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Abstract— Energy conservation is critical in wireless sensor 
networks since it affects the sensor's lifespan. Reducing the 
frequency of transmission is one way to reduce expenses, but it 
must not compromise the accuracy of the data that is being 
received. Hence, this paper has developed an autoregressive 
integrated moving average (ARIMA) time-series-based model to 
improve the prediction approach. The proposed ARIMA-based 
model assures the characteristics of the nodes that remain idle 
for extended times to conserve energy during inactive periods. 
It forecasts a building's energy usage based on the data gathered 
(e.g., day of the week, light energy, temperature, humidity, etc.). 
The proposed methodology efficiently preserves the constrained 
battery power of wireless sensor nodes while maintaining the 
predicted data values within the application-defined error 
bounds. Through experiments, it has been shown that these 
predicted data values closely match the actual observed 
data values and requires less communication between sensor 
nodes and aggregators than the actual data aggregation method. 
The proposed methodology enhanced the prediction accuracy as 
compared with existing approaches. This approach produces 
the mean absolute error (MAE) as 45.06. 

Keywords— Energy forecasting, ARIMA, Time series 
analysis, Wireless sensor networks, Machine learning 

I. INTRODUCTION 

The widespread use and development of Wireless Sensor 
Networks (WSNs) have the potential to impact every aspect 
of our lives, including home automation, health care, military 
services, energy management, and many other applications. 
These applications are the results of the continuous 
development of technologies like the miniaturization of 
devices and wireless technology. WSN comprises several 
tiny, inexpensive sensor nodes that may actively interact with 
one another over shorter ranges [1]. These sensor nodes of a 
WSN are geographically dispersed sensors that 
collaboratively transmit their data to a central location while 
monitoring environmental conditions or concerning activities. 

Recent developments in computing and communication 
have influenced sensor network research significantly. WSNs 
are networks of tiny sensor nodes working together to collect, 
process and transmit data on specific physical phenomena 
across wireless channels. These self-organizing, energy-
efficient, extremely reliable networks can serve as ideal 
sentinels for supervising bridges, animals, buildings, 
pipelines, and underground mining operations. The 
advancement of WSNs evolves in three different technologies 
such as communication, sensing, and computing. Therefore, 
separate and combined developments in each of these 
technologies have motivated research in wireless sensor 
networks [2]. The need for reduced energy consumption is one 
of the most significant constraints for sensors. The power 
sources carried by sensor nodes are limited and typically 

irreplaceable. As a result, whereas conventional networks 
strive to provide good quality of service, sensor network 
protocols must place a massive emphasis on power savings. 
They must include built-in trade-off mechanisms that provide 
the user with the choice to extend the network lifetime at the 
expense of a longer transmission latency or lower throughput 
[3]. 

The deployment of cutting-edge machine learning 
methods has increased significantly during the past decade in 
WSNs [4]. It has been discussed how artificial learning 
methods are used in WSNs to process information and 
enhance network performance [5]. Similarly, a survey 
summarizes the uses of intelligent learning models in wireless 
ad hoc network layers. The authors examined the use of three 
well-known machine learning models, neural networks, 
reinforcement learning, and decision trees for WSN 
communication levels [6]. The work in [7] has explored 
computational intelligence techniques for overcoming 
difficulties in WSNs, such as aggregation, task scheduling, 
data fusion, routing, and localization [7]. In this context, 
computational intelligence focuses on biologically inspired 
techniques like evolutionary algorithms, neural networks, and 
fuzzy systems [8]. 

Optimization methods and deep learning models have 
been used to build several energy-efficient solutions for 
WSNs. The deployment of a WSN includes a delay-aware 
data-gathering network. The primary objective is to decrease 
the latency in the WSN data collection process, which tends 
to extend the network lifetime [9]. It is expected that 
additional relay nodes have been used to reduce network 
vulnerability and that the Particle Swarm Optimization model 
has been used to set an optimum sink position for relay nodes 
to address the lifetime problem [10]. 

WSN is made up of several sensor nodes therefore, the 
ability to compute data has been limited using fusion centre 
technology, which is complicated to upgrade regularly. Data 
communication hence consumes more energy, especially for 
wireless relaying nodes. In the last ten years, data mining 
approaches have been used to extract relevant information 
from a variety of data sets, and they are seen to be a more 
effective tool for forecasting bigger data sets. Logistic 
regression, support vector machine, and boosting are 
examples of data mining approaches that have been developed 
during the past few decades [11]. Additionally, using these 
data mining models tends to improve the operation of the 
fusion centre, but the problem with energy consumption 
remains the same. The author devised the Deep Neural 
Network to reduce the dimensionality of data and retrieve the 
underlying representation [12]. 
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Due to the large number of sensor nodes, the data of WSN 
has expanded quickly, and a centralized data mining solution 
is used to reduce the overall energy consumption. To improve 
the load balancing and energy efficiency at the fusion centre 
of WSNs, the author introduced a deep-learning-based 
distributed-data-mining model with long short-term memory 
[13]. A long-short-memory with a recurrent neural network 
model separates the network into several layers and places 
them into the sensor nodes. The overhead of the fusion centre 
in WSN is significantly decreased by employing a deep-
learning-based long-short-term memory distributed-data-
mining model. The long-short-memory with the recurrent-
neural-network model is subjected to an extensive range of 
experiments with variable numbers of hidden layer nodes and 
signaling intervals as well compared to other approaches, the 
long-short-memory with recurrent-neural-network model 
increases throughput while minimizing energy usage, average 
latency, and signaling overhead [14]. The contribution of the 
paper follows. This work develops time series based ARIMA 
model for the energy forecasting in WSN. Model stationery 
estimation and model parameter estimation are derived from 
statistical analysis and optimal ARIMA model developed for 
the futuristic energy prediction in WSN. The organization of 
the paper is follows. The recent relevant literatures are 
summarized in section II. Section III describes the proposed 
methodology of the work. The experimental results and its 
analysis are discussed in section IV. Section V concludes the 
paper.  

II. RELATED WORK 

A method based on Multilayer Perceptron (MLP) was 
suggested by Michel Chammas et al. (2019) [1] to forecast the 
consumption of various types of energy such as the day of the 
week, light energy, the temperature of a building, humidity 
using data gathered from a Wireless Sensor (WSN). 

A correlation least mean square prediction model that 
incorporates the correlation component of weather variations 
was proposed by Dongchao Ma et al. in 2020 [2]. The 
algorithm can solve it rapidly and efficiently, increasing the 
accuracy of short-term prediction due to its low complexity 
and degree of flexibility. According to experimental findings, 
the Correlation Least Mean Square prediction algorithm's 
error rate is decreased by roughly 15% when compared to the 
Least Mean Square model, and the forecast accuracy is greatly 
increased while dealing with weather variation. 

The Combinational Data Prediction Model (CDPM) 
created by Khushboo Jain et al. (2022) [3] may build past data 
to regulate delays and forecast future data to decrease 
unnecessary data transmission. Two methods are 
implemented to apply this hypothesis in WSN applications. 
The initial approach builds sensor node models that are 
gradually optimum (SNs). The second forecasts and recreates 
the data observed by the base stations. Using a real data set 
and a WSN-based simulation, the performance of the 
proposed Combinational Data Prediction Model data-
prediction approach is compared with the existing algorithms. 

Mahdi Lotfinezhad et al. (2008) [4] provided a framework 
for analysis to assess the performance of wireless sensor 
networks in terms of energy consumption, as well as a novel 
mechanism for data collection for fast sink access. The 
clustered architecture uses a simple, minimal-overhead 
medium access control of the data sink access in the design. 
Packet arrival cannot be described by a continuous random 

process since data is only collected sporadically. Hence a 
transient analysis is used as the foundation rather than a stable-
state analysis. The tests are used to evaluate how, under the 
proposed MAC, the energy saving alters the dependency on 
the amount of data correlation in the network. It was done 
using techniques from random geometry. 

R. Velmani et al. (2014) [5], An effective solution to the 
concerns of mobility, coverage distances, traffic, delay, end-
to-end connection, and tree intensity is provided in the form 
of the energy-efficient velocity and cluster tree link-aware 
strategy for data collection in WSNs. The developed energy-
efficient velocity and cluster tree link-aware strategy 
effectively use the data-collection tree to limit energy 
utilization, reduce collision in group heads, and decrease the 
latency in WSNs. The energy-efficient velocity and cluster 
tree link-aware strategy is its ability to build a straightforward 
data-collection tree, which reduces the energy utilization of 
the head and avoids repeated cluster creation. According to the 
findings of simulations, energy efficient velocity and cluster 
tree link aware strategy offer a higher quality of service for 
mobility-based WSNs, namely, energy consumption, end-to-
end latency, network lifespan, and throughput. 

Yang Zhang et al. (2018) [6] employed an integration to 
accomplish low power capacity and a double-stage capacitor 
construction to ensure node synchronization in the 
circumstances without harvested energy. This study 
elaborates on the energy management mechanism from the 
perspectives of saving energy, energy measurements, and 
energy predictions. It also discusses the general layout of the 
Intermittent-Energy-Aware platform. In addition, the authors 
were able to synchronize nodes in a variety of temporal and 
energy contexts, measure actual energy, and provide a 
technique for calculating light energy based on solar energy 
measurements. Experiments are carried out to confirm the 
strong performance of Intermittent-Energy-Aware in terms of 
reliability and validity in real contexts. The Intermittent-
Energy-Aware framework has been demonstrated to have 
extremely great accuracy and low power consumption for 
energy monitoring and forecasting. 

Guorui Li et al. (2018) [7] offer a Denoising Autoencoder 
(DCDA)-based Data Collection strategy for sensor data. 
Using the historical sensed information, a De-noising Auto-
encoder is learned to generate the data reconstruction matrices 
and data measurement matrices. The whole network's sensor 
information is then gathered via a data-collection tree during 
the data-collection phase. Finally, its data transmission and 
data reconstruction performances are assessed concerning 
those of other systems using real-world sensor information. 
The investigational findings demonstrate that, in comparison 
to its rivals, the suggested system produces lower energy 
usage, greater data compression rates, faster data 
reconstruction speed and more accurate data reconstruction. 

In this study [8], Tongxin et al. (2019) implemented a 
dual-prediction system using a least-mean-square filter. The 
dual-prediction system is data quality-based, enabling 
simultaneous data prediction by the sensor nodes and 
gateway. The sensor nodes will only transmit sensed data to 
the gateway or another node and, as a result, update the filter 
coefficients if the difference between the expected data and 
the actual sensed data is greater than a predetermined 
threshold. It has been noted that this approach successfully 
reduces both the overall number of transmissions and their 
time, allowing for additional energy savings. The suggested 
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approaches may save at least 62.3 percent of the total energy 
used for data transmission while producing predictions that 
are 93.1 percent accurate. 

To acquire real-time data from a WSN, Shalini Rani et al. 
(2017) [9] suggested a big-data efficient gathering method for 
WSNs. Based on a received signal indication and the 
remaining energy of the sensor devices, clustered 
communications are created. Due to the load-balancing 
strategy, experimental simulations demonstrate that big-data 
efficient gathering is consistent with data transmission time 
and network lifetime. Numerical outcomes derived in 
MATLAB. 

Walaa M. Elsayed et al. (2019) [10] suggested a prediction 
model that was based on a distributive clustering model for 
reducing the quantity of sent data to minimize the energy 
utilization in WSN nodes. The outcomes showed that 
distributed-data-predictive decreased the rate of data transfer 
to 20%. Furthermore, it reduced the energy usage throughout 
the whole dataset sample to 95 percent. The sensory network's 
lifespan was effectively extended using DDPM, which 
improved its performance by roughly 19 percent. Yanjun Yao 
et al. (2014) [11] presented distributed heuristics to help the 
method scale for large-scale network operations as well as a 
centralized heuristic to decrease the computing cost of WSNs. 
Using simulations and a hardware testbed, we thoroughly 
assess EDAL to compare its performance to that of 
comparable protocols. 

In demanding circumstances where all network nodes are 
mobile and while reducing energy consumption and end-to-
end latency, German A. Montoya et al. (2021) [12] introduced 
a multi-objective optimization model for determining the best 
communication path between a sink node and a source node. 
Additionally, to discover a communication channel between a 
source node and a sink as quickly as possible while using the 
least amount of energy, the author offers a predictive 
distributed routing method based on Markov Chains that takes 
into consideration network mobility. Additionally, the author 
suggested using deep learning to estimate future node 
distances in a mobile network to see if path-based 
communication may be disrupted by node migrations in the 
future. Finally, the author compared the prediction algorithms 
to common routing algorithms to examine them in the context 
of real-time situations. This yielded encouraging results in 
terms of energy usage and latency across all mobile node 
scenarios. 

An unmanned aerial vehicle is used as a data mule in Nazib 
et al. (2021) [13] designed an energy-efficient and quick data-
collecting method for mountainous terrain in unmanned aerial 
vehicle-aided WSNs. With the generated data collecting 
places, the author created the traveling salesperson problem 
and used a modified genetic algorithm to solve it to 
accomplish quick data gathering. In terms of control overhead, 
scalability, latency, energy consumption, and load balancing, 
the suggested energy-efficient and quick data-collecting 
system performs better than the traditional ones based on the 
results of our simulations. 

A unique adaptive sensor selection framework is provided 
in this research as an improvement to Sushmita Ghosh et al. 
(2021) [14] strategy for such sensor hubs to maximize energy 
sustainability. According to the cross-correlation between the 
features, energy available at the node, and the energy used by 
the sensors, a Confidence-Bound learning-based optimization 

approach is designed to choose the best effective sensor set in 
a measurement cycle. The parametric values of inactive 
sensors are also predicted using a Gaussian-process 
regression-based prediction model using the cross-correlation 
parameters of effective sensors. The suggested approach has a 
complexity of O(2P) for P sensor nodes and uses 54% less 
energy than the state-of-the-art while retaining a reasonable 
range of sensing error. 

Hongju Cheng et al. (2019) [15] offer a unique paradigm 
for multiple-step sensor data forecast in WSN. LSTM has 
beeen introduced to find the feature characteristics of various 
qualities through the pre-processed sensor input. Following 
that, one-step prediction is obtained using these abstract 
attributes. The multiple-step prediction is finally created by 
iteratively using the preceding step's prediction outcomes and 
the historical data. The result of the experiments indicates that 
the suggested multiple-step predictive model can predict 
multi-step sensor data after choosing optimal node patterns in 
which the spatial and temporal correlation is emphasized and 
that its performance is superior to that of other relevant 
approaches [15-24]. 

To handle several significant technological issues, Chong 
Liu et al. (2007) created a general framework. These 
challenges were how to divide the sensor nodes into clusters, 
dynamically maintain the clusters in response to 
environmental changes, schedule parameters for a cluster of 
sensor nodes, examine temporal correlation, and accurately 
recover the data in the sink node. The author experimentally 
evaluated the technique using a real testbed system and a big 
synthetic data set [25-31].  

III. PROPOSED METHODOLOGY 

In this paper, an optimal auto-regressive model based on 
the aggregate method of data is proposed that makes use of 
time series models to forecast data for the future at both the 
common sensor node and aggregator. With the recently sensed 
data, the sensor nodes will develop a suitable time series 
model and automatically communicate the model's parameters 
to the aggregator. The sensor nodes will rebuild the model 
when the predicted error exceeds the application-stated error 
value and send the predicted value with the new model to the 
aggregator. The predicted values of our suggested scheme 
substantially resemble the actual sensor values and contribute 
to saving energy between the sensor nodes and aggregators, as 
demonstrated in this paper.  

A model for forecasting future data values is created using 
historical data using time series analysis. A common 
prediction model for univariate time series is the ARIMA 
model, often known as the Box-Jenkin model [31]. Moving-
average (MA), Auto-Regressive (AR), and one-step 
differencing are the three parts of an ARIMA model. The MA 
module tracks relationships between prediction errors, the 
one-step different module records relationships between 
nearby samples, and the AR module calculates the current 
sample as a linearly weighted sum of earlier samples. The 
ARIMA(a,b,c) model of time series {t1, t2, ….} is defined as 
in Equation (1)  

                  =   (1) 

Where Δb is the difference of backward, K is the 
backward-shift operator, differencing order is tn, ϕa and Θc  are 
the polynomials of order. To prevent the creation of 
unbounded processes, the parameters ϕ  and Θ are selected in 
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such a way that 0s of both polynomials lie outside the unit 
circle. Figure 1 depicts the proposed optimal ARIMA model. 

The WSN time series data is being examined, and its 
stationary distribution is approximated. The WSN time series 
data is analyzed for the estimation of ARIMA model 
parameters. The time series data will be divided into k subsets 
of data for cross-validation. The machine learning model was 
applied to all subsets (k-1), and then the subset model was 
evaluated using cross-validation. The performance error is 
analyzed with respect to the proposed optimal ARIMA model 
for WSN energy prediction. Figure.2 illustrates the flow 
diagram for evaluating the optimal ARIMA model 
parameters. 

The stationary distribution is approximated for the time 
series WSN data. To make the WSN time series data 
stationary when the variance is non-stationary, the data must 
be changed by differencing the original data. The data series 
should be repeatedly differenced until the WSN time series 
becomes stationary if it indicates a pattern over time, 

periodicity, or any other non-stationary pattern. When the 
WSN time series data becomes stationary, then the optimal 
ARIMA models are identified. Multiple ARIMA models 
adequately represent the time series data that can be identified 
after getting the partial autocorrelation function (PACF) and 
autocorrelation function (ACF). It gives the auto-correlation 
values between the WSN time series data and its lag values. 
The n-order autocorrelation coefficient of time series {t1, t2, 
….}  is defined as in Equation (2). 

               =                    (2) 

The n-order partial autocorrelation coefficient of time 
series {t1, t2, ….}  is defined as in Equation (3) 

 =     m > 1  (3) 

A. Estimation of optimal ARIMA model parameters 
The time series is examined, and the model parameters are 

estimated after determining an optimal ARIMA model. If the 
lag one autocorrelation is positive and the PACF of the 
differenced time series exhibits a rapid cutoff, then one or 
more AR terms should be included in the model. The stated 
number of MA terms is the lag after which the PACF 
terminates. Consider an MA component in the model if the lag 
one autocorrelation is negative and the ACF of the differenced 
time series exhibits a rapid cutoff. The stated number of MA 
terms is the lag after which the ACF terminates. The most 
appropriate ARIMA model for analysis is the one with the 
least Bayesian Information Criterion (BIC) indicator and 
Akaike Information Criterion (AIC) indicator. The BIC and 
AIC indicators are calculated using Equations (4) and (5), 
respectively. 

            BIC = 2j/R + (nlogR)/R  (4) 

            AIC = -2j/R + 2n/R  (5) 

Where 'j' is the likelihood log, 'n' is the number of the 
regressor, and 'R' is the number of observations. Thus, the 
appropriate optimal ARIMA model is chosen for the WSN 
time series data. 

IV. RESULTS AND DISCUSSIONS 

This section summarizes the energy forecasting results 
using the ARIMA time series machine learning algorithm. 
Figure 3 illustrates the energy consumption by lights and 
appliances over the dates 22-01-2016 to 22-05-2016 every 10 
minutes. It can be seen that the appliances have very high 
energy consumption compared to lights. The appliances have 
an energy consumption of up to 1100 Watts. In Figure 4, the 
light's energy consumption has been depicted over the same 
period. The lights have an energy consumption of up to 70 
Watts, and the average energy consumption is about 20 Watts.  

Figure 5 illustrates the ARIMA model-based energy 
consumption forecasting of appliances over the dates 22-01-
2016 to 22-05-2016 every 10 minutes. Actual energy 
consumption and the ARIMA model predicted energy 
consumptions are the same at most ranges. Table 1 gives the 
statistical summary of ARIMA model-based energy 
forecasting for the appliances. It summarizes the AR, MA, 
Coefficient, Standard error, z-score, P>|z| value, and [0.025   
0.975] values. Further, it summarizes the Ljung-Box (L1), 
Jarque-Bera (JB), Prob(Q), Prob(JB), Heteroskedasticity (H), 
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Skew, Prob(H) (two-sided), Kurtosis values. Its values are 0, 
405915.70, 0.98, 0, 0.77, 2.94, 0, and 24.43, respectively. 

These statistical values suggest that the ARIMA time 
series model is producing better results for the energy 

consumption of appliances. Table.2 gives the error metrics for 
the ARIMA time series model based forecasting. The error 
metrics such as Mean Absolute Error (MAE), Median 
Absolute Error (MedAE), Root Mean Square Error (RMSE), 
Mean Square Error (MSE), and R2 values are evaluated; the 
error values are 45.646, 7364.991, 85.819, 19.218, and -4.320 
respectively.  Figure 6 shows the standardized residual for 'y' 
for ARIMA model-based forecasting of energy consumption 
over the sample quantiles. Figure.7 shows the comparison 
chart of theoretical quantiles and sample quantiles. The 

autocorrelation function with a 95 % of confidence level is 
shown in Figure.8.  

V. CONCLUSION 

The ability to save energy is one of the most crucial criteria 
for integrating systems and enhancing smart homes and 
communities. In order to reduce power usage, energy forecast 
is crucial. In this research, we proposed an ARIMA model to 
simulate a time series-based energy prediction system. Data 

Table.1 Statistical summary of ARIMA Forecasting 
=============================================== 

                coef     std err        z       P>|z|   [0.025   0.975] 

----------------------------------------------------------------------- 

intercept      0.0011      0.117      0.010      0.992  -0.227   0.229 

ar.L1          0.8671      0.077     11.290      0.000   0.717   1.018 

ar.L2         -0.8739      0.086    -10.154      0.000  -1.043  -0.705 

ar.L3          0.2082      0.063      3.308      0.001   0.085   0.331 

ar.L4          0.1037      0.029      3.540      0.000   0.046   0.161 

ma.L1         -1.0554      0.077    -13.780      0.000  -1.206  -0.905 

ma.L2          0.6998      0.100      7.017      0.000   0.504   0.895 

ma.L3         -0.2253      0.057     -3.919      0.000  -0.338  -0.113 

ma.L4         -0.2800      0.032     -8.736      0.000  -0.343  -0.217 

   sigma2     4410.092     18.308    240.888      0.000  4374.2  4445.98 

================================================== 

Ljung-Box (L1) (Q)    :0.00                  Jarque-Bera (JB):405915.70 

Prob(Q)               :0.98                  Prob(JB)        :0.00 

Heteroskedasticity (H):0.77                  Skew            :2.94 

Prob(H) (two-sided)   :0.00                  Kurtosis        :24.43 

Table.2 Error Evaluation for ARIMA 

Metric MAE� MSE RMSE MedAE R2 

Proposed 45.646� 7364.991 85.819 19.218 -4.32 

Paper [32] 66.95 - 56.84 - - 

 
Figure.7 Normal Q-Q 

 

Figure.3 Energy Consumption by Lights & appliances 

 
Figure.4 Energy Consumption by Lights 

 

Figure.5 Appliances Energy prediction using ARIMA 

 
Figure.6 Standardized residual for Energy Consumption 
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from a WSN put in a two-story structure, including 
temperature, day of the week, light energy, humidity, etc., 
have been used in a variety of data categories. We evaluated 
the significance of light energy and temporal data as additional 
characteristics for the prediction model. While the lights' 
energy lowered performance, the temporal aspects somewhat 
enhanced it for all systems. It can be seen a reduction in 
relative predicting error performance for our technique. In 
every case, our system performed better than others. We 
conclude that weather parameters would be sufficient to 
forecast energy usage based on the trials performed. This 
makes low-cost energy forecasting methods possible. To 
verify our findings, more research on various datasets should 
be conducted.  
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