for condition 
monitoring and diagnosis of potential breakdowns in the main 
engines of marine vessels using sensor data. Specifically, we 
analyze irregularly sampled multi-variate time series data 
originating from multiple sensors onboard the vessel engine to 
develop an autoencoder-based anomaly detection model for 
effective condition monitoring of the engines. In addition to the 
anomaly detection model, we devise a hierarchical framework 
to diagnose the potential cause of breakdown. The model is 
trained on data obtained from engines of two vessels. We train 
the model using historical time-series data corresponding to the 
vessel’s condition and operational profile over a month. The 
model is validated using historical time-series data collected 
over a year of vessel operations. The performance study of our 
model demonstrates its ability to predict breakdowns in advance 
with an average F-1 score of 85.3%, and average 11-14 days in 
advance of the actual reported breakdown dates. This proposed 
solution can be a promising tool for the condition monitoring 
and diagnostics of marine vessel engines.
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I. INRODUCTION

Marine vessel is a complex system that comprises of 
numerous subsystems and components. The main engine is 
the most critical subsystem responsible for supplying the 
propulsive force for the vessel. A breakdown of the main 
engine results in increased downtime which leads to
significant revenue loss due to vessel’s inability to operate.
Conventionally, maintenance of marine engines is facilitated 
through scheduled preventive maintenance [1]. As estimating 
the optimal maintenance schedule is cumbersome [2], there 
is a need for predictive maintenance that enables proactive 
maintenance only as and when required.
Predictive maintenance solutions can be facilitated through 
prognosis (classification), remaining useful life prediction 
(regression) or anomaly detection (unsupervised 
representation). Although there is a huge volume of data 
generated through sensors in the vessels, the maintenance 
records are often noisy owing to manual inputs. This results 
in noisy labels that affect the performance of supervised 
approaches adversely. Hence, unsupervised anomaly 
detection approach towards predictive maintenance of marine
engines [3] is the most viable choice.
Though statistical approaches such as auto associative kernel 
regression [4], dynamical linear models and sequential 
testing [5] were initially explored, these methods do not suit 
well for data with dynamically varying sensor measurements 
due to the uncertain physical operating environment of 

marine vessels. Clustering based approaches [6] including 
self-organizing maps, spectral clustering, k-means clustering, 
density-based clustering, and mixture of Gaussian models 
face the fallacy that it is uncertain to ascertain if the clusters 
correspond to another operational condition or anomaly. 
Moreover, when sensor data set involves high dimensional 
spaces, clustering-based approaches suffers from low 
performance. Although an ensemble of clustering approaches 
is scalable to high dimensional and large-scale sensor data
[7], they still face the former issue. Physics-based models and 
unsupervised deep learning algorithms are possible 
candidates for predictive maintenance applications of marine 
engines. However, physics-based models require the 
knowledge of physical equations and are not easily trainable 
and transferable across subsystems. On the other hand,
unsupervised deep learning algorithms are based on 
representational learning for time-series sequence prediction 
and automatic feature extraction towards detecting anomalies 
[8, 9]. Thus, unsupervised deep learning-based anomaly 
detection methods are more suitable for anomaly detection in 
marine engines.
In addition to detecting anomalies, it is highly desirable to 
also detect the root cause of the anomalies to facilitate 
diagnosis. Such root cause prediction can be performed 
independent of or in tandem with the anomaly detection 
model. Recently, independent models for anomaly detection 
of marine engines and its root cause prediction have been 
developed in [7, 10]. However, this method suffers from the 
following setbacks: (1) it does not scale well especially when
dealing with components represented by many sensor 
parameters, (2) as the anomaly detection and root cause 
prediction methods are independent, they are often not 
synchronized. 
In this paper, we propose a data-driven unsupervised anomaly 
detection approach for the predictive maintenance of marine 
vessels, which are operational in real-world. The contribution 
of this study is three-fold. First, we develop an anomaly 
detection approach based on autoencoders for predictive 
maintenance of marine vessel engine using historical time-
series data collected over a year of vessel operations. Second, 
we devise a reconstruction error based diagnosis of anomalies
to identify sensors that attribute to the detected anomaly and 
then the engine breakdown. Finally, we evaluate the anomaly 
detection model against real-world operational data of the 
engines. The data is inherently noisy because the breakdowns
reported in the maintenance logs are generally delayed 
depending on the date of maintenance activity. Hence, the 
data poses inherent challenges to the modeling and 
evaluation. We address these challenges in our study and the 
experimental results show that the proposed model can 
predict breakdowns in advance of the actual reported 
breakdowns with an average F1 score of 85.3% and is able to 
diagnose the sensors causing anomalies.
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II. MATERIALS AND MOTIVATIONS

A. Materials
The datasets used in this study are retrieved from 2 different 
vessels over a year of vessel operations. Each of the vessels 
has two main engines: starboard (SB) and portside (PS). 
These are four-stroke diesel engines with maximum rotation 
per minute of 750. These engines are equipped with sensors
that have different sampling frequencies. The available 
sensors on each vessel and their corresponding sampling 
frequencies are shown in Table 1. From the Table, it can be 
observed that each of the main engine of V1 has 14 sensors 
and each of the main engine of V2 has 16 sensors. Thus, we 
include 28 parameters from V1 and 32 parameters from V2
in our analysis. The duration of data used in the analysis 
depends on the operation of the individual vessels. 
Accordingly, we use data from Jun 2021 to Jul 2022 for V1 
and data from Dec 2021 to Jul 2022 for V2.

TABLE I. MAIN ENGINE SENSORS OF EACH VESSEL

Description of Main Engine Sensors Frequency V1 V2
Boost air pressure (BAP) 60

Boost air temperature (BAT) 60

Fuel oil flow (FOF) 2

Fuel oil used (FOU) 60

Freshwater pressure (FWP) 60

Fuel pressure (FP) 2

Pressure of lubircant oil (PLO) 60

Temperature of lubricant oil (TLO) 60

Engine rotation per minute (RPM) 3

Running hours (RH) 60

Exhaust gas temperature of turbocharger (TCEGT) 4

Pressure of lubricant oil in turbocharger (TCPLO) 60

RPM of turbocharger (TCRPM) 60

Average exhaust gas of 6 cylinders (EGC) 2

Freshwater temperature (FWT) 60

Seawater pressure (SWP) 60

We have a total of 2,275,737,602 raw observations (number 
of samples X number of sensors) from these vessels in the 
raw datasets. Subsequently, we synchronize all sensors’ 
sampling frequencies to 60Hz and resample the data every 
minute (one-minute interval). Detailed counts of the raw 
datasets and the processed datasets for each vessel can be 
found in Table 2. The processed and resampled datasets are 
obtained based on the preprocessing procedure detailed in 
Section IIIA.

TABLE II. COUNTS OF RAW AND PROCESSED DATASETS

Vessel
Label

Collection 
Period

(months)

Raw Datasets Processed and 
Resampled Datasets

No. of 
Samples

No. of 
Sensors

No. of 
Samples

No. of 
Sensors

V1 14 36,682,342 38 420,572 28

V2 8 20,995,443 42 247,448 32

Compared with other studies [10-12], the datasets used in our 
work are larger in volume and longer in terms of collection 
period. In [10], Kim et al. used the datasets with approximate 
22.5 million observations collected for 10 months. Other 
similar studies [11-12] had shorter data collection periods (3 
to 10 months) and fewer sensors.

B. Motivations
We present the reported breakdowns in the main engines of 
V1 and V2 along with their approximate timeline in Fig. 1.

In total, there were 27 breakdowns occurred from Jun 2021 
to Jul 2022 in the main engines of V1 and 12 breakdowns 
between Jan 2022 and Jul 2022 in the main engines of V2.
The recorded dates of breakdowns shown in Fig. 1 were 
retrieved from the maintenance logs when engine 
breakdowns were addressed, and correction actions took 
place. Therefore, there could be some time gap between the 
actual breakdown event date till the recorded date in the 
maintenance log. This poses the following challenges in both 
data labelling and model evaluation: (1) as the exact date of 
breakdown is unknown, labels derived from these 
maintenance logs for training supervised models will be 
noisy; (2) some breakdowns remain unreported, hence 
training supervised models using the data with erroneous 
labels will result in inaccurate models; (3) as breakdowns 
may occur within shorter duration, it is challenging to 
ascertain and relate a precursor or anomaly to individual 
breakdowns because they could either indicate precursors to 
the earlier reported breakdown or could also be early 
precursors for subsequent breakdowns. 

Fig. 1. Breakdown Records of V1 and V2’s Main Engines (PS & SB)

From Table 2 and Fig. 1, we have approximately 58 million 
raw data samples in total and only 39 breakdown events 
occurred during 8-14 months of vessels’ operation. The 
breakdowns can be due to diverse reasons and can be 
attributed to multiple interrelated subsystems that are 
unknown to us. More importantly, the amount of breakdown
or breakdown events is exceptionally less, making the data 
highly imbalanced. All the above-mentioned challenges are
a severe bottleneck to the development of a supervised 
classification based predictive maintenance method for 
marine engines.
Hence, we propose an unsupervised anomaly detection model 
towards predictive maintenance of V1 and V2. In doing so, 
we aim to train an autoencoder model on data during healthy 
operation of the engines and detect anomalous data samples 
based on the reconstruction error generated from the trained 
model. Theoretically, we can train one autoencoder for each 
engine of each vessel; thus, training four autoencoders in total 
for the four engines in the two vessels. However, this
approach results in multiple models and the number of 
models will grow with the size of the marine fleet. This also 
adds to the computational cost of training and storage cost of 
saving the models for inference in the deployment 
environment. In the next Section, we propose an end-to-end 
anomaly detection method to address all the above-
mentioned challenges and apply this to the use case in 
consideration in Section IV.
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III. METHOD

Our proposed method to the predictive maintenance 
application of marine vessels’ main engines in real-world 
encompasses four key steps shown in Fig 2. We first remove 
samples with noisy parameters and re-sample parameters to 
standardize the sensing or sampling frequency. Next, we 
select data samples for training and testing/validation and 
normalize the dataset for training autoencoder model. This is 
followed by training an autoencoder model for anomaly 
detection and root cause diagnosis. Finally, we evaluate the 
performance of the model against the noisy ground truth 
labels derived from maintenance reports. In doing so, we 
estimate the length of the prediction window for each 
reported breakdown.

Fig. 2. Overall Framework for Predictive Maintenance of Marine Engines

A. Data Preprocessing
We preprocess the raw data to obtain the clean data for 
modeling. First, erroneous values such as negative values and 
duplicated timestamps are removed. Next, we process RH
(Running Hours) and FOU (Fuel oil used) parameters (or 
sensors) because these original parameters are accumulated 
over time. The difference between the first and last value of 
the RH parameter for each day is estimated to represent the 
running hours per day. The FOU is calculated by 
differentiating the fuel oil used between two consecutive 
timestamps. Third, we take the average exhaust gas cylinder 
of 6 cylinders in each SB and PS engine and represent the 
average value by a single parameter named EGC (Exhaust 
Gas Cylinders) because we observe that these 6 exhaust gas 
cylinders are highly correlated to each other. As a result, the 
processed dataset has 10 sensors less compared with the raw 
dataset (see Table 1). After that, we filter samples where the 
RPM is below 375 or above 800 for both vessels because 
according to the domain expert and their sea trial reports, the
engine should be operating at an RPM in between 375 and 
800. In the last step, we resample the processed datasets by 
averaging samples within a one-minute interval to 
standardize sampling frequencies of all engine sensors.
Having synchronized sampling frequencies is necessary for 
providing online or real-time condition monitoring once the 
developed models are deployed in operation. The size of the 

final processed dataset for both vessels are mentioned in 
Table 2.

B. Data Selection and Normalization
As our approach is to build autoencoders to model engine 
data under healthy operating conditions, it is crucial to select 
appropriate training and testing data. From the condition and 
operational profile of both vessels (in Table 3), we find that 
there was no breakdown reported in the month of May 2022 
for both SB and PS engines of V1 vessel. Similarly, no 
breakdown was reported in the month of Feb 2022 for the SB
and PS engines of V2. Therefore, it is highly probable that 
the engines were in good working conditions during these 
periods. As such, data in these months are selected to train 
autoencoders to model engines under normal or healthy 
operating conditions. Consequently, we use data in other 
months to validate the performance of the trained 
autoencoders.

TABLE III. SUMMARY OF BREAKDOWNS FOR BOTH VESSELS

Both training and testing or validation data of each vessel are 
normalized using min-max scaling from the training data.

C. Anomaly Detection & Diagnosis of Anomalies
Fig. 3 depicts the overall framework for detection and 
diagnosis of anomalies using an autoencoder network based 
on time series data from sensors of marine engines.

1) Autoencoder Modelling for Anomaly Detection 
The autoencoder is trained on time series samples of n
engine sensors. The training samples are later fed into the 
trained autoencoder to reconstruct the healthy training data. 
For each training sample, we then take the reconstruction 
error (RE) which is the absolute difference of the 
reconstructed sample and the original sample. Based on the 
distribution of the RE of all samples in the training dataset, 

we extract the 99th percentile to determine the threshold to 

distinguish between normal and anomalous sample. The 99th

percentile threshold is commonly used in the literature for 
using autoencoders to detect anomalies [13]. Since the 
autoencoder is trained on healthy data, its RE will be high for 
anomalous samples that do not come from the same 
distribution as the healthy ones. Therefore, if the RE of 

samples in the test data set exceeds the threshold , the 
sample is identified as anomaly. Otherwise, the test sample is 
considered healthy.

Fig. 3. Overall Framework for Detection and Diangosis of Anomalies
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SB 2 4 2 0 3 0 3 0 5 0 2 0 1 1

PS 2 4 2 1 0 1 0 1 0 2 1 0 0 0

SB 0 0 0 3 0 1 0

PS 1 0 4 1 1 0 2

V1

V2 Vessel not in operation yet
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Fig. 4. Multiple Autoencoders (a) versus Single Autoencoder (b) Approach

We explore two different modes of training the autoencoder 
as shown in Fig 4. Each marine vessel has two independent 
engines SB and PS. Therefore, we train separate autoencoders 
for each engine of each vessel (Fig. 4a) in the first mode 
(multiple autoencoders). Specifically, individual 
autoencoders for the SB and PS engines are trained to detect 
anomalies in SB and PS engines, respectively. This approach 
is not effective as we need to train as many autoencoders as 
the type of engines. On the other hand, since both SB and PS 
engines have the same set of sensors sampled at the same 
frequency, we propose to use a single autoencoder to detect 
anomalies in both SB and PS engines (Fig. 4b) in the second 
mode (single autoencoder). To build a single autoencoder for 
both engines or multiple engines of the same vessel, we stack 
SB and PS sensor data consecutively. We report the 
performance results of both modes and compare their merits 
in the later Section.  

2) Diagnosis of Anomalies
Detection of anomalies will provide early alarm of impending 
breakdowns to enable timely intervention or maintenance 
activity. However, it is also crucial to know the root cause 
indicator which is the potential cause or contributor (e.g.
sensors) to the detected anomaly so that it expedites diagnosis 
before maintenance.

Algorithm 1 Algorithm for diagnosis of anomalies

Input: sensors, anomalies, training samples, 
breakdowns

Output: sensors for each breakdown 

1: for each sensor ( = 1, ) do:

2: compute (| |) =

3: for each anomaly do:

4: normalize RE = | | (| |)

5: for each breakdown b do:
6: identify anomalies belong to breakdown b
7: for each day prior to the recorded breakdown date do:
8: aggregate anomalies detected and average the

normalized RE for each sensor ( = 1, )

9: rank sensors based on average normalized RE and 

select the top sensors 

The root cause indicators are estimated based on Algorithm 
1. For each identified anomaly, we divide the RE of each 
sensor by its average RE from the training samples (or 
normalized reconstruction error). This step is to normalize 
each sensor’s abnormality to their normal or healthy 
condition and give an indication of how abnormal the sensor 
is compared to its normal operating state. For each day prior 
to the breakdown, we aggregate all identified anomalies on 
that day and take the mean value of normalized 
reconstruction errors for each sensor. Then we plot the 
heatmap to show the abnormality of each sensor on each day 
prior to the breakdown. The top sensors with brightest 

color (i.e. more abnormality) selected on each day will be 
identified as sensors attributed to the breakdown.

D. Performance Evaluation
Majority of previous works using machine learning models 
to detect anomalies or faults in marine main engines [7, 10, 
11, 12, 14] only report the number of anomalies detected 
and/or cluster them into similar groups of breakdowns but 
lack of assessment on the relevance of detected anomalies 
against known breakdowns or ground truths. As such, no 
accuracy performance was reported in those works. As we 
have the approximate recorded time of occurrence for each 
breakdown, we evaluate the anomalies detected by the model 
and estimate their performance accuracy against the ground 
truth labels derived from the approximate time of occurrence 
from the maintenance reports. Thus, we report the True 
Positive (TP), False Negative (FN), and False Positive (FP)
to evaluate each breakdown. We also report the Precision

( ), Recall ( ), and F1-measure ( )

to assess the performance of the anomaly detection models. 
As described in Section IIB, the recorded time of breakdown
may have discrepancies with the actual time of breakdown
occurrence. Therefore, we propose to use a time-window 

parameter ( days) to evaluate the model performance by

limiting the duration within which to search for anomalies.
That means only anomalies detected within -day before the 

recorded date are relevant to that breakdown. In case there is

a previous breakdown within the -day window of current 

breakdown, only anomalies detected between the previous 
breakdown and current breakdown are considered related to 
the current breakdown. Fig. 5 illustrates the above idea using 

examples when the -day is set to 10. In Fig. 5a, the previous 

breakdown occurred on 15 Jun 2021 which is more than 10 
days apart the current breakdown on 29 Jun 2021. Hence, if 

-day is set 10, only anomalies found from 19 Jun 2021 to 29

Jun 2021 are considered relevant to the breakdown on 29 Jun
2021. If there are anomalies found within that period (19 to 
29 Jun 2021), it will be considered as a TP case. If no 
anomalies found within that period, it will be treated as a FN 
case. In Fig. 5b, since the previous breakdown (25 Jun 2021)
was only 4 days apart the current breakdown (29 Jun 2021)

which is shorter than the -day window of 10 days, hence 

only anomalies found from 25 to 29 Jun 2021 are considered 
relevant to the breakdown on 29 Jun 2021. Anomalies found 
beyond that period will be considered for other breakdowns 
or FP cases. For FP cases, if anomalies are detected within a 

period of  -day but there is no reported breakdown within 

that period, it will be counted as a FP case. Using the -day 
parameter to assess each breakdown in the above manner will 
prevent inflating the number of TPs and reduce the possibility 
of deflating the number of FPs in reporting. In our 
experiments, we perform assessments with different values of 

-day and report the models’ performance accordingly. 

Fig. 5. Examples to Evaluate Model Performance
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IV. EXPERIMENTAL RESULTS

A. Experimental Settings

TABLE IV. SUMMARY OF TRAINING AND TESTING DATA SIZE

Vessel Total Samples Training Testing
V1 420,572 36446 384,126

V2 247,448 8438 239,010

TABLE V. AUTOENCODER ARCHITECTURE

Section Layer V1's Autoencoders V2's Autoencoders
Shape Parameters Shape Parameters

Input Input 1x14 0 1x16 0

Encoder

Dense 1x64 960 1x64 1088

Dense 1x32 2080 1x32 2080

Dense 1x16 528 1x16 528

Code Dense 1x8 136 1x8 136

Decoder

Dense 1x8 72 1x8 72

Dense 1x32 288 1x32 288

Dense 1x14 462 1x16 528

Table 4 summarizes the training and testing samples for both 
vessels. Table 5 summarizes the autoencoder architecture
used in our experiments. For comparison purposes, the same 
architecture is applied for both multiple autoencoders 
approach and single autoencoder approach. We use Adam 
optimizer with the learning rate of 0.001 and mean absolute 
error as the loss function for training. All networks are trained 
for 3000 epochs with a batch size of 512. All experiments 
were conducted on the Ubuntu 20.04.6 LTS, Intel(R) 
Core(TM) i7-9700K CPU @ 3.60GHz, Nvidia GeForce RTX 
2080 Ti, with the framework of Python 3.8.12.

For -day parameter, we take the days difference (delta)

between 2 consecutive breakdowns of the same engine (SB 
or PS) for both vessels and plot their histogram in Fig. 6. It is 
observed that majority of breakdowns are apart by 46 days. 
Therefore, we evaluate the models’ performance with 5 

different -day values including 10, 15, 20, 30, and 45.

Fig. 6. Histogram of Days Difference between 2 Consecutive Breakdowns

Tables 6 and 7 summarize the performance results of single 
autoencoder and multiple autoencoder approaches for each 
vessel.

TABLE VI. PERFORMANCE RESULTS ON V1 VESSEL

TABLE VII. PERFORMANCE RESULTS ON V2 VESSEL

To avoid biasness and account for random weight 
initialization of neural networks, we perform 10 repetitions 
of training and testing for each approach and average the 
results from 10 repetitions for reporting. For example, of the 
10 repetitions of experiments, only 1 experiment produces a 
FN case, then the average FN of 10 trials will be 0.1 (=1/10). 
We can see that the performance of single autoencoder 
approach is comparable to the one of multiple autoencoder 
approaches for both vessels. The multiple autoencoder 
approach achieves slightly better recall and F1 scores for 
detection of anomalies in PS engine. There is almost no 
change in the number of TPs as -day changes. This shows 

that the models can detect anomalies prior to reported 

breakdowns regardless of -day values experimented.

Meanwhile, as -day value increases, the performance of 

both approaches also increases due to the decline in the 

number of FPs. This further substantiates the role of -day 

parameter in preventing deflating the number of FPs. Based 
on the results in Tables 6 and 7, we choose 20 as the optimal 
value of -day for reporting and analysis because it achieves 

the best TPs and balanced FPs for both engines of 2 vessels 
and more than half of breakdowns occurred within 23 days 
apart as shown in Fig. 6. On average, the precision, recall, 
and F1-measure of the single autoencoder approach are 
76.6%, 98.1%, and 85.3%. Fig. 7 plots the number of 
anomalies detected for each repetition of 10 experiments. The 
right axes and orange curves in Fig. 7 show how early (i.e. 
days in advance) those anomalies were detected prior to 
engine breakdowns. On average, pre-cursors appear 13.3 and 
11.5 days prior to breakdowns in engines of V1 and V2
respectively.

Fig. 7. Total Anomalies Detected and Days Predicted in Advance 

TP FN FP Pre (%) Rec (%) F1 (%) TP FN FP Pre (%) Rec (%) F1 (%)

10 17 17 0.1 2 89.4 99.4 94.1 17 0.1 2 89.4 99.4 94.1

15 17 17 0.1 1 94.4 99.4 96.8 17 0.1 1 94.4 99.4 96.8

20 17 17 0.1 1 94.4 99.4 96.8 17 0.1 1 94.4 99.4 96.8

30 17 17 0.1 1 94.4 99.4 96.8 17 0.1 1 94.4 99.4 96.8

45 17 17 0.1 1 94.4 99.4 96.8 17 0.1 1 94.4 99.4 96.8

10 10 10 0 7 58.9 100 74.1 9.9 0.1 6.6 60.3 99 74.8

15 10 10 0 5 66.8 100 80.1 9.9 0.1 4.7 68.1 99 80.6

20 10 10 0 4.2 70.5 100 82.7 10 0 4.1 71 100 83.0

30 10 10 0 3 77.1 100 87.0 10 0 2.8 78.4 100 87.8

45 10 10 0 2.8 78.2 100 87.7 10 0 2.6 79.5 100 88.5

V1 PS

Vessel 
Engine

Total 
Cases

Single Autoencoder Approach Multiple Autoencoder Approach

V1 SB

TP FN FP Pre (%) Rec (%) F1 (%) TP FN FP Pre (%) Rec (%) F1 (%)

10 5 5 0 5 50.0 100 66.7 5 0 5 50.0 100 66.7

15 5 5 0 3 62.5 100 76.9 5 0 3 62.5 100 76.9

20 5 5 0 3 62.5 100 76.9 5 0 3 62.5 100 76.9

30 5 5 0 2 71.4 100 83.3 5 0 2 71.4 100 83.3

45 5 5 0 1 83.3 100 90.9 5 0 1 83.3 100 90.9

10 7 6.5 0.5 2.7 72.0 92.9 80.2 7 0 3 70.0 100 82.4

15 7 6.5 0.5 1.8 79.2 92.9 84.8 7 0 2 77.8 100 87.5

20 7 6.5 0.5 1.8 79.2 92.9 84.8 7 0 2 77.8 100 87.5

30 7 6.5 0.5 0.9 88.2 92.9 90.0 7 0 1 87.5 100 93.3

45 7 6.9 0.1 0.9 88.8 98.6 93.2 7 0 1 87.5 100 93.3

V2 SB

V2 PS

Vessel 
Engine

Total 
Cases

Single Autoencoder Approach Multiple Autoencoder Approach
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B. Root Cause Prediction
Fig. 8 shows an example of the heatmap used to identify 
sensors that are detected as potential causes of the detected 
anomaly events. The x-axis represents the number of the days 
prior to the breakdown date which was 17 Mar 2022 for V1.
The y-axis numbered from 0 to 13 represents the 14 sensors 
of V1 vessel PS engine which are shown in the legend of the 
plot. Based on the heatmap, FP and FOF sensors are the 
predominant contributors of most anomalies.

Fig. 8. Example of Heatmap Showing Sensors Attributed to Breakdown

We perform the same analysis for 27 breakdowns of V1 
vessel and 12 breakdowns of V2 vessel and find out the top 5
sensors that commonly occur in our analysis and diagnosis.
The top common sensors for breakdowns of V1 are FOF, 
EGC, RPM, FWP, and PLO while the top common sensors 
for breakdowns of V2 include TCPLO, FP, RPM, FOF, and 
PLO.

V. CONCLUSIONS

In this paper, we develop an autoencoder based anomaly 
detection method towards predictive maintenance of main 
engines in marine vessels. In addition, we also propose a 
method to evaluate the detection results objectively. Our
experimental results show that the single autoencoder 
approach achieves comparable performance with the 
approach using multiple autoencoders for detection of 
anomalies prior to marine main engines’ breakdowns. The 
developed autoencoders achieve 76.6%, 98.1%, and 85.3% of 
precision, recall, and F1 scores on average when testing on 
historical time-series data collected over a year of 2 vessels’
operations. Specifically, the models achieve 82% to 96% of 
F1 score for all engines except the SB engine of V2 vessel.
Additionally, we develop a method to identify sensors that 
are highly likely contributing to the breakdowns of marine 
main engines. The method enables users to visualize the 
trends of faulty sensors prior to breakdowns. Further 
verification is required to evaluate the correctness and 
usefulness of our method to aid components diagnosis of 
main engines in practice. Our immediate future work is to try 
improving the detection accuracy especially the one of SB 
engines by exploring diverse network architecture or 
different types of autoencoders such as LTSM autoencoders.
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