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Abstract— This paper presents a novel approach for au-
tomating the grading of multiple-choice question (MCQ) answer
sheets using computer vision and pattern recognition techniques.
The system examines student’s marked answer sheet images
by comparing with the question sheet image and answer keys.
The computer vision and pattern recognition helps extracting
pertinent data such as question number detection, MCQ option
detection and the answer markings. The proposed approach
reliably produces the output report that displays the students’
correct answers with an accuracy of 0.98 F1 score and 0.99 mAP
from any form or unstructured question script. This approach
can provide a dependable and effective grading system, reducing
manual work and offering prompt feedback to students without
any constraints on the answer sheets.

Index Terms—Optical character recognition (OCR), image
processing, object detection, YOLOv8

I. INTRODUCTION

The evaluation and grading of Multiple-Choice Question

(MCQ) answer sheets present difficulties in the educational en-

vironment. Teachers often face the dilemma of either manually

reviewing MCQ answer sheets or relying on MCQ evaluators

such as [1] [2] or using high-end Optical Mark Recognition

(OMR) scanners that necessitate adherence to a template.

Besides, many general OMRs cannot detect two-response

answers or some even reject the input image when no choice

is selected for a given question [3]. The formatting rules for

conventional approaches such as the use of uniform symbols

[4], fixed formatted sheets [5], or precisely aligning the answer

boxes, often demand rigorous adherence. Students may face

challenges when using such templates, leading to errors in

the answering process. Unintentional markings on incorrect

options or answering the wrong questions could occur due

to the use of separate answer spaces or sheets. To provide a

more inclusive and flexible method of assessment, this paper

attempts to create a system that can automatically read and

evaluate multiple choice answer sheets, regardless of any fixed

formatted template or separate sheet. The suggested system

would use an object detection method to evaluate and interpret

the answers provided by examines. The system will be able

to distinguish between valid and incorrect responses, and

duplicates, and give a count of correct answers on each answer

sheet. By eliminating the need for strict formatting guidelines,

the system will accommodate two marking annotations, i.g.

filled circles and crosses. This study has the potential to

significantly improve the efficiency, usability, and adaptability

of the multiple-choice answer sheet evaluation process by

utilizing object detection and OCR technology. This paper will

examine the system’s design, implementation, and evaluation

while demonstrating how well it automates the marking of
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multiple-choice answer sheets.

The overall contributions of this paper are summarized as

follows:

1) Training of a custom object detection model based on

YOLOv8

2) Integration of Optical Character Recognition (OCR) and

object detection in the system

3) Validation, testing, and manually comparing the pro-

posed system’s accuracy with the actual outputs

The rest of the paper is organized as follows: the related

works are described in Section II, the methodology of the

proposed system is presented in Section III, the Section IV

explains the dataset, the training procedure, and parameter

settings, the Section V explains in details the system workflow,

the experimental results are presented in Section VI, the

limitations and future works are outlined in Section VII, and

finally, we conclude the paper in Section VIII.

II. RELATED WORKS

Various authors have proposed numerous evaluation

methodologies. Most of these approaches rely on Optical Mark

Recognition (OMR) or transoptic papers, bubble sheets, fixed

templates, or image registration processes.

Sattayakawee [3] discussed a system that first scans the grid

answer sheet and converts it to a grayscale image. The image

is then processed using projection profile and thresholding

techniques to detect the lines and grids of the answer sheet.

Then, it segments each question and determines the selected

choice by analyzing the local projection profile and applying

thresholding to separate the cross-mark from the lines for

fetching answers. With high accuracy, the system follows some

constraints, e.g., wrong answers should be erased cleanly, no

cross-out is allowed, and all markings should be uniform.

Fisteus el at. [4] presented a system called Eyegrade for

automatically grading multiple choice exams. The system uses

a regular webcam for mark recognition from a continuous

stream and optical character recognition of handwritten student

identification numbers using OpenCV, Hough transform, TRE

and Pygame. The tool has been validated with a set of

experiments that show the ease of use, the reduction in grading

time, and an increase in the reliability of results compared

to conventional, more expensive systems. The limitation of

their approach is that the resolution and image quality of a

regular webcam can limit its application in a real academic

context, and the geometry of the answer table is known prior.

Muangprathub et al. [5] proposed an approach utilizing image

processing techniques and template matching. The system

operates 2.5 times faster than the conventional manual method

and supports any pencils or pens used on thin papers and

low-cost gridded paper that is easy to use in a typical test.

Their approach has very low accuracy in cases with incomplete

markings, such as small, overflowed, deleted, or unclean

markings.

Alomran and Chai [6] proposed an image processing system

and finder pattern algorithm to preprocess scanned test papers.

It uses a fixed-templates sheet for each specific portion. The

system was implemented with MATLAB, and the Ricoh Aficio

MP C5501A was used as the scanning device. Depending on

optimal conditions, although the system has a high accuracy

it requires at least 40% of the test areas to be annotated and

could not process images that were titled more than 6 degrees

in a clockwise or anticlockwise direction. Afifi and Hussain [7]

proposed a technique where they used an image registration

technique to extract the answer boxes (ROI) from answer

sheets and train a machine learning classifier to recognize the

class of each answer box (i.e., confirmed, crossed out or blank

answer). They present a dataset including six real MCQ assess-

ments with different answer sheet templates and evaluate two

strategies of classification: a straightforward approach (i.e.,

crossed out and empty) and a two-stage classifier approach

(i.e., crossed out and confirmed). They test two handcrafted

feature methods and a convolutional neural network. Shaikh et

al. [8] proposed an image processing and handwritten pattern

recognition approach using Convolutional Neural Networks

(CNN) in a written answer-based evaluation, i.e., options

A/B/C/D. The system was implemented using Raspberry PI,

SSH server, MATLAB for segmentation, and Python for CNN

models.

Hassan et al. [9] proposed Optical Character Recognition

(OCR) to extract and segment characters from exam papers

and then use Natural Language Processing to score the exam

papers academically. Trained with 50 samples of numeral

sets (0-9) an accuracy of 81% was achieved with images

taken from various light and paper conditions. Chai [10]

proposed an image processing algorithm using a finder pattern

and projective transformation technique in a specified answer

sheet, which was implemented using MATLAB R2014b. It

needs 352 seconds to mark, annotate, and save 100 answer

sheets. The system can not grade any sheets if their orientation

is distorted, the multiple-choice circles are not filled, or if

the papers are not properly aligned. Zhang [11] proposed an

approach for marking objective exam questions. The approach

involves projecting the special answer sheet of the examination

paper several times to split out each option from each line. The

number of white dots in the circle is counted, and the largest

number is considered as the chosen answer. The approach uses

image segmentation. Jocovic et al. [12] have used computer

vision algorithms for the automated assessment of pen and

paper tests. The implemented computer vision system consists

of four modules: the Zoning module, the Scanning module,

the Processing module, and the Verification module. The

authors have used the Hough transform algorithm for circle

recognition. The approach requires a pre-established format

for the test, which may not be feasible for all types of exam

sheets. Rasiq et al. [13] developed a mobile-based system

using a bubble sheet template. Their methodology involved an

image-slicing technique, considering the number of columns

and rows of the circles. The circles were marked as selected

based on the number of black pixels within them, surpassing

a predefined percentage threshold. The system varies in ac-

curacy and may generate wrong results if the image is noisy.

Karunanayake [14] proposed an OMR sheet evaluation system
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in which a predefined region containing all correct answers

is manually marked and isolated as a template image. The

template image is then matched with the corresponding area on

the OMR sheet, resulting in cropping a region with identical

characteristics. Both the reference template and the cropped

image are converted into binary images and subjected to blob

filtering, facilitating the identification of the correct number

of answers. Nguyen et al. [15] proposed a system that uses

captured images of the OMR answer sheets, which are then

processed using techniques such as Hough transform, skew

correction, normalization, and tick mark recognition.

III. METHODOLOGY

We evaluated the most promising state-of-the-art related

work methods and found that OCR and object detection

methods can be used together for better accuracy of any struc-

tured or unstructured MCQ question marking. Our analysis

revealed that Tesseract OCR outperformed other OCR engines

and YOLOv8 performed better than other object detectors

in detecting fill, cross, or other user markings on MCQ

question scripts. The object detection and OCR methods are

discussed in subsequent subsections. The workflow diagram

of the proposed system is presented in Figure 1.

A. Object Detection Model
As previously discussed in Section III, the object detection

model identifies the markings of selected answers in MCQ

papers. It provides the bounding box coordinates of those

markings for further processing. Given our objective to employ

an object detection approach, selecting an appropriate object

detection model became a pivotal consideration in this case.

YOLO (You Only Look Once) was chosen, guided by the

rationale that it has been acclaimed in multiple research

papers [16] for its lightweight nature, commendable speed, and

accuracy. Following the documentation provided by Ultralytics
, YOLOv8 emerged as a preferable choice due to its attributes

as a fast, accurate, and user-friendly model, succeeding its

predecessors and improved architecture.

B. OCR Engine
The system extracts, rearranges, and stores the question

number’s coordinates using the OCR engine. Then the selected

answer text is extracted by cropping each answer portion with

the help of bounding box coordinates provided by the YOLO

model and stored systematically. Among the multiple Optical

Character Recognition (OCR) engines available, Tesseract

OCR [17] was selected for the system. Tesseract is renowned

for its robust capabilities, providing high customization with

multilingual support [18] for extracting text from document

images. Several authors including Ramiah et al. [19], Dangiwa

and Kumar [20] have developed applications for both Android

and iOS platforms using Tesseract OCR. This indicates the

adaptability of the OCR engine for mobile devices. Besides,

Robby et al. [21], Niharika et al. [22] demonstrated the efficacy

of Tesseract OCR in supporting multilingualism. Being free,

open-source, available as an SDK, multi-language support, and

demonstrating relatively good accuracy in text extraction, it

stands out compared to other OCR engines that have been

benchmarked in various papers [23].

IV. DATA TRAINING

A. Image Collection
We collected data, focusing on 250 student-answered MCQ

script images associated with a specific course within our

university. These images encompassed two distinct types of

markings: (i) selected or answered and (ii) crossed out. The

selected markings corresponded to filled circles, indicating

a chosen answer by the student. In contrast, the crossed-

out marking featured a filled circle with a cross (X) in the

center, signifying an initial erroneous selection that the student

subsequently corrected.

B. Dataset
For model training, those two marking categories were

designated as the ‘fill’ and ‘cross’ classes, respectively. Among

the 250 images, 200 images were randomly chosen for training

and validation purposes. The rest of the 50 images were kept

for testing. Since the dataset was small, 85% of the images

were allocated for training, while the remaining 15% were

reserved for validation.

TABLE I: Dataset Descriptive Information

Class Names Train Validation
Images Instances Images Instances

Fill 170 2610 30 447
Cross 170 657 30 108
All 170 3267 30 557

C. Image Prepossessing
A manual examination of each image was conducted.

Subsequently, specific preprocessing steps were applied as

deemed necessary. These steps encompassed corrections such

as rotation adjustment to ensure proper alignment, fine-tuning

of brightness levels, and the extraction of Region of Interest

(ROI) through cropping. These measures were implemented

to enhance the overall quality and suitability of the images for

subsequent stages of analysis and model training.

V. IMPLEMENTATION OF THE PROPOSED SYSTEM

A. Preprocessing Techniques
1) Rotation Correction: To correct the image rotation (if

needed) the image to osd() function from pytesseract [24]

is invoked and based on the angle information the image is

rotated through the imutils library.
2) Cropped to Text Area: The image is then processed to

isolate the region of interest (ROI) containing the relevant

textual content while excluding any extraneous margin areas.

Initially, the input image is duplicated to preserve the original

data. Subsequently, the image is converted to grayscale to

simplify the analysis. Gaussian blur is then applied to reduce

noise and smoothen the image. A binary inverse thresholding

technique employing Otsu’s method highlights the text and

markings against the background. To enhance the accuracy

of the text area extraction, horizontal lines are eliminated
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Fig. 1: System Workflow Diagram

Fig. 2: Sample Image of the MCQ Question Script

Fig. 3: Instances of ‘fill’ class

Fig. 4: Instances of ‘cross’ class

from the thresholded image through morphological opening

using appropriate kernels. The first set of kernel dimensions

(30,1) is used to eliminate any interference caused by these

lines, ensuring accurate identification and isolation of the text

area. The second set of kernel dimensions (5,26) is applied to

dilate the thresholded image. Dilation aids in merging separate

contours into a single contour, further refining the delineation

of the text area. The contours of the resultant image are then

identified, and the largest contour is selected to represent the

text area. By extracting the bounding rectangle of this contour,

the text area is effectively isolated from the rest of the image

and stored as the original image for any future steps.
3) Getting Eroded Image: Later, we focused on preparing

the image obtained from the previous step for efficient Optical

Character Recognition (OCR) processing. After converting

it to grayscale, a median blur is applied to mitigate noise

and irregularities present in the grayscale image, and then

Otsu’s method for the binarization. To optimize OCR engine

performance further, morphological erosion is employed using

a predefined kernel of dimensions (3,3) for refining the bound-

aries of the text characters, which provides a cleaner and more

distinct representation for the OCR engine.

Fig. 5: Marks Calculation Output Sample

B. Getting the Question Numbers and Their Coordinates
The Tesseract OCR engine is invoked by calling the im-

age to data() function from pytesseract within the eroded im-
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Fig. 6: YOLOv8 Performance Comparisons with Previous

Versions [25]

age. The function was configured by passing two parameters,

oem 3 and psm 4. The psm 4 configuration is mandatory to

prevent the OCR engine from automatically segmenting the

image and force it to consider column data and concatenated

row-wise text. The OCR output was structured as a dictionary,

containing data such as text, confidence scores, positions, and

dimensions of recognized elements. The extracted data are

then filtered to retain only the pertinent OCR data. To this

end, regular expressions are used to isolate specific OCR data

that match a predefined pattern, in that case, one or two

digits followed by a dot (.), typically representing question

numbers in MCQs. We also ensured that recognized elements

exhibited a confidence score exceeding a threshold, enhancing

the reliability of the extracted data.

C. Sorting The OCR Data
In the next step, we focus on organizing the extracted OCR

data in a structured and intuitive manner. This task involves

invoking a specialized function designed to sort the data

coordinates in a column-wise arrangement, prioritizing left-

to-right and top-to-bottom order. To initiate this organization,

previously filtered OCR data for pertinent question numbers

is passed to the function. Additionally, the width of the image

is conveyed as a parameter which is a key determinant for

achieving a column-wise arrangement. To facilitate proper

column-wise segmentation, the image width is halved and a

fixed value is subtracted to define an appropriate range for

the x-axis, ensuring accurate partitioning into two distinct

columns. After this OCR extraction step, we moved on to the

YOLO model prediction.

D. YOLO Model’s Prediction
A defined function is called for YOLO model prediction

and bounding box generation. This step plays a pivotal role in

identifying the markings within the MCQ question paper. To

commence this step, the function receives the image, which is

then duplicated to preserve the original data for visualization.

A predefined set of labels is associated with respective class

IDs to aid in interpreting the model’s predictions. The pre-

trained YOLO model is loaded for prediction, leveraging the

model’s ability to detect distinct classes, i.e., ‘cross’ and ‘fill.’

The model’s predictions yield bounding boxes corresponding

to the detected elements. These bounding boxes, along with

their respective class IDs are systematically processed to

determine the location and type of each detected element.
Further, a distinction is made based on the class ID: if the

class ID is not ‘0’ (representing a ‘cross’), the bounding box

coordinates are appended to a selection list. Visual markers,

such as rectangles, are drawn around the identified elements to

facilitate verification and validation. To ensure a coherent order

and arrangement, the selection list is passed to the same sorting

function as discussed previously, along with a third parameter

to execute the process as YOLO bounding box coordinates.

The function does the same but this time it returns a sorted

single list of bonding box data named ‘YOLO data’.

E. Getting The Answers

After that, we employ a predefined ‘get answer()’ function

to extract MCQ question numbers and their corresponding

answers from the extracted OCR data and the YOLO bounding

box coordinates. This process is a fundamental component of

our automated MCQ question marking system. To commence

this step the function is invoked with the thresholded image,

‘YOLO data’ from the preceding step, and the ‘ocr data’ as

parameters. Inside the function, the YOLO bounding boxes are

transformed from the xyxy format to xywh format using the

built-in function xyxy2xywh() from the ultralytics library. The

OCR engine is then invoked to extract answer strings, utilizing

the configuration parameter to ensure the text is considered

as a uniform block. The extracted text data is then filtered

to retain only alphanumeric characters, limiting the selection

to the initial 20 characters for improved later assessment.

All those procedures are repeated for the student-answered

images and then compared with the stored question-answer

pair, fetched from the teacher-answered images.

F. Comparing Answers and Marks Calculation

To compare and get marks for an individual student another

function is called. The function is designed to operate with

two sets of answers, teacher answers and student answers.

It performs a detailed analysis of these answer strings to

compute the student’s marks by identifying wrong, correct,

and unanswered question numbers. To achieve this, several

variables are initialized, including the student’s marks, to keep

track of the student’s total marks and lists for unmatched

answers, wrong answers, correct answers, and unanswered

questions. The function iterates the teacher’s answers and

checks them against the corresponding student’s answers for a

specific question number (key) in the student’s answer list. If

it does, the function compares the student’s answer(s) against

the correct answer(s) provided by the teacher. If the student’s

answer does not exactly match any of the correct answers,

the tuple index corresponding to this unmatched answer is

recorded. Depending on the comparison results, the function

updates the tracking variables accordingly. The question num-

ber is added to the wrong answers list if the student’s answer

is incorrect or contains unmatched answers. If the student’s

answer matches all correct answers for that question, the

student’s marks are increased by 1, and the question number
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Fig. 7: Training Results of the Proposed Model

is added to the correct answer list. The question number is

included in the not-answered list if the student did not answer

a particular question. The implementation of this system can

be found in the GitHub repository1.

VI. RESULTS AND DISCUSSION

Since there are only two classes and our implementation

should be on mobile devices, the model was trained to employ

YOLOv8n (nano) architecture. The YOLOv8n has 3.2 million

parameters and a speed of 8.4ms on COCO dataset outper-

forming the previous versions as shown in Figure 6. Hyper-

parameter tuning was done by considering the dataset and

object types as shown in Table II. Each instance of the ‘fill’ and

‘cross’ classes was treated as an object to be detected. Training

of the model was performed on the Google Colab environment.

After training the model, it demonstrates remarkable perfor-

mance. With a confidence threshold of 0.585, the model attains

an impressive F1-score of 0.98, shown in Figure 8 followed

by the calculation of precision and recall using Equations (1)

and (2). This signifies that the model excels in both precision

and recall when considering bounding box predictions with

confidence scores exceeding the specified threshold.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Additionally, it attains a recall score of 0.988, demonstrat-

ing its capability to retrieve all relevant objects accurately.

Furthermore, the model’s overall performance is underscored

by a mean Average Precision (mAP) score of 0.99. The mAP

1https://github.com/SaikatMahmud/mcq evaluation with ocr yolov8

TABLE II: Training Hyperparameters

Training Hyperparameters Details
Epoch 150
Image size 1280 x 1280
Batch size 10
Learning rate (lr0, lrf) 0.01

Fig. 8: F1 vs Confidence curve

score serves as a comprehensive metric, offering an evaluation

of the model’s effectiveness across various object classes. This

performance assessment is measured using an Intersection over

Union (IoU) threshold of 0.5 mentioned in Table III, reflecting

the model’s robustness in object detection and classification.

TABLE III: Trained Model Summary

Class Precision Recall mAP50 mAP50-95
Fill 0.984 0.994 0.991 0.754
Cross 0.974 0.982 0.99 0.81
All 0.979 0.988 0.99 0.782
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The remaining set of 50 images was tested which took

an average execution time of 3.5 seconds per script in Core

i7, 8th Generation intel processor with 8GB RAM. The

examination revealed only two instances where the system

erroneously classified ‘cross’ instances as ‘fill,’ attributing this

misclassification to the small size of the crosses that fell below

the model’s detection threshold. The error counts from the test

are presented in Table IV.

TABLE IV: Error Count of 50 MCQ Script Test Dataset

Category Erroneous count
fill 0
cross 2
Letter (OCR) 10
Undetected question number (OCR) 4
Wrongly detected question number (OCR) 3

VII. LIMITATION AND FUTURE WORK

The system may encounter challenges with low-quality

input images. For example, in the situation of tilted, hazy, or

faint printed text. The system may erroneously identify false

positive objects as true positives outside of designated MCQ

areas, which are identified as the limitations and future works.

VIII. CONCLUSION

The paper introduces an innovative approach to streamline

the Multiple-Choice Question (MCQ) evaluation process by

integrating Optical Character Recognition (OCR) and object

detection methods. While the proposed methods exhibit certain

limitations, their potential for acceptance within the educa-

tional community, comprising both educators and students,

remains noteworthy. A key advantage is that there is no

longer a need for a specific template paper, which improves

readability and ease of use for educators and learners alike.

Despite these merits, there is room for future enhancements

which are outlined in the limitation and future work section.

In conclusion, ongoing efforts for refinement and optimization

can position this methodology as a valuable tool in the

educational assessment landscape.
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