
Autonomous Gain Tuning for Differential Drive
Robots Targeting Control using Soft Actor-Critic

Chao-Chung Peng*
Department of Aeronautics and

Astronautics
National Cheng Kung University

Tainan, Taiwan
ccpeng@mail.ncku.edu.tw

Meng-Huan Chiang
Department of Aeronautics and

Astronautics
National Cheng Kung University

Tainan, Taiwan
P46114361@gs.ncku.edu.tw

Yi-Ho Chen
 Department of Aeronautics and

Astronautics
National Cheng Kung University

Tainan, Taiwan
p48101500@gs.ncku.edu.tw

Abstract—Differential drive robots (DDRs) belong to a
unique category of mobile robots that regulate their speed and
direction by independently adjusting the speeds of two wheels.
Due to their high maneuverability, DDRs can execute various
missions requiring precise positioning and navigation. To guide
DDRs in target tracking, the Approximate Pose Increment
Control (APIC) is applied to provide reference direction and
speed control based on the Line of Sight (LOS) guidance
principle. However, the ordinary APIC is unable to consider the
physical constraints on the DDRs, potentially resulting in poor
tracking performance when the target is near the DDR. One of
the most common failure scenarios is the "deadlock loop",
which prevents DDRs from reaching the target and causes them
to keep circling near it due to a too-large turning radius. To
address this issue, the Reinforcement Learning (RL) based
APIC is proposed, allowing the system to learn optimal actions
from the environment to reach the goal. In this approach, a Soft
Actor-Critic (SAC) agent is trained to dynamically adjust two
gain values in APIC based on real-time observations. The
proposed method not only enhances the targeting performance
of APIC but also provides an expert guidance law for imitation
learning.

Keywords—differential drive robotics, targeting control,
reinforcement learning

I. INTRODUCTION (HEADING 1)

Differential drive robots (DDRs) are a unique type of
mobile robot that regulate their speed and direction by
independently adjusting the speeds of two wheels. By doing
so, DDRs can execute rotations in confined spaces, move
laterally, and execute sharp turns. Their remarkable
maneuverability and adaptability make DDRs a dependable
choice, particularly in scenarios demanding precise navigation,
such as warehousing and indoor logistics environments [1].
Approximate pose increment control (APIC) [2] is a control
law proposed to guide DDRs to track their targets. In this
method, the direction of DDRs are forced to point towards
their target and provide a good performance of tracking
moving targets.

In this paper, a reinforcement learning (RL) strategy is
integrated [3] with the recently presented APIC targeting
application. It is well known that the RL is a subfield of
machine learning where an agent learns to take appropriate
actions when interacting with an environment. Designing
rules of reward function is compulsory to provide agents with
learning from the environment. Therefore, the goal of agents
is to learn a policy or a decision model based on the designated
rewards with respect to the environment. RL has been applied
to a wide range of domains and has successfully trained agents
to play complex games and handle control problems [4].

To apply reinforcement learning to the rule-based APIC
algorithm, a game-like environment based on the DDR model
is created. In this game environment, DDRs are equipped with
a weapon, and the goal of this game is to destroy targets using
this weapon. To highlight the main difficulty of the DDR
targeting gaming, an additional physical constraint is imposed
on the DDR to increase the difficulty of the game. Due to the
constraint, simulations will be conducted to illustrate that a
pure APIC algorithm will struggle to destroy a fixed target. To
enhance the targeting performance, a soft actor-critic (SAC)
[5] algorithm is introduced to integrate with the APIC. This
integration enables the agent to dynamically adjust two
important gains within APIC in real-time. The primary
advantage of this proposed method lies in the agent's ability to
adapt its motion based on various observations, resulting in
improved performance and addressing existing challenges in
APIC. A couple of simulations are provided to demonstrate
the advantages and effectiveness of the RL-SAC-based APIC.

The rest of this article is organized as follows. In Section
II, the descriptions of a DDR are given. A brief review of the
recently presented APIC algorithm is introduced and the main
drawback of the existing APIC will be highlighted in Section
III. In Section IV, the RL-SAC with consideration of the
environment, reward functions, and the training framework
are presented. The details comparison of the APIC and the RL-
SAC-based online gain tuning APIC is presented in Section V.
Finally, Section VI concludes this article.

II. DESCRIPTION OF DIFFERENTIAL DRIVE ROBOTS

Fig. 1 shows the configuration of DDR. Based on the
coordinates defined in the figure, the kinematics of DDR can
be described as:

   
   

 

cos

sin

Q Q

Q Q

Q

X t v t

Y t v t

t





 












 (1)

where QX
 , QY
 are the derivative of DDRs’ positions in the

inertial frame (,Q QX Y) respectively.  t is the derivative of

the heading angle  t of DDR with respect to the inertial x-

axis. and Q Qv  represent the translational and rotational

velocity in body fame, respectively, which can be calculated

by:

 
 

 
 

. .Q R R

Q L L

v v t v t

v t v t   

                              
M1 1

0 5 0 5

2 2
 (2)

251

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00056

where  Rv t ,  Lv t and  are the right/left wheel speeds

and half of the wheel track width, respectively. The heading

speed and direction of DDR are controlled by the right/left

wheel speeds. According to (2), given command and Q Qv  ,

the wheel speeds  Rv t and  Lv t can be derived by

 
 

QR

QL

vv t

v t 


   
          

M 1
 (3)

Eq. (3) can be used to generate commands that drive the

motors, thereby achieving speed control.

Fig. 1 Configuration of the Differential Drive Robot

III. REVIEW OF APPROXIMATE POSTURE

INCREMENT CONTROL

There are many methods proposed to guide DDRs in
tracking their targets [1]. The APIC [2] is an approach that
considers simple kinematics analyses together with discrete-
time dynamics approximation. The main goal of APIC is to
force the direction of DDRs to head/pursue toward the targets’
location. Using this straightforward design, the control law
can guarantee its stability without selecting a proper
Lyapunov function and provide a good tracking performance.
A bit different from the task presented in [2], the purpose of
this research is to make the target fall in the blue attack zone,
as illustrated in Fig. 2.

Fig. 2 Definition of line of sight (LOS) and bearing angle 

Referred to the kinematics equation in (1), the locations of
DDRs presented in the discrete-time form are modeled as
follows:

       
       

     

cos

sin

Q Q Q

Q Q Q

Q

X k X k dt v k k

Y k Y k dt v k k

k k dt k





  

   

   

   

1

1

1

 (4)

where dt represents the sampling time interval. The posture
increment is defined as:

 
 
 

   
   

 

cos

sin

X Q

Y Q

Q

t k dt v k k

t k dt v k k

R k dt k






       
        
          

 (5)

The goal of APIC is to find a proper posture increment

defined in (5) at the current time instant such that the

controlled DDR can track the posture of the target

 , ,REF REF REFX Y  precisely.

This requirement can be expressed by

       
       

       

Q Q X REF

Q Q Y REF

REF

X k X k t k X k

Y k Y k t k Y k

k k R k k  

    

    

    

1 1

1 1

1 1

 (6)

APIC obtains this posture increment through the line of

sight (LOS). As shown in Fig. 2, the LOS is the straight line

connecting from target and to controlled robot, and it can be

calculated by:

 
 
 

 
 

REF Q
LOS

REF Q

X k X k
e k

Y k Y k

   
      
      
 (7)

The direction of the LOS can be obtained by its unit vector:

     
LOS

unit
LOS LOSe k e k e k (8)

The moving tangential direction of the controlled robot can be

expressed by:

 
  
  

cos

sin
Dir

k
F k

k





 
   
   

 (9)

With (8) and (9), the included angle between the target and the

controlled robot can be calculated through:

   
   
   

,
cos

LOS

LOS

unit
Dir

cross unit
Dir

F k e k
R k sign

F k e k
 

           

1 (10)

where

   
LOS

unit
Dir

cross

e kF k


  
         0 0

 (11)

The final control law of APIC is then described as:

   

   

Q

Q

V
Q P LOS

Q P

v k K e k

k K R k

 

 
 (12)

where QV
PK and Q

PK


 are positive gain values that can be

selected by different means. A higher QV
PK represents higher

closure velocity, and a larger Q

PK


 means faster decrement of

error between the direction of the controlled robot and LOS.

Through the analysis of the DDR kinematics, APIC is

capable of providing appropriate direction and speed control

[2]. However, the absence of physical constraints of the DDR,

that is, non-zero wheel speeds, could lead to suboptimal

targeting performance in certain conditions. Due to the

controller limitation, the wheel speeds can only be controlled

in a specific range with minimum value minV and maximum

value maxV . When the difference between minV and maxV is

small, the turning radius of DDRs can be large, causing DDR

252

to be stuck in the so-called “ deadlock loop”, which is shown

in Fig. 3. In other words, when the target lies within the

turning radius, the controlled DDR will keep orbiting the

target and will not be able to target it eventually. Therefore, to

address this issue, the paper proposes an online gain-tuning

method to improve the targeting performance of the APIC,

which will be introduced in the next section.

Fig. 3 The “deadlock loop” problem in APIC

IV. INTEGRATED WITH REINFORCEMENT LEARNING

AGENT

 The deadlock loops problem in DDR is difficult to

characterize and solve using analytical methods, leading to

challenges in deriving suitable pairs of gain values QV
PK and

Q

PK


 to avoid such a condition. Therefore, this research

introduces Reinforcement Learning (RL) to enhance the

tracking performance of APIC. During the tracking process,
QV
PK and Q

PK


 are adaptively tuned by RL based on current

observation, as shown in Fig. 4. RL is a type of machine-

learning algorithm that learns from interaction. An agent takes

actions in response to observations from the environment and

adjusts its behavior based on the rewards from the

environment. The primary objective of the RL agents is to

maximize the accumulated reward from the environment.

After a specific learning process, the RL can be taken as a

powerful and efficient strategy. Hence, the RL is applied to

various problems [3], such as game-playing and robotics

control [4].

Fig. 4 The proposed structure in this research

This research applies the soft actor-critic (SAC) [5]
method for the RL training framework. The SAC is an off-
policy actor-critic algorithm that considers entropy when
learning during exploration. The term “entropy”, is used to
measure the uncertainty in a system, which is defined as:

() (|) log (|)a s a s   (13)

In the SAC, entropy is added to the critic to encourage the
actor to act as randomly as possible so the agent can explore
the environment deeply. For this reason, SAC is stable in

contrast to another off-policy method and can be a promising
candidate in real-world robotics tasks [5]. In addition, SAC
can be used in continuous action space. All of these
characteristics make SAC an ideal algorithm for our task.

This work integrates SAC with APIC by letting SAC

agents adjust QV
PK and Q

PK


 with different observations. The

training environment and the reward function are introduced

sequentially in this chapter.

Fig. 5 The effective zone of the weapon

A. Environment
To train SAC agents, a DDR environment is built. The

SAC agent is going to control a DDR based on APIC and the

kinematic of DDR is calculated and updated through (1)-(4).

The task of the agent is to destroy a fixed target with the

weapon equipped on the DDR. To complete the mission, the

agent needs to bring the targets to its attack zone, which is a

blue area in front of the DDR shown in Fig. 5. The attack zone

is defined by the distance between min and max , within a

sector spanning 5 degrees. When the target falls into this zone,

the DDR will attack the target automatically. The minimum

speed of a single wheel is restricted to min max[,]V V ,where

minV  0 , which means it can only move forward.

The output of the RL agent is two gains:  ,QV
PK  0 10 and

 ,Q

PK
  0 100 , respectively. To reduce the frequency of

making decisions, down-sampling is applied in the

environment. That is, each step in the environment is

composed of several timesteps. The overall parameters of the

environment are shown in TABLE I.

The observation space is composed of 10 elements. The

first four elements are relative position at the time step t and

the last time step t1 of the agent and the target. The relative

position can be calculated by (7). Other elements in

observation space are QX
 , QY
 ,  ,  and distance between

target and agent denotes  . The last element is the bearing

angle  , which represents the angle between the heading

direction and LOS as shown in Fig. 2. The bearing angle  is

the absolute value of  R k and it is calculated by (7)~(10).

B. Reward function
Reward functions are crucial in the training of RL agents.

In this research, two reward functions are developed to help

the RL-SAC training.

The first reward function is the hit reward Hr . This reward

is given to the agent each time the DDR successfully hits the

target with its weapon, which can be expressed as:

, when targets fall into the weapon zone

, else

 Hr



1

0
 (14)

253

TABLE I. PARAMETER OF THE ENVIRONMENT

Parameter value

Time step interval dt 0.01 (s)

Environment step interval 0.1 (s)

Minimum/maximum velocity min max,V V   ,  5 10 (m/s)

Wheel radii ,R Lr r 0.1 (m)

Wheel track width  0.1 (m)

Weapon range min max,    ,  1 6 (m)

Health of target 100

Damage of weapon 1.5 (per 0.01s)

With the addition of a hit reward, the agent can consider

the attack zone during control to prevent the deadlock loop.

However, the agent may spend more time to destroy the target

since the hit reward is a sparse reward that is only given when

the condition is satisfied. In this way, the agent may result in

some redundant action. To address the issue, a shaped reward

is also introduced to make each action more efficient.

Advantage improvement hit reward is a dense reward,

which means it will be given to the agent at each step. The

advantage can be calculated as follows:

w

kA e
 



 
 (15)

where  ,   0 180 is the bearing angle and  is the

Euclidean distance between the agent and the target. w is the

ideal attack distance and is set to 5 in this environment. Eq.

(15) can be visualized in Fig. 6. As the figure shows, the

advantage gets larger when  is small, which means the

agent’s direction pointing towards the target. When  90 ,

the target is behind the target, in this situation, the agent needs

to increase the distance  and decrease  at the same time to

get more advantage.

Fig. 6 Plot of advantage

The goal of the advantage improvement reward is to

encourage the agent to improve its advantage at each step and

penalize it when the action decreases the advantage. To

accomplish this, the reward is defined as:

   Ar A k A k  1 (16)

As a consequence, the overall reward of a step is:

step H Ar r r  (17)

C. Training Framework
The training framework in this paper was developed in

Pytorch (v2.1.0). The SAC agent will be trained in an off-

policy way. Usually, a replay buffer is introduced into RL

training to stabilize the training process. In this research, we

used Prioritize Experience Replay (PER) [6] to accelerate the

training process. PER assigns priority to each data stored in

the replay buffer. The data with higher priority is more likely

to be sampled in the training process. A common approach to

assigning priorities is to use the Temporal Difference (TD)

error. In this research, the loss of the SAC critic as the metric

for assigning priorities was employed. The overall training

framework is illustrated in Fig. 7.

Fig. 7 The training framework

During the training process, the target will be placed

randomly in the environment at the start of each episode. The

maximum number of steps in one episode is set to 100 to

prevent too much sampling data in a single episode. After 100

steps, the environment will truncated and reset automatically.

At the start of the training, the network was initialized, and the

agent would randomly sample an action from the action space.

These randomly moved data will be stored in PER. After

sampling 10,000 random data, the training will begin, and the

current actor (or policy) will be used to collect new data. The

other hyperparameters of the SAC agent are listed in TABLE

II.

Fig. 8 Goal achievement rate in training history

V. SIMULATION RESULTS

In this chapter, the training process of the autonomous

gain-tuning agent will be described. Two agents are trained in

this research: one is trained with the hit reward function (14)

only, and the other is trained by both hit and advantage

improvement rewards in (17). The performance of these

agents and ordinary APIC are also demonstrated and

compared in this chapter.

254

(a) (b) (c)

Fig. 9 Trajectory of the different models in case 1: (a) is the trajectory of ordinary APIC, which is stuck into a deadlock loop. (b) and (c) are autonomous
gain-tuning APIC agents, which are trained with reward functions (14) and (17) respectively. Both agents can avoid the deadlock loop problem and destroy
the target in a similar way.

(a) (b) (c)

Fig. 10 Trajectory of the different models in case 2: (a) is the trajectory of ordinary APIC, which is stuck into a deadlock loop again because of rapid
closure. (b) and (c) are autonomous gain-tuning APIC agents, which are trained with reward functions (14) and (17) respectively. Both of agents could
lower the closure velocity to destroy the target on the first attempt.

TABLE II. HYPER-PARAMETERS USED IN SAC TRAINING

Parameter value

Optimizer Adam

Size of Replay Buffer 10e+5

Batch Size 256

Discount factor  0.99

hidden layers 2

Hidden layer size 256

Activation function ReLu

Learning rate 2e-4

Initial Temperature 0.1

Soft update parameter  5e-3

A. Training process and performance
During the training process, we evaluate the performance of

the current policy in every 2000 training steps. In each

evaluation, the current policy interacts with the environment

for 10,000 environment steps, and the goal achievement rate

of the agent will be calculated based on the result. The

performance of using rewards (14) and (17) in the training

process are shown in Fig. 8, both the training can converge

within 10,0000 steps.

While the convergence of the training process may appear

similar, distinctions in the training reward function are

reflected in the tracking performance of the agents. The

tracking performance is tested by allowing the agent to take

10,000 steps to take action. The initial positions of the target

and the agent are randomly set, and a random seed is used to

ensure fairness in the performance test. We count how many

times the agent destroys the targets and calculate the average

time the agent spends to destroy each target. The result is listed

in TABLE III. . The result shows that the agent trained by

reward (17) can destroy more targets in limited steps, and take

less time on average.

B. Numerical Case studies
In this section, the targeting trajectories of different initial

conditions (ICs) are displayed for comparison purposes under

different models. The ordinary APIC with fixed QV
PK and

Q

PK


 is taken as the comparison benchmark, where

   , . , . Q QV
P PK K   3 74 98 77 . In the following, a couple of

comparisons will be given to illustrate the targeting behavior

under different initial conditions.

TABLE III. COMPARISON OF DIFFERENT AGENTS’ PERFORMANCE

Training reward function Destroyed targets
Average destroyed

time

Ordinary APIC 0 -

Hit reward only 380 2.54 (s)

Hit and advantage

improvement reward
412 2.36 (s)

255

(a) (b) (c)

Fig. 11 Trajectory of the different models in case 3: (a) is the trajectory of ordinary APIC, which rapidly destroys the target. (b) and (c) are autonomous
gain tuning APIC agents, which are trained with reward functions (14) and (17) respectively. The latter agent can destroy the target a lot faster in this case.

1) Case 1 IC: large bearing angle with a short distance

The first case is that the target is initially set at a short

distance at the right-hand side of the controlled DDR. The

initial heading of the DDR is pointing upward. This is a

classical case of the deadlock loop. As shown in Fig. 9, the

ordinary APIC tended to use the maximum turning speed

because the included angle between its heading and LOS was

large initially. However, due to the physical constraint, it

started to orbit the target without hitting it. In contrast, the

autonomous gain tuning agents select a small value of Q

PK


at the first, which allows the DDR to elongate the distance.

After the distance is far enough, it increases to make a rapid

turn and attacks the target with its weapon. The overall process

took about 3.5 seconds for both agents.

2) ase 2 IC: large bearing angle with a large distance

Secondly, the target is put at a relatively far distance from

the controlled DDR. In this case, the ordinary APIC could

successfully damage the target. However, the fixed value of

QV
PK the DDR resulted in a rapid closure, causing the attack

time to be too short to destroy the target during the first
attempt. Once the DDR passed the targets, it started to make a
rapid turn and became trapped in the deadlock loop again,
resulting in mission failure, as shown in Fig. 10. On the other
hand, the autonomous gain tuning agents can reduce the value

of QV
PK , thereby decreasing the rate of closure. This ensures

sufficient time for the weapon to destroy the targets.
Consequently, both agents can successfully destroy the targets
on the first attempt.

3) Case 3 IC: Small bearing angle with a large distance

In this initial condition, the APIC can complete the

mission, as shown in Fig. 11. This time, the agent trained only

by hit reward took the longest time to destroy the target. This

result emphasizes the importance of the advantage

improvement reward. With the shaped dense reward, the RL

training framework can optimize each action of the agent,

leading to better performance.

VI. CONCLUSION

The paper proposes a hybrid guidance law for DDRs,

which combines the rule-based APIC and AI-based action

selection. Since the ordinary APIC doesn’t take the physical

constraints into consideration, DDRs may get trapped in a

problem called the deadlock loop problem, leading to failure

in the tracking tasks. This study integrates RL with APIC

control laws of DDRs. In the proposed framework, an SAC

agent is going to tune the two important gains QV
PK and Q

PK


dynamically. To train the agent effectively, two reward

functions are proposed. The training process can converge fast

and provide a good performance in evaluation. The simulation

results show that in the proposed framework, gain-tuning

APIC will no longer fall into the deadlock loop problem. The

proposed hybrid guidance law improves the tracking

capabilities of APIC and also offers an expert control law for

imitation learning, which can lower the expenses of human

data collection. The imitation learning result can serve as a

pre-trained AI model that can be further improved by further

training

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude
to the National Cheng Kung University (NCKU), and the
National Science and Technology Council under the project
numbers NSTC 111-2923-E-006 -004 -MY3 and 112-2221-
E-006-104-MY3 for their financial support in carrying out this
research project.

REFERENCES

[1] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable
tracking control method for an autonomous mobile robot," in
Proceedings., IEEE International Conference on Robotics and
Automation, 1990: IEEE, pp. 384-389.

[2] C.-C. Peng, "Approximate Posture Increment Control for the Targeting
Task of Differential Drive Robots," in 2023 IEEE 6th International
Conference on Knowledge Innovation and Invention (ICKII), 2023:
IEEE, pp. 755-760.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
"Deep reinforcement learning: A brief survey," IEEE Signal
Processing Magazine, vol. 34, no. 6, pp. 26-38, 2017.

[4] T. P. Lillicrap et al., "Continuous control with deep reinforcement
learning," arXiv preprint arXiv:1509.02971, 2015.

[5] T. Haarnoja et al., "Soft actor-critic algorithms and applications," arXiv
preprint arXiv:1812.05905, 2018.

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, "Prioritized
experience replay," arXiv preprint arXiv:1511.05952, 2015.

256

