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Abstract—The flourishing space industry has caused a signif-
icant increase in space debris, posing a critical risk to high-
asset operational spacecraft. A particular challenge is identifying
small-sized debris characterized by low reflectivity and rapid
motion. Traditional ground-based detection methods, constrained
by geographic and daylight limitations, necessitate an exploration
of in-space debris identification to bolster spacecraft’s space
situational awareness (SSA) capability. Onboard optical sensors,
which generate high-resolution images, offer crucial data for
these tasks. Considering the sparsity and low signal-to-noise
ratio (SNR) in space scenario images, this paper introduces
an Astro-Det framework to detect streaks and aggregated spots
in sparse environments. Within this framework, morphological
and learning-based methodologies are independently applied to
assess the effectiveness of object detection in space. A novel
onboard camera-based space dataset is leveraged to evaluate the
framework. Simulation results reveal that while the morpholog-
ical approach falls short in detection accuracy compared to the
learning-based approach, it demonstrates superior computational
efficiency. This research presents detailed comparative evaluation,
providing valuable insights into how these established algorithms
perform under the unique conditions of sparse space scenarios.

Index Terms—sparse object detection, onboard camera, mor-
phological analysis, deep learning

I. INTRODUCTION

In recent decades, the expansion of the space industry has

led to a significant increase in the number of Resident Space

Objects (RSOs) in Near-Earth Orbit (NEO). Since 1957, over

20,000 objects, each larger than 10 cm in diameter, have been

tracked [1]. Among these, only about 1,000 are operational

satellites, while the vast majority are space debris result-

ing from collisions and decommissioned spacecraft. Notably,

RSOs larger than one centimeter pose serious risks to any

spacecraft in NEO [2, 3]. Therefore, the development of Space

Situational Awareness (SSA) capabilities for detecting and

predicting the positions of RSOs is important.

To date, SSA systems are primarily categorized into ground-

based and space-based systems. Ground-based SSA systems

rely mainly on phased array radars and optical telescopes, but

are subject to geographical and sunlight limitations, which can

restrict their applications [4, 5]. In contrast, space-based SSA
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systems, which utilize onboard optical devices like cameras,

are not constrained by these limitations [6]. Cameras are

cost-effective and lightweight, enabling long-term sensory

data collection without significantly increasing the payload

of spacecraft. Consequently, the use of cameras for object

detection is obtaining increasing attention, highlighting their

potential in the field of space safety and debris monitoring.

However, the space environment, characterized by both its

vastness and predominantly black expanse, presents unique

challenges in image analysis. This complex aspect leads

to optical cameras often capturing predominantly low SNR

grayscale images. Furthermore, due to the observed trailing

phenomenon, targets often appear as streak-like shapes in these

images. These distinct characteristics classify the detection of

targets in space as a form of small target detection within

sparsely annotated datasets. Current research in this fascinating

field can be broadly categorized into two methodologies: non-

learning based methods and learning-based methods.

1) Non-learning based methods: Although there is a rich

variety of non-learning based object detection methods avail-

able, the unique trailing phenomenon in RSO detection makes

morphology-based methods particularly well-suited for this

task. For instance, a novel approach for detecting streak-

like targets in single optical images was introduced in [7].

The multi-target detection technique proposed in [8] utilized

topological scanning, addressing the limitations of traditional

methods that require longer sequences or accurate initial-

ization. Yao et al. [9] presented an adaptive space objects

detection algorithm, effectively suppressing background noise

and distortion, thus enabling rapid detection of space targets.

Furthermore, Zou et al. [10] applied local grayscale corre-

lation between two image frames for space target search and

positioning, circumventing the issue of false target verification

inherent in traditional blind detection. These analyses indicate

that morphology-based detection methods are increasingly

being applied to RSO detection, demonstrating their efficacy

and adaptability in this specialized context.

2) Learning based methods: The application of learning-

based methods for RSO detection can enhance the adaptability

and efficiency of the detection process. However, as far as our

knowledge extends, the current body of research in this domain

remains relatively limited. Scholars have, thus far, only pro-

posed a real-time dim space target detection algorithm utilizing

convolutional neural networks and attention modules in [11].

Despite this, learning-based object detection algorithms have
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proven effective and found extensive applications in various

fields [12]. Therefore, there is a need for increased attention to

the development of learning-based object detection algorithms

specifically tailored for RSO monitoring.

In this study, an Astro-Det framework is explicitly de-

signed to effectively tackle the challenge of detecting sparsely

distributed targets in the camera-based space scenario. This

framework comprises two distinct modules: the morphological

detection module, which differentiates various targets by iden-

tifying their geometric discrepancies, and the learning-based

detection module, which distinguishes targets by minimizing

the difference between predicted values and ground truth.

Furthermore, we use a novel dataset to validate the efficacy of

the proposed framework. It stands distinct from conventional

object detection datasets by presenting unique challenges: the

vast and feature-sparse nature of space scenarios, subtle vari-

ances in observable features, and the high degree of freedom

in camera movement. A comparative analysis is performed

based on this dataset to evaluate the performance of the two

modules comprehensively. To the best of our knowledge, this

represents a novel endeavor to deploy traditional and learning-

based approaches within a vision-based space surveillance en-

vironment, offering a novel insight for the further development

and selection of sparse object detection algorithms.

The rest of the paper is organized as follows. Section

II introduces the proposed methodology, including the data

acquisition procedure and the proposed Morphology-based

and learning-based methods. Simulation results and detailed

analysis are presented in Section III. Finally, Section IV gives

the conclusion.

II. METHODOLOGY

In this study, a dataset was acquired and generated within

a simulated environment for the object detection task. The

dataset comprises over 2000 high-resolution, 16-bit depth

TIFF images (4418×4418 pixels). It also provides detailed

camera specifications, the target’s catalog ID, and the bearing

angle with the tracker as ground truth. Subsequently, a mod-

ule incorporating both morphology-based and learning-based

algorithms was developed to address the problem of sparse

object identification in space environments. Fig. 1 presents

the comprehensive framework of the dataset acquisition and

the strategic application of algorithms. The related details are

further discussed in the subsequent sections.

A. Data Acquisition

The data acquisition procedure employed in this expanded

study simulates authentic camera parameters and space object

orbits. Initially, the simulation propagated the orbits of approx-

imately 25, 000 celestial objects using Two-Line Element sets

(TLEs) [13] within a predetermined time frame as depicted in

the simulation segment of Fig. 1. In parallel, a tracker’s orbit

was consistently defined and propagated, ensuring alignment

with the observational framework.

Furthermore, camera specifications were leveraged to de-

termine its sensitivity, a pivotal factor for precise detection.

The simulation then proceeded to identify objects crossing the

camera’s field of view by applying the tracker’s position and

camera pointing directions at each simulation step. Notably,

three field-of-view intersecting cameras were employed to

expand the overall perceptual range. Objects visible to the

camera were further filtered based on detailed sensitivity

analyses. As the camera’s FPS was set to 1, the target’s bearing

angle and catalog ID were recorded over a one-second interval.

These details, combined with the camera’s focal length, en-

abled the calculation of the target’s precise coordinates within

the imaging coordinate system of the tracker. This information

serves as the ground truth for the bounding box in the object

detection task.

Images were generated for each timestamp, creating streaks

or spots that represent the objects, calculated with exact pixel

values and point spread functions for both the background

stars and object streaks. Concurrently, reference images were

produced, with streaks and spots clearly marked with their

associated catalog IDs. Raw images simulate grayscale pho-

tographs captured by cameras in a real-space environment.

Reference images, on the other hand, are processed versions

of raw images for better visualization of the images and target

features. Examples of reference images from different datasets

are showcased in Fig. 2. Due to the tracker’s position and

camera pointing directions, during the simulated time interval,

Cam1 exhibits a high density of spot targets, Cam2 shows

an intermediate distribution of streaks and spots, and Cam3

primarily captures streak targets.

B. Astro-Det

Astro-Det is a framework that includes two distinct units,

morphological and learning-based, capable of independently

performing sparse target detection tasks. The following section

provides a detailed description of the structures and principles

of these two modules.

1) Morphology-Based Sparse Object Detection: Given that

the dataset comprises a significantly higher proportion of noise

than targets in this study, the Astro-Det architecture introduces

a morphology-based target detection module considering the

substantial geometric disparity between targets and noise. This

module is adept at identifying streaks and aggregated spots

from sparse environments. The process begins with binarizing

the input image, effectively eliminating noise characterized by

lower brightness levels:

B(x, y) =

{
255 if I(x, y) ≥ kμ

0 otherwise
, (1)

where B(x, y) is the pixel value of the binarized image at

position (x, y), I(x, y) is the pixel value of the original image

at (x, y), μ denotes the average pixel value of the image, and

k is an empirical constant. Thus, the 16-bit input image is

converted into an 8-bit binary grayscale image.

Subsequently, each obtained subsection undergoes a mor-

phological closing operation leveraging a structuring element

S. This step is designed to fill in the gaps between discrete
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Fig. 1. Workflow for sparse target detection: (1) Schematic representation of the simulation process; (2) Dataset generation procedure; (3) Structural framework
of Astro-Det, progressing from left to right.

Fig. 2. Examples of images from different datasets. (1) An image case in Cam1. The most targets, with targets predominantly of “spot” shapes. (2) An image
case in Cam2. A relatively balanced mix of targets with “spot” and “streak” shapes. (3) An image case in Cam3. The fewest targets, with targets mostly of
“streak” shapes.

streaks and eliminate noise in the decontaminated image,

resulting in a more refined processed image:

P = (B ⊕ S)� S, (2)

where S is the structuring element, ⊕ denotes the dilation

operation, and � signifies the erosion operation. Dilation and

erosion operations are each defined as follows:

(B ⊕ S)(x, y) = max
(sx,sy)∈S

B (x + sx, y + sy)

(B � S)(x, y) = min
(sx,sy)∈S

B (x + sx, y + sy) ,
(3)

where (sx, sy) represents the coordinates in S.
These processed images are then subjected to area thresh-

olding. In this phase, any connected region with an area

exceeding the predefined threshold is preserved. Finally, the

coordinates of the upper-left and lower-right corners of all

retained areas are accurately determined for the filtered im-

ages. These coordinates are leveraged to define the bounding

boxes around these areas. The detailed workflow is presented

in Algorithm 1.

2) Learning-Based Sparse Object Detection: In light of

the large image sizes, data preprocessing is employed in the

proposed Astro-Det architecture before training process of

the learning-based method. The methodology commences by

splitting the dataset into training, validation, and test subsets

in a 7 : 2 : 1 ratio, applying the holdout method to aid in the

model’s evaluation process.

To address the issue of large image dimensions, the im-

ages are initially segmented into smaller sections measuring

260×260 pixels each. This segmentation process includes a

twenty percent overlap in both horizontal and vertical direc-

tions, serving as a strategy for data augmentation. Additionally,

the annotations of the labels are accurately adjusted to match

the newly segmented dimensions. Given the inherent sparse

labeling of the dataset, 96% of the segmented images do not

contain the target. Addressing the risk of overfitting caused

by a high proportion of negative samples (images without

targets), the training dataset is selectively pruned to remove

a substantial number of negative samples. This strategy is

directed towards creating a more balanced dataset, aiming
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Fig. 3. Workflow for learning-based detection method: (1) data preprocessing. The proportions P1 to P4 denote the segmentation of segmented images labeled
as low, medium, high, and pure background respectively after data balancing; (2) YOLOv8 structure [14]; (3) prediction results of learning-based method. A1

and A2 represent localized zoomed-in images.

Algorithm 1 Morphology-Based Sparse Object Detection

Input:
I: Input raw image

Output:
C = {C1, C2, . . . , Cn}, where Ct represents the coordi-

nates of the t-th bounding box

1: Binarize I to obtain B
2: for each position (x, y) in B do
3: Create a subsection image B (x + sx, y + sy)
4: Perform closing operation on the subsection image

5: Calculate the area As of the closed subsection

6: if As ≥ AT , where AT is the area threshold then
7: Define bounding box Ct = (xmin, ymin, xmax, ymax)
8: Add Ct to a temporary list T
9: end if

10: end for
11: Initialize list C for merged bounding boxes

12: for each pair (Ci, Cj) in T do
13: Calculate IOU: IOU(Ci, Cj) =

area(Ci∩Cj)
area(Ci∪Cj)

14: if IOU(Ci, Cj) ≥ IOU Threshold then
15: Merge Ci and Cj into Cn

16: Add Cn to list C
17: end if
18: end for
19: return C

for an approximate 0.9 : 0.1 ratio between images with and

without targets. For the validation and test datasets, selective

pruning is omitted to maintain the accuracy and validity of

model evaluation. Furthermore, the dataset is enhanced by

introducing three labels: “low”, “medium”, and “high”, based

on the target-tracker proximity. This augmentation counters

potential issues of poor generalization and low accuracy as-

sociated with a single label like ‘target’, ensuring an even

distribution among these new categories. Considering the small

size of most targets, images are resized to 640×640 pixels to

enhance target features.

Following the completion of the data preprocessing steps,

the learning model is then employed for training and validation

on the processed dataset. The workflow for learning-based

detection method is shown in Fig. 3. In the domain of

learning-based RSO detection, YOLOv8 [14] is selected for its

established efficacy in object detection tasks. YOLOv8 is dis-

tinguished by its rapid processing capabilities, high accuracy,

and enhanced proficiency in detecting objects [15, 16], which

aligns well with the requirements of RSO imagery analysis.

Upon completion of the training phase, the model exhibiting

the best performance on the validation dataset is subsequently

selected for prediction on the test dataset.

III. SIMULATION RESULTS AND ANALYSIS

In this section, we evaluate the proposed morphology-based

and learning-based sparse object detection methods on the

simulated datasets. Both qualitative and quantitative results are

presented, as depicted in Fig. 4 and Table I, respectively.

A. Morphology Performance Analysis

To better visualize the result in Fig. 4, areas containing

targets with more distinctive features are locally enlarged

to demonstrate the effectiveness of the proposed approach.

For the morphological approach, it can be seen that streaks

are detected effectively in these areas, but false and missed

detections occur for aggregated spots of smaller sizes. This

phenomenon may be principally attributed to the noise dis-

tribution in the image. Specifically, in regions with dense

noise, the dilation process of the closing operation might have

connected separate spots. Conversely, in sparsely noisy regions

containing target spots, the erosion process of the closing

operation might have made smaller spots less distinct, thus

leading to false and missed detection issues.

Moreover, Table I employs several indicators to further

elucidate the performance of the proposed algorithms. Notably,
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Fig. 4. Object detection results. Several selected regions are locally enlarged to illustrate the model’s performance.

TABLE I
COMPARATIVE PERFORMANCE METRICS OF MORPHOLOGICAL AND LEARNING-BASED APPROACHES

Method Dataset
Total Predict

Precision Recall F1 Score SNR Detect Time / Img (s)

GT Predict Right

Morphological
Cam1 4686 1016 682 0.67 0.15 0.24 0.72 0.40
Cam2 888 701 370 0.53 0.42 0.47 0.63 0.21
Cam3 462 692 315 0.46 0.68 0.55 0.55 0.20

Learning-Based
Cam1 1541 1329 1254 0.94 0.81 0.87 0.72 1.06
Cam2 153 129 124 0.96 0.81 0.88 0.63 1.07
Cam3 180 124 107 0.86 0.59 0.70 0.55 1.09

Cam1 is characterized by a high density of spot targets, while

Cam3 predominantly contains streak targets. The distribution

of streaks and spots in Cam2 is intermediate. It is evident

that the morphological algorithm demonstrates the best overall

performance in Cam3, with both precision and recall being

relatively high. This superior performance can be attributed

to the predominance of streak targets in Cam3, which are

significantly more distinct from the noise geometry, resulting

in relatively minimal false and missed detections. However, the

performance on Cam1 is not as satisfactory. Despite achieving

the highest precision among the three datasets, its recall is

considerably lower. This suboptimal performance in Cam1

stems from the abundance of small spot targets, which present

a significant challenge to the morphological algorithm, leading

to a notable proportion of missed detections.

B. YOLO Performance Analysis

The application of the YOLOv8 model demonstrates high

accuracy in detecting targets, as evidenced by the comparison

between the detection results and ground truth illustrated in

Fig. 4. The model efficiently identifies targets with distinct

streak-like features and also successfully detects some smaller,

dot-like targets. However, it occasionally exhibits false pos-

itives in areas lacking clear characteristics. This should be

attributed to the model’s sensitivity to subtle variations in the

image, where it sometimes misinterprets noise or less defined

regions as targets. This model’s advanced pattern recognition

capabilities, while adept at capturing evident features, can lead

to over-detection in areas where target characteristics are not

pronounced.

As detailed in Table I, for Cam1, despite containing numer-

ous spot targets that are challenging to discern with the human

eye, the model performs effectively due to the abundance of

learnable targets and the higher average brightness of these

spot targets. In Cam2, the distribution of features from differ-

ent target types is more balanced, resulting in better detection

outcomes. However, in Cam3, despite a higher prevalence

of streak targets, the model encounters more false positives

leading to a lower recall number. This is attributed to the lower

brightness of streak targets, making their luminance features

less distinct.

C. Comparative Analysis

The comparative analysis depicted in Table I reveals a trade-

off between the morphological and learning-based approaches.

While the learning-based method, exemplified by YOLOv8

[14], demonstrates superior accuracy in target detection in

space environment, it falls behind in terms of processing speed,

averaging about 1 second per image. Conversely, the morpho-

logical approach, though less effective in detection precision,

excels in computational efficiency, completing processing in

approximately 0.2 seconds per image.
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This contrast underscores the practical implications of

choosing between these methods based on specific operational

needs. The morphological approach, with its faster processing

rate, is particularly advantageous in scenarios where real-time

data processing is critical, such as in live tracking or immediate

threat detection in space environments. On the other hand,

the learning-based method’s superior accuracy makes it ideal

for applications where the precision of target identification is

paramount, such as in detailed space surveillance and research-

oriented tasks where every potential target needs to be accu-

rately cataloged. Thus, the selection between these methods

can be strategically aligned with the specific objectives and

constraints of various space missions.

IV. CONCLUSION

This study explores the challenge of sparse object detec-

tion in space environments. The Astro-Det framework, which

integrates morphological and learning modules, is proposed

to identify different targets in space. A dataset derived from a

simulated environment is leveraged to evaluate the algorithm’s

performance. The results demonstrate that the accuracy of the

morphological approach, which is a non-date-driven approach

relying on the geometric attributes of objects, is inferior

to the learning-based approach and shows relatively limited

generalizability. Nevertheless, despite its limited efficacy, mor-

phological algorithms can be applied directly and exhibit

superior computational efficiency. In contrast, the learning-

based algorithm necessitates a substantial amount of labeled

ground truth data to guarantee higher accuracy and robustness

at the expense of slower computational performance.

On the basis of these findings, future work will aim to

integrate morphological and learning-based algorithms. The

low SNR of space datasets presents a considerable challenge

for the feature extraction component of the learning-based al-

gorithm. Inspired by the capability of morphological methods

to extract geometric features of various objects effectively,

it is reasonable to embed these geometric insights into the

feature extraction module of the learning-based algorithm.

This combination is anticipated to enhance the algorithm’s

speed and accuracy simultaneously. Furthermore, the object

tracking algorithm will also be advanced to establish a robust

and real-time RSO inspection and tracking system to better

adapt to space’s uncertain and dynamic nature.
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