
Archive-based Cooperative Coevolution Genetic
Programming for Workflow Scheduling

Yuanzi Hong1, Wei-Li Liu1∗, Jinghui Zhong2∗, Peng Liang1, Jianhua Guo1, Chunying Li3,1

1Guangdong Polytechnic Normal University, Guangzhou, China

Email: hhnun2588@163.com, liuweili@gpnu.edu.cn, liangpeng@gpnu.edu.cn, guojianhua@gpnu.edu.cn, gscy.li@qq.com
2South China University of Technology, Guangzhou, China

Email: jinghuizhong@gmail.com
3Guangdong Provincial Key Laboratory of Intellectual Property & Big Data, Guangzhou, China

Abstract—Workflow Scheduling Problem (WSP) is a well-
known combinatorial optimization problem, which requires al-
locating tasks to available computing resources to maximize
system efficiency, performance, or to meet specific requirements
of service quality. The cooperative coevolution hyper-heuristic
method based on genetic programming is a promising approach
for addressing the WSP, attracting growing attention from
researchers. However, this approach still faces the challenge of
individual selection bias in the fitness evaluation when coevoluting
two sub-populations. To address the above issue, this paper
proposes an Archive-based Cooperative Coevolution GP (A-
CCGP), which leverages an archive population to improve the
quality of fitness evaluation. In addition, an adaptive mechanism
is proposed to dynamically adjust the training set during the
evolution to reduce the computational cost of fitness evaluation.
Experimental results have validated the effectiveness of the
proposed A-CCGP algorithm, in comparison with several state-
of-the-art algorithms.

Index Terms—Workflow scheduling, genetic programming,
cooperative coevolution

I. INTRODUCTION

The Workflow Scheduling Problem (WSP) is crucial in both

scientific and industrial communities, and it aims to optimize

the task execution sequence and resource allocation to enhance

work efficiency under several constraints. So far, existing

methods for solving WSP can be roughly classified into the

guided random search methods [1], [2] and the heuristic-based

methods [3-7]. However, these methods require significant

computational cost or rely heavily on human empirical knowl-

edge, hindering practical applications. To automatically design

high-level heuristics, Xiao et al. [8] proposed a Cooperative

Coevolution Genetic Programming (CCGP) algorithm and

achieved encouraging results. Nonetheless, the efficiency of its

fitness evaluation method is still not high enough for practical

use because of individual selection bias. Whenever a candidate

sub-solution of a sub-population needs to be evaluated, it

should be firstly combined with the best individual of another

This work was supported in part by the Guangdong Basic and Ap-
plied Basic Research Foundation under Grants 2023A1515012291 and
2021A1515110072; in part by the National Natural Science Foundation of
China under Grant 62072123; in part by the Scientific Research Platforms
and Projects of Guangdong Provincial Education Department under Grants
2022ZDZX1012 and 2020ZDZX305; and in part by the Research Startup
Funds of Guangdong Polytechnic Normal University under Grant 2021SD-
KYA130. (*Corresponding authors: Wei-Li Liu; Jinghui Zhong.)

sub-population to form a complete solution. However, the

complete solution formed in this way is not necessarily the

best combination and may ignore the diversity of the overall

population, making the evolutionary algorithm more likely to

fall into local optima.

To solve these issues, this paper proposes an Archive-based

Cooperative Coevolution Genetic Programming (A-CCGP) by

using the archive strategy [9], [10], which is utilized for

storing historically superior solutions. The proposed A-CCGP

enhances the fitness evaluation in two following aspects.

1) An archive population is introduced to overcome the

individual selection bias when combining individuals of

two sub-populations in CCGP. Besides, the archive pop-

ulation is dynamically maintained to make the pairing

more accurate.

2) The training set is adaptively adjusted to reduce the

computational cost. Specifically, the evaluation process

is divided into early, middle, and late stages, and the

training set is adjusted to tiny, half, and complete,

respectively.

In the experiments, the proposed A-CCGP is tested and

compared with the CCGP [8] and several state-of-the-art algo-

rithms such as the Heterogeneous Earliest Finish Time (HEFT)

[3], Lookahead [4], the Predict Earliest Finish Time (PEFT)

[5], the Performance Effective Task Scheduling (PETS) [6]

and the Minimizing Schedule Length (MSL) [7] on randomly

generated workflows and four real-world workflows.

The rest of the paper is organized as follows: Section II
presents a review of the related works. Section III, formu-

lates the workflow scheduling model, Section IV provides a

detailed description of the proposed algorithm, while Section

V presents the experimental study. Conclusion is drawn in

Section VI.

II. RELATED WORK

This section will overview two types of methods commonly

used to solve WSP and introduce the CCGP algorithm [8]. One

type is the guided random search methods [1], [2], which en-

hance the search efficiency by combining random exploration

of the search space with guided strategies. These methods

effectively overcome local optima stagnation in the search

space and improve performance in solving WSP. However,

210

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00047

they may require high computational cost when dealing with

large search space. Additionally, in case of workflow changes,

these methods need re-execution to find a new solution,

limiting their practical applicability.

The other type is the heuristic-based methods, which in-

volve designing heuristic rules to guide the search process.

List-based heuristics [3-7] are the most famous and popular

category within this type, usually divided into task priority

sorting and resource selection phase. Tasks are sorted based

on priority, with high-priority task will be scheduled first and

then the selected task will be assigned to the highest-priority

resource. Overall, existing heuristic-based methods for WSP

are often developed in an ad-hoc manner, with rules derived

from a deep understanding of the specific problem domain.

For the CCGP algorithm, the cooperative coevolution ar-

chitecture is integrated into genetic programming to learn

coadapted high-quality sub-heuristics efficiently. Its heuristics

are learned automatically and can be applied to different

situations without re-execution, making it more flexible and

convenient for practical applications. However, the fitness

evaluation efficiency of the CCGP algorithm is not high

enough due to the individual selection bias in combining two

sub-populations. Therefore, there is a need to improve the

fitness evaluation strategy. To address the above limitations of

existing methods, this paper proposes the A-CCGP algorithm

to solve WSP.

III. PROBLEM DEFINITION

A Direct Acyclic Graph (DAG) is a widely used tool

for representing workflow models. A DAG, denoted as (V,
E), consists of tasks V = {v1, v2, ..., vn} and dependencies

between the tasks E. In the DAG structure, a task without any

predecessors is denoted by an entry task (tentry), while a task

without any successors is denoted by an exit task (texit).

The makespan of a workflow, used to evaluate the perfor-

mance of the proposed algorithm, is defined as the maximum

completion time of all tasks in the workflow. Let AFT(texit)
denote the actual finish time of task texit. Then, the makespan

of the workflow can be defined by

makespan = max {AFT (texit)} (1)

Since the makespan of different instances may vary signifi-

cantly, it is necessary to normalize the makespan concerning a

lower bound. Therefore, this paper adopts the Schedule Length

Ratio (SLR) index [5] to provide a more intuitive measure of

the algorithm performance, as defined by

SLR =
makespan

∑
tiεCPMIN

minpjεP {ωi,j} (2)

where ωi,j represents the execution time of task ti on resource

pj , and CPMIN represents the set of critical path tasks.

Equation (2) states that a lower SLR value indicates a better

solution.

IV. PROPOSED ALGORITHM

Our proposed A-CCGP algorithm is based on the recently

published CCGP algorithm [8] and incorporates a popular

archive policy. In the CCGP algorithm, the high-level heuristic

consists of two interacting and co-adaptive sub-heuristics,

TSR and RSR. The TSR is used to select a ready task for

scheduling, while the RSR is used to allocate resources to per-

form the selected task. Correspondingly, two sub-populations,

PTSR and PRSR, work cooperatively to evolve TSR and RSR,

respectively. PTSR is responsible for evolving TSR, while

PRSR focuses on evolving RSR. To evaluate a candidate sub-

solution of one sub-population, it will be paired with the best

individual of the other sub-population to form a complete

solution. In this way, the fitness value of a sub-solution is

determined by the fitness value of the corresponding complete

solution. Meanwhile, the fitness value of the complete solution

(a pair of ΓTSR and ΓRSR) is defined as the average SLR over

a set of training instances I, as expressed by

f(ΓTSR, ΓRSR) =

∑|I|
j=1 SLRIj

|I| (3)

However, pairing only with the best individual may result in

a lack of accuracy in the combination and therefore decrease

the efficiency of fitness evaluation. To address this issue, this

paper employs the archive strategy, which involves creating an

archive population to store previously outstanding individuals

of the two sub-populations. The TSR and RSR individuals in

the archive population represent sub-solutions. Additionally,

an adaptive scheme is adopted for adjusting the training set I
in (3), so as to reduce computational cost.

A. Overall framework

Fig. 1 illustrates the overall framework of A-CCGP. Initially,

generate two sub-populations (PTSR and PRSR), followed by

randomly selecting individuals from these two sub-populations

to initialize the archive population. Each individual represents

a scheduling heuristic. Then the fitness values of individuals

in the two sub-populations are traditionally evaluated.

In each generation, the training set is adaptively adjusted,

followed by applying the proposed archive-based fitness eval-

uation to evaluate individuals of each sub-population. Specif-

ically, the process begins by checking if the conditions for

combining with the archive population are met. If so, fitness

evaluation is performed in conjunction with the archive popu-

lation, followed by updating the archive population. Otherwise,

fitness evaluation is directly carried out between the two

sub-populations. More details of the archive-based fitness

evaluation will be provided in Section IV-B.

Next, the two sub-populations undergo evolution through

mutation, crossover, and selection operations. These genetic

operations correspond to the search mechanism based on

differential evolution in Self-Learning Gene Expression Pro-

gramming (SL-GEP) [11]. The process of fitness evaluation,

mutation, crossover, and selection operations is repeated until

the termination conditions are satisfied.

211

B. Archive-based fitness evaluation

The pseudocode of archive-based fitness evaluation is shown

in Algorithm 1, composed of three main steps.

Step 1 - Combination with the archive population: This step

begins with a condition check. If the best fitness value is

updated or maintained for a specified number of iterations

(e.g., three), a combination with the archive population to

evaluate the fitness will be triggered. This involves evaluating

the RSR and TSR sub-solutions of the newly added archive

population with the best individuals of PTSR and PRSR,

respectively. If there is an update to the best fitness value

after evaluation, the archived sub-solution will replace the best

individual of the corresponding sub-population. For example,

if combining the best individual of PTSR and a newly added

RSR sub-solution in the archive population results in the best

fitness value update, the newly added RSR sub-solution will

be set as the best individual of PRSR.

Step 2 - Archive Population Update: If the condition of Step

1 is met, the archive population will be dynamically updated.

Specifically, the combination of individuals with better fitness

in the current iteration is selected and subsequently mutated.

The mutated combination is then regarded as the newly added

sub-solutions of the archive population.

Step 3 - Fitness evaluation: The fitness value of the complete

solution, which includes the current sub-population and the

best individual from the other sub-population, is calculated

according to (3).

It should be noted that adaptive adjustment of the training

set has been employed before every archive-based fitness

evaluation to reduce computational cost.

Algorithm 1: Archive-based fitness evaluation

Input: two sub-populations PTSR, PRSR and archive
population; training set I; iteration number: T

Output: the best sub-solutions TSR and RSR
1 Adaptively adjust numbers of the training set I;
2 if (best fitness value updates ‖ maintain the same best fitness

value for a long time) then
3 Triggers a fitness evaluation in combination with the

archive population;
4 if best fitness value updates then
5 Replace the best individual in the corresponding

sub-population;
6 end
7 Update archive population;
8 end
9 Evaluate fitness of individuals in each sub-population;

10 Update the best individual indexes;
11 P r

TSR, P
r
RSR ← best individual of PTSR, PRSR ;

12 return P r
TSR, P

r
RSR

V. EXPERIMENTAL STUDIES

A. Experimental Settings

In experiments, two types of workflows have been tested,

including randomly generated workflows and four real-world

workflows. The random workflows are generated using a

random DAG generator, while the four real-world workflows

Fig. 1. The flowchart of the proposed A-CCGP algorithm.

are Gaussian Elimination, Fast Fourier Transform (FFT) [3],

[4], Montage [12], and Epigenomics [13].

On both types of workflows, five well-known manually-

designed heuristics, i.e., HEFT [3], Lookahead [4], PEFT [5],

PETS [6], MSL [7], and the recently published CCGP [8] are

chosen to compare with our proposed A-CCGP. For CCGP

and A-CCGP, there are four hyper parameters to consider.

These include the sub-population size (NP), the number of

Automatically Defined Functions (ADFs) (K), the head length

of the main program (h), and the head length of the ADFs

(h’). The ADFs are sub-functions that provide sub-solutions

to specific sub-problems. In the context of WSP, the four hyper

parameters are empirically set as NP = 30, K = 2, h = 20, and

h’ = 3, while the other parameter settings follow those used

in CCGP [8].

All compared algorithms are coded in C++ and executed on

a computer with Intel(R) Core(TM) i9-13900 CPU @ 3.0GHz,

128 GB memory, and Microsoft Windows 11 64-bit system.

The metric for comparison is mainly the average SLR over

the whole training set as calculated according to (3) and the

best fitness values attained by the algorithms. Note that for the

sake of comparison fairness, the results of CCGP and A-CCGP

have been averaged over 20 independent runs.

B. Result Analysis

Fig. 2 depicts the search convergence trend regarding the

best fitness values of all compared algorithms on randomly

generated and four real-world workflows. It is important to

note that each algorithm terminates when the predetermined

time limit is reached. Manually-designed heuristics yield

consistent fitness values under fixed inputs, wherein their

decisions are based on predetermined rules. It can be observed

that the proposed A-CCGP algorithm achieved a much faster

convergence rate than the other algorithms. Additionally, the

A-CCGP and CCGP algorithms can learn high-level heuristics

better than manually designed ones.

212

TABLE I
THE SCHEDULING LENGTH RATIO OF THE HIGH-LEVEL HEURISTICS ALGORITHM LEARNED ON RANDOMLY GENERATED WORKFLOWS AND FOUR

REAL-WORLD WORKFLOWS COMPARED WITH OTHER ALGORITHMS

Randomly Generated Workflows Gaussian Elimination FFT
PEFT Lookahead HEFT MSL PETS PEFT Lookahead HEFT MSL PETS PEFT Lookahead HEFT MSL PETS

A-CCGP
Better 55% 79% 73% 94% 90% 62% 76% 83% 95% 96% 66% 53% 68% 85% 89%
Equal 12% 4% 4% 2% 2% 16% 4% 4% 2% 2% 9% 8% 6% 4% 3%
Worse 33% 17% 23% 4% 8% 22% 20% 13% 3% 2% 25% 39% 26% 11% 8%

Montage Epigenomics
PEFT Lookahead HEFT MSL PETS PEFT Lookahead HEFT MSL PETS

A-CCGP
Better 75% 58% 77% 87% 84% 54% 59% 77% 85% 86%
Equal 6% 9% 4% 3% 2% 18% 8% 4% 2% 3%
Worse 19% 33% 19% 10% 14% 28% 33% 19% 13% 11%

Fig. 2. Evolution of the best fitness values derived from all compared algorithms on (a) randomly generated workflows, (b) Gaussian Elimination, (c) FFT,
(d) Montage, and (e) Epigenomics.

To investigate our proposed A-CCGP’s effectiveness, its

learned high-level heuristics are compared with five manually

designed heuristics on randomly generated workflows and

four real-world workflows. Table 1 shows the percentage of

schedules generated by high-level heuristics of the A-CCGP

that are better than, equal to, or worse than those produced by

other heuristics. It can be seen that the SLR values of the A-

CCGP’s best heuristics are more than 50% better than all other

heuristics. Moreover, the A-CCGP performs better or equal to

the second-best algorithm PEFT on five test workflows, with

rates of 67%, 78%, 75%, 81%, and 72% respectively.

VI. CONCLUSION

This paper has proposed an A-CCGP algorithm to automat-

ically generate high-level heuristics for WSP. The proposed

A-CCGP algorithm utilizes an archive strategy to improve

pairing accuracy, enhance fitness evaluation quality and ac-

celerate search efficiency. In addition, we also propose an

adaptive training set adjustment strategy to effectively reduce

the computational cost. Experiments on randomly generated

workflows and four real-world workflows have validated the

effectiveness of the proposed A-CCGP. In future, we would

extend our method by considering more optimization objec-

tives, such as maximize utilization and minimize cost.

REFERENCES

[1] Yi Gu and Chandu Budati. Energy-aware workflow scheduling and
optimization in clouds using bat algorithm. Future Generation Computer
Systems, 113:106–112, December 2020.

[2] Navpreet Kaur Walia, Navdeep Kaur, Majed Alowaidi, Kamaljeet
Singh Bhatia, Shailendra Mishra, Naveen Kumar Sharma, Sunil Kumar
Sharma, and Harsimrat Kaur. An Energy-Efficient Hybrid Scheduling
Algorithm for Task Scheduling in the Cloud Computing Environments.
IEEE Access, 9:117325–117337, 2021.

[3] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Transactions on Parallel and Distributed Systems, 13(3):260–274, March
2002.

[4] Luiz F. Bittencourt, Rizos Sakellariou, and Edmundo R. M. Madeira.
DAG Scheduling Using a Lookahead Variant of the Heterogeneous
Earliest Finish Time Algorithm. In 2010 18th Euromicro Conference
on Parallel, Distributed and Network-based Processing, pages 27–34,
February 2010. ISSN: 2377-5750.

[5] Hamid Arabnejad and Jorge G. Barbosa. List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table. IEEE Transactions
on Parallel and Distributed Systems, 25(3):682–694, March 2014.

[6] E. Ilavarasan and P. Thambidura. Low Complexity Performance Effec-
tive Task Scheduling Algorithm for Heterogeneous Computing Environ-
ments. Journal of Computer Science, 3(2):94–103, February 2007.

[7] D. Sirisha and G.Vijaya Kumari. A new heuristic for minimizing
schedule length in heterogeneous computing systems. In 2015 IEEE
International Conference on Electrical, Computer and Communication
Technologies (ICECCT), pages 1–7, March 2015.

[8] Qin-zhe Xiao, Jinghui Zhong, Liang Feng, Linbo Luo, and Jianming
Lv. A Cooperative Coevolution Hyper-Heuristic Framework for Work-
flow Scheduling Problem. IEEE Transactions on Services Computing,
15(1):150–163, January 2022.

[9] Shaolin Wang, Yi Mei, Mengjie Zhang, and Xin Yao. Genetic Program-
ming With Niching for Uncertain Capacitated Arc Routing Problem.
IEEE Transactions on Evolutionary Computation, 26(1):73–87, February
2022.

[10] Qingqing Liu, Xianpeng Wang, Yao Wang, and Xiangman Song. Evolu-
tionary convolutional neural network for image classification based on
multi-objective genetic programming with leader–follower mechanism.
Complex & Intelligent Systems, 9(3):3211–3228, June 2023.

[11] Jinghui Zhong, Yew-Soon Ong, and Wentong Cai. Self-Learning Gene
Expression Programming. IEEE Transactions on Evolutionary Compu-
tation, 20(1):65–80, February 2016.

[12] Zulfiqar Ahmad, Ali Imran Jehangiri, Nader Mohamed, Mohamed Oth-
man, and Arif Iqbal Umar. Fault Tolerant and Data Oriented Scientific
Workflows Management and Scheduling System in Cloud Computing.
IEEE Access, 10:77614–77632, 2022.

[13] Xiaoyong Tang, Wenbiao Cao, Huiya Tang, Tan Deng, Jing Mei, Yi
Liu, Cheng Shi, Meng Xia, and Zeng Zeng. Cost-Efficient Workflow
Scheduling Algorithm for Applications With Deadline Constraint on
Heterogeneous Clouds. IEEE Transactions on Parallel and Distributed
Systems, 33(9):2079–2092, September 2022.

213

