
Autonomous Gain Tuning for Differential Drive 
Robots Targeting Control using Soft Actor-Critic 

 

Chao-Chung Peng*  
Department of  Aeronautics and 

Astronautics 
National Cheng Kung University 

Tainan, Taiwan 
ccpeng@mail.ncku.edu.tw 

 

Meng-Huan Chiang 
Department of  Aeronautics and 

Astronautics 
National Cheng Kung University 

Tainan, Taiwan 
P46114361@gs.ncku.edu.tw 

 

Yi-Ho Chen 
 Department of  Aeronautics and 

Astronautics 
National Cheng Kung University 

Tainan, Taiwan 
p48101500@gs.ncku.edu.tw 

Abstract—Differential drive robots (DDRs) belong to a 
unique category of mobile robots that regulate their speed and 
direction by independently adjusting the speeds of two wheels. 
Due to their high maneuverability, DDRs can execute various 
missions requiring precise positioning and navigation. To guide 
DDRs in target tracking, the Approximate Pose Increment 
Control (APIC) is applied to provide reference direction and 
speed control based on the Line of Sight (LOS) guidance 
principle. However, the ordinary APIC is unable to consider the 
physical constraints on the DDRs, potentially resulting in poor 
tracking performance when the target is near the DDR. One of 
the most common failure scenarios is the "deadlock loop", 
which prevents DDRs from reaching the target and causes them 
to keep circling near it due to a too-large turning radius. To 
address this issue, the Reinforcement Learning (RL) based 
APIC is proposed, allowing the system to learn optimal actions 
from the environment to reach the goal. In this approach, a Soft 
Actor-Critic (SAC) agent is trained to dynamically adjust two 
gain values in APIC based on real-time observations. The 
proposed method not only enhances the targeting performance 
of APIC but also provides an expert guidance law for imitation 
learning.  

Keywords—differential drive robotics, targeting control, 
reinforcement learning  

I. INTRODUCTION (HEADING 1) 

Differential drive robots (DDRs) are a unique type of 
mobile robot that regulate their speed and direction by 
independently adjusting the speeds of two wheels. By doing 
so, DDRs can execute rotations in confined spaces, move 
laterally, and execute sharp turns. Their remarkable 
maneuverability and adaptability make DDRs a dependable 
choice, particularly in scenarios demanding precise navigation, 
such as warehousing and indoor logistics environments [1]. 
Approximate pose increment control (APIC) [2] is a control 
law proposed to guide DDRs to track their targets. In this 
method, the direction of DDRs are forced to point towards 
their target and provide a good performance of tracking 
moving targets.  

In this paper, a reinforcement learning (RL) strategy is 
integrated [3] with the recently presented APIC targeting 
application. It is well known that the RL is a subfield of 
machine learning where an agent learns to take appropriate 
actions when interacting with an environment. Designing 
rules of reward function is compulsory to provide agents with 
learning from the environment. Therefore, the goal of agents 
is to learn a policy or a decision model based on the designated 
rewards with respect to the environment. RL has been applied 
to a wide range of domains and has successfully trained agents 
to play complex games and handle control problems [4]. 

To apply reinforcement learning to the rule-based APIC 
algorithm, a game-like environment based on the DDR model 
is created. In this game environment, DDRs are equipped with 
a weapon,  and the goal of this game is to destroy targets using 
this weapon. To highlight the main difficulty of the DDR 
targeting gaming, an additional physical constraint is imposed 
on the DDR to increase the difficulty of the game. Due to the 
constraint, simulations will be conducted to illustrate that a 
pure APIC algorithm will struggle to destroy a fixed target. To 
enhance the targeting performance, a soft actor-critic (SAC) 
[5] algorithm is introduced to integrate with the APIC. This 
integration enables the agent to dynamically adjust two 
important gains within APIC in real-time. The primary 
advantage of this proposed method lies in the agent's ability to 
adapt its motion based on various observations, resulting in 
improved performance and addressing existing challenges in 
APIC. A couple of simulations are provided to demonstrate 
the advantages and effectiveness of the RL-SAC-based APIC. 

The rest of this article is organized as follows. In Section 
II, the descriptions of a DDR are given. A brief review of the 
recently presented APIC algorithm is introduced and the main 
drawback of the existing APIC will be highlighted in Section 
III. In Section IV, the RL-SAC with consideration of the 
environment, reward functions, and the training framework 
are presented. The details comparison of the APIC and the RL-
SAC-based online gain tuning APIC is presented in Section V. 
Finally, Section VI concludes this article. 

II. DESCRIPTION OF DIFFERENTIAL DRIVE ROBOTS 

Fig. 1 shows the configuration of DDR. Based on the 
coordinates defined in the figure, the kinematics of DDR can 
be described as: 
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where QX
 , QY
  are the derivative of DDRs’ positions in the 

inertial frame ( ,Q QX Y ) respectively.  t  is the derivative of 

the heading angle  t  of DDR with respect to the inertial x-

axis.  and  Q Qv   represent the translational and rotational 

velocity in body fame, respectively, which can be calculated 

by:  
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where  Rv t ,  Lv t  and   are the right/left wheel speeds 

and half of the wheel track width, respectively. The heading 

speed and direction of DDR are controlled by the right/left 

wheel speeds. According to (2), given command  and   Q Qv  , 

the wheel speeds  Rv t and  Lv t can be derived by 
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M 1
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Eq. (3) can be used to generate commands that drive the 

motors, thereby achieving speed control. 

 
Fig. 1 Configuration of the Differential Drive Robot 

III. REVIEW OF APPROXIMATE POSTURE 

INCREMENT CONTROL 

There are many methods proposed to guide DDRs in 
tracking their targets [1]. The APIC [2] is an approach that 
considers simple kinematics analyses together with discrete-
time dynamics approximation. The main goal of APIC is to 
force the direction of DDRs to head/pursue toward the targets’ 
location. Using this straightforward design, the control law 
can guarantee its stability without selecting a proper 
Lyapunov function and provide a good tracking performance. 
A bit different from the task presented in [2], the purpose of 
this research is to make the target fall in the blue attack zone, 
as illustrated in Fig. 2.  

 
Fig. 2 Definition of line of sight (LOS) and bearing angle    

Referred to the kinematics equation in (1), the locations of 
DDRs presented in the discrete-time form are modeled as 
follows: 
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where dt  represents the sampling time interval. The posture 
increment is defined as: 
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The goal of APIC is to find a proper posture increment 

defined in (5) at the current time instant such that the 

controlled DDR can track the posture of the target 

 , ,REF REF REFX Y   precisely.  

This requirement can be expressed by 
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APIC obtains this posture increment through the line of 

sight (LOS). As shown in Fig. 2, the LOS is the straight line 

connecting from target and to controlled robot, and it can be 

calculated by: 
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The direction of the LOS can be obtained by its unit vector: 
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The moving tangential direction of the controlled robot can be 

expressed by: 
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With (8) and (9), the included angle between the target and the 

controlled robot can be calculated through: 
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The final control law of APIC is then described as: 
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where QV
PK  and Q

PK


 are positive gain values that can be 

selected by different means. A higher QV
PK  represents higher 

closure velocity, and a larger Q

PK


 means faster decrement of 

error between the direction of the controlled robot and LOS. 

Through the analysis of the DDR kinematics, APIC is 

capable of providing appropriate direction and speed control 

[2]. However, the absence of physical constraints of the DDR, 

that is, non-zero wheel speeds, could lead to suboptimal 

targeting performance in certain conditions. Due to the 

controller limitation, the wheel speeds can only be controlled 

in a specific range with minimum value minV  and maximum 

value maxV . When the difference between minV  and maxV  is 

small, the turning radius of DDRs can be large, causing DDR 
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to be stuck in the so-called “ deadlock loop”, which is shown 

in Fig. 3. In other words, when the target lies within the 

turning radius, the controlled DDR will keep orbiting the 

target and will not be able to target it eventually. Therefore, to 

address this issue, the paper proposes an online gain-tuning 

method to improve the targeting performance of the APIC, 

which will be introduced in the next section. 

 
Fig. 3 The “deadlock loop” problem in APIC  

IV. INTEGRATED WITH REINFORCEMENT LEARNING 

AGENT 

 The deadlock loops problem in DDR is difficult to 

characterize and solve using analytical methods, leading to 

challenges in deriving suitable pairs of gain values QV
PK  and 

Q

PK


 to avoid such a condition. Therefore, this research 

introduces Reinforcement Learning (RL) to enhance the 

tracking performance of APIC. During the tracking process, 
QV
PK  and Q

PK


 are adaptively tuned by RL based on current 

observation, as shown in Fig. 4. RL is a type of machine-

learning algorithm that learns from interaction. An agent takes 

actions in response to observations from the environment and 

adjusts its behavior based on the rewards from the 

environment. The primary objective of the RL agents is to 

maximize the accumulated reward from the environment. 

After a specific learning process, the RL can be taken as a 

powerful and efficient strategy. Hence, the RL is applied to 

various problems [3], such as game-playing and robotics 

control [4].  

 
Fig. 4 The proposed structure in this research 

This research applies the soft actor-critic (SAC) [5] 
method for the RL training framework. The SAC is an off-
policy actor-critic algorithm that considers entropy when 
learning during exploration. The term “entropy”, is used to 
measure the uncertainty in a system, which is defined as: 

( ) ( | ) log ( | )a s a s    (13) 

In the SAC, entropy is added to the critic to encourage the 
actor to act as randomly as possible so the agent can explore 
the environment deeply. For this reason, SAC is stable in 

contrast to another off-policy method and can be a promising 
candidate in real-world robotics tasks [5]. In addition, SAC 
can be used in continuous action space. All of these 
characteristics make SAC an ideal algorithm for our task. 

This work integrates SAC with APIC by letting SAC 

agents adjust QV
PK  and Q

PK


 with different observations. The 

training environment and the reward function are introduced 

sequentially in this chapter. 

Fig. 5 The effective zone of the weapon 

A. Environment 
To train SAC agents, a DDR environment is built. The 

SAC agent is going to control a DDR based on APIC and the 

kinematic of DDR is calculated and updated through (1)-(4). 

The task of the agent is to destroy a fixed target with the 

weapon equipped on the DDR. To complete the mission, the 

agent needs to bring the targets to its attack zone, which is a 

blue area in front of the DDR shown in Fig. 5. The attack zone 

is defined by the distance between min  and max , within a 

sector spanning 5 degrees. When the target falls into this zone, 

the DDR will attack the target automatically. The minimum 

speed of a single wheel is restricted to min max[ , ]V V ,where 

minV  0 , which means it can only move forward.  

The output of the RL agent is two gains:  ,QV
PK  0 10  and 

 ,Q

PK
  0 100 , respectively. To reduce the frequency of 

making decisions, down-sampling is applied in the 

environment. That is, each step in the environment is 

composed of several timesteps. The overall parameters of the 

environment are shown in TABLE I.  

The observation space is composed of 10 elements. The 

first four elements are relative position at the time step t  and 

the last time step t1  of the agent and the target. The relative 

position can be calculated by (7).  Other elements in 

observation space are QX
 , QY
 ,  ,   and distance between 

target and agent denotes  . The last element is the bearing 

angle  , which represents the angle between the heading 

direction and LOS as shown in Fig. 2. The bearing angle   is 

the absolute value of  R k  and it is calculated by (7)~(10).  

B. Reward function 
Reward functions are crucial in the training of RL agents. 

In this research, two reward functions are developed to help 

the RL-SAC training. 

The first reward function is the hit reward Hr . This reward 

is given to the agent each time the DDR successfully hits the 

target with its weapon, which can be expressed as: 

, when targets fall into the weapon zone

, else

  
 Hr



1

0
 (14) 
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TABLE I.  PARAMETER OF THE ENVIRONMENT 

Parameter value 

Time step interval dt   0.01 (s) 

Environment step interval 0.1 (s) 

Minimum/maximum velocity min max,V V     ,  5 10  (m/s) 

Wheel radii  ,R Lr r  0.1 (m) 

Wheel track width    0.1 (m) 

Weapon range min max,     ,  1 6  (m) 

Health of target  100 

Damage of weapon 1.5 (per 0.01s ) 

With the addition of a hit reward, the agent can consider 

the attack zone during control to prevent the deadlock loop. 

However, the agent may spend more time to destroy the target 

since the hit reward is a sparse reward that is only given when 

the condition is satisfied. In this way, the agent may result in 

some redundant action. To address the issue, a shaped reward 

is also introduced to make each action more efficient.  

Advantage improvement hit reward is a dense reward, 

which means it will be given to the agent at each step. The 

advantage can be calculated as follows: 

w

kA e
 



 
  (15) 

where  ,   0 180  is the bearing angle and  is the 

Euclidean distance between the agent and the target. w  is the 

ideal attack distance and is set to 5 in this environment. Eq. 

(15) can be visualized in Fig. 6. As the figure shows, the 

advantage gets larger when   is small, which means the 

agent’s direction pointing towards the target. When  90 ,  

the target is behind the target, in this situation, the agent needs 

to increase the distance   and decrease   at the same time to 

get more advantage.  

 
Fig. 6 Plot of advantage 

The goal of the advantage improvement reward is to 

encourage the agent to improve its advantage at each step and 

penalize it when the action decreases the advantage. To 

accomplish this, the reward is defined as: 

   Ar A k A k  1  (16) 

As a consequence, the overall reward of a step is: 

step H Ar r r   (17) 

C. Training Framework 
The training framework in this paper was developed in 

Pytorch (v2.1.0). The SAC agent will be trained in an off-

policy way. Usually, a replay buffer is introduced into RL 

training to stabilize the training process. In this research, we 

used Prioritize Experience Replay (PER) [6] to accelerate the 

training process. PER assigns priority to each data stored in 

the replay buffer. The data with higher priority is more likely 

to be sampled in the training process. A common approach to 

assigning priorities is to use the Temporal Difference (TD) 

error. In this research, the loss of the SAC critic as the metric 

for assigning priorities was employed. The overall training 

framework is illustrated in Fig. 7.   

 
Fig. 7 The training framework 

During the training process, the target will be placed 

randomly in the environment at the start of each episode. The 

maximum number of steps in one episode is set to 100 to 

prevent too much sampling data in a single episode. After 100 

steps, the environment will truncated and reset automatically. 

At the start of the training, the network was initialized, and the 

agent would randomly sample an action from the action space. 

These randomly moved data will be stored in PER. After 

sampling 10,000 random data, the training will begin, and the 

current actor (or policy) will be used to collect new data. The 

other hyperparameters of the SAC agent are listed in TABLE 

II.   

Fig. 8 Goal achievement rate in training history 

V. SIMULATION RESULTS 

In this chapter, the training process of the autonomous 

gain-tuning agent will be described. Two agents are trained in 

this research: one is trained with the hit reward function (14) 

only, and the other is trained by both hit and advantage 

improvement rewards in (17). The performance of these 

agents and ordinary APIC are also demonstrated and 

compared in this chapter. 
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(a)  (b)  (c)  

Fig. 9 Trajectory of the different models in case 1: (a) is the trajectory of ordinary APIC, which is stuck into a deadlock loop. (b) and (c) are autonomous 
gain-tuning APIC agents, which are trained with reward functions (14) and (17) respectively. Both agents can avoid the deadlock loop problem and destroy 
the target in a similar way.  

   
(a)  (b)  (c)  

Fig. 10 Trajectory of the different models in case 2: (a) is the trajectory of ordinary APIC, which is stuck into a deadlock loop again because of rapid 
closure. (b) and (c) are autonomous gain-tuning APIC agents, which are trained with reward functions (14) and (17) respectively. Both of agents could 
lower the closure velocity to destroy the target on the first attempt.  

TABLE II.  HYPER-PARAMETERS USED IN SAC TRAINING 

Parameter value 

Optimizer Adam 

Size of Replay Buffer 10e+5 

Batch Size 256 

Discount factor    0.99 

# hidden layers 2 

Hidden layer size 256 

Activation function ReLu 

Learning rate 2e-4 

Initial Temperature 0.1 

Soft update parameter    5e-3 

A. Training process and performance 
During the training process, we evaluate the performance of 

the current policy in every 2000 training steps. In each 

evaluation, the current policy interacts with the environment 

for 10,000 environment steps, and the goal achievement rate 

of the agent will be calculated based on the result. The 

performance of using rewards (14) and (17) in the training 

process are shown in Fig. 8, both the training can converge 

within 10,0000 steps.  

While the convergence of the training process may appear 

similar, distinctions in the training reward function are 

reflected in the tracking performance of the agents. The 

tracking performance is tested by allowing the agent to take 

10,000 steps to take action. The initial positions of the target 

and the agent are randomly set, and a random seed is used to 

ensure fairness in the performance test. We count how many 

times the agent destroys the targets and calculate the average 

time the agent spends to destroy each target. The result is listed 

in TABLE III. . The result shows that the agent trained by 

reward (17) can destroy more targets in limited steps, and take 

less time on average.  

B. Numerical Case studies 
In this section, the targeting trajectories of different initial 

conditions (ICs) are displayed for comparison purposes under 

different models. The ordinary APIC with fixed QV
PK  and 

Q

PK


 is taken as the comparison benchmark, where 

   , . , .  Q QV
P PK K   3 74 98 77 . In the following, a couple of 

comparisons will be given to illustrate the targeting behavior 

under different initial conditions. 

TABLE III.  COMPARISON OF DIFFERENT AGENTS’ PERFORMANCE  

Training reward function Destroyed targets 
Average destroyed 

time 

Ordinary APIC 0 - 

Hit reward only 380 2.54 (s) 

Hit and advantage 

improvement reward 
412 2.36 (s) 
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(a)  (b)  (c)  

Fig. 11 Trajectory of the different models in case 3: (a) is the trajectory of ordinary APIC, which rapidly destroys the target. (b) and (c) are autonomous 
gain tuning APIC agents, which are trained with reward functions (14) and (17) respectively. The latter agent can destroy the target a lot faster in this case.  

1) Case 1 IC: large bearing angle with a short distance 

The first case is that the target is initially set at a short 

distance at the right-hand side of the controlled DDR. The 

initial heading of the DDR is pointing upward. This is a 

classical case of the deadlock loop. As shown in Fig. 9, the 

ordinary APIC tended to use the maximum turning speed 

because the included angle between its heading and LOS was 

large initially. However, due to the physical constraint, it 

started to orbit the target without hitting it. In contrast, the 

autonomous gain tuning agents select a small value of  Q

PK


 

at the first, which allows the DDR to elongate the distance. 

After the distance is far enough, it increases to make a rapid 

turn and attacks the target with its weapon. The overall process 

took about 3.5 seconds for both agents.  

2) ase 2 IC: large bearing angle  with a large distance 

Secondly, the target is put at a relatively far distance from 

the controlled DDR. In this case, the ordinary APIC could 

successfully damage the target. However, the fixed value of  

QV
PK  the DDR resulted in a rapid closure, causing the attack 

time to be too short to destroy the target during the first 
attempt. Once the DDR passed the targets, it started to make a 
rapid turn and became trapped in the deadlock loop again, 
resulting in mission failure, as shown in Fig. 10. On the other 
hand, the autonomous gain tuning agents can reduce the value 

of QV
PK , thereby decreasing the rate of closure. This ensures 

sufficient time for the weapon to destroy the targets. 
Consequently, both agents can successfully destroy the targets 
on the first attempt. 

3) Case 3 IC: Small bearing angle with a large distance 

In this initial condition, the APIC can complete the 

mission, as shown in Fig. 11. This time, the agent trained only 

by hit reward took the longest time to destroy the target. This 

result emphasizes the importance of the advantage 

improvement reward. With the shaped dense reward, the RL 

training framework can optimize each action of the agent, 

leading to better performance. 

VI.  CONCLUSION  

The paper proposes a hybrid guidance law for DDRs, 

which combines the rule-based APIC and AI-based action 

selection. Since the ordinary APIC doesn’t take the physical 

constraints into consideration, DDRs may get trapped in a 

problem called the deadlock loop problem, leading to failure 

in the tracking tasks. This study integrates RL with APIC 

control laws of DDRs. In the proposed framework, an SAC 

agent is going to tune the two important gains QV
PK  and Q

PK


 

dynamically. To train the agent effectively, two reward 

functions are proposed. The training process can converge fast 

and provide a good performance in evaluation. The simulation 

results show that in the proposed framework, gain-tuning 

APIC will no longer fall into the deadlock loop problem. The 

proposed hybrid guidance law improves the tracking 

capabilities of APIC and also offers an expert control law for 

imitation learning, which can lower the expenses of human 

data collection. The imitation learning result can serve as a 

pre-trained AI model that can be further improved by further 

training 
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