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School of Engineering and Sciences

Diego Portales University
Santiago, Chile

christian.munoz1@mail.udp.cl

Abstract—Designing radar waveforms is complex as it involves
a multi-objective optimization problem, featuring conflicting
functions in a discontinuous and noisy landscape. Expanding
the repertoire of radar waveforms aids other electronic warfare
applications. Employing evolutionary algorithms is an attractive
tool for solving this optimization problem, thus allowing scalable
radar waveform design.

Index Terms—Evolutionary computation, electronic warfare,
radar waveform, multi-objective optimization

I. INTRODUCTION

Radar waveform design is a complex task, as the under-

lying multi-objective optimization (MOO) problem involves

many conflicting functions, forming a discontinuous and

noisy optimization landscape. Also, the parameters defining

a radar waveform, such as carrier frequency, pulse width,

and pulse repetition interval create a rather large decision

space. Nonetheless, a more comprehensive repertoire of radar

waveforms would support the simulation of realistic electronic

warfare scenarios, while also benefiting the development of

more sophisticated signal processing techniques for electronic

support. For example, deinterleaving algorithms are needed

to separate and identify emitters, but they are impaired when

agile pulse trains are interleaved, thus affecting the perfor-

mance of these counter-measure algorithms. Automatic design

of emission profiles for radars of interest is thus an attractive

solution for several electronic warfare applications. Evolution-

ary algorithms have been used for automatic waveform design,

focusing on pulse-repetition interval (PRI) as the parameter of

interest [1]. In this way, MOO can be used to automatically

find the solutions that offer the best performance on range and

velocity resolution, which corresponds to the Pareto set. In

this work we report our work to implement a radar waveform

simulator. As a first approach, we used simulated annealing to

automatically find effective PRI profiles for a stagger emission

system.

II. MULTI-OBJECTIVE OPTIMIZATION PROBLEM

We consider a multiple-PRI stagger emission profile of

level 2. The PRI was in the range [0.0002, 0.003] [s], pulse

width of 100[us], and frequency 1300 [MHz]. To measure

the performance of the radar waveform, we used 3 objective

functions: unambiguous range, unambiguous Doppler, and

dwell time [2]. The unambiguous range of a multiple-PRI

Fig. 1. Radar waveform design as a multi-objective optimization problem.

radar is the least common multiple (LCM) of the unambiguous

range of the individual PRI:

rmax =
c(PRI − PW )

2
(1)

The unambiguous Doppler for the same system is the LCM

of the unambiguous Doppler of the individual PRI:

vmax =
c

2PRI ∗ frec (2)

Finally, the dwell time, or the time the radar is illuminating

the target is:

d =
n∑

i=1

PRIi (3)

The optimization problem involves jointly maximizing (1)

and (2), while minimizing (3), and thus the previous 3

objective functions are conflicting functions. Increasing PRI

increases range and dwell time while decreasing Doppler, and

vice versa. The optimization process aims to find the PRI

solutions (Pareto set) that offer the best performance possible

considering the trade-offs defined by these functions (Pareto

front). Figure 1 depicts the overall optimization problem to

be addressed. We used simulated annealing to address the

aforementioned problem [3].

III. RESULTS

The simulated annealing algorithm uses the Boltzmann

distribution to assign an acceptance probability for each candi-

date solution, allocating exponentially decaying probability to

solutions with a large energy difference. The energy evaluation

rule, however, requires special attention as it may force the

algorithm to assign low probability to solutions that are
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desirable. We experimented with several energy evaluations

approaches and found that adjusting for percentage of energy

difference was the only energy rule that generated the appro-

priate behavior for this problem. Other energy evaluation rules

would make the algorithm to assign low probability to most

solutions, thus hindering the exploration capabilities of the

algorithm and the scalability of a radar waveform simulator.

We also experimented with different initial value policies.

Initial values had no effect on the optimization process,

suggesting the absence of lottery tickets for this particular case.

The objective space of the optimization problem is shown

in Figure 2. We calculated one million solutions, but a rep-

resentative subset of ten thousand is shown for simplicity.

Solutions belonging to the Pareto front(red) and dominated

solutions(black) are organized sparsely in the space, forming

well-defined contour lines, thus justifying the use of evolu-

tionary algorithms to address this family of problems.

Fig. 2. Radar objective space.

IV. DISCUSSION

In this paper we reported our first work to develop a radar

waveform design simulator. We addressed a reduced problem

containing the three most important objective functions to

be optimized. The computation time and convergence of

the algorithm can be improved by selectively adjusting its

parameters, such as acceptance probability calculation, for

optimal performance for this particular problem. Considering

the structure of the Pareto front of radar performance, neural

hyper-networks may be a possible solution to learn the Pareto

front and thus accelerate the radar waveform design process

[4]. Future work will assess this opportunity to scale the

production of radar waveforms.

V. CONCLUSION

Here we reported the optimization of a radar waveform

using simulated annealing; a metaheuristic algorithm to solve

multi-objective optimization problems. We envision these evo-

lutionary algorithms, coupled with machine learning tech-

niques to learn the Pareto front, as the fundamental support

for massive, scalable radar waveform design.
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