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Abstract—Federated learning’s poor performance in the pres-
ence of heterogeneous data remains one of the most pressing
issues in the field. Personalized federated learning strives to
discover an individualized model for each client to address the
heterogeneity in the data. One of such approach involves per-
sonalizing specific layers of neural networks. However, previous
endeavors have not provided a dependable rationale, and some
have selected personalized layers that are entirely distinct and
conflicting. In this work, we take a step further by proposing
personalization at the elemental level, rather than traditional
layer-level personalization. To select personalized parameters, we
introduce Bayesian neural networks and rely on the uncertainty
they offer to guide our selection of personalized parameters. Fi-
nally, we validate our algorithm’s efficacy on several datasets and
neural networks architecture, demonstrating that our proposed
approach outperforms existing baselines.

Index Terms—Federated Learning, Bayesian Neural Network,
Distributed Learning

I. INTRODUCTION

To facilitate collaborative learning while safeguarding client

privacy, federated learning (FL) has emerged. Due to its sim-

plicity and high communication efficiency, FedAvg [1] is the

most popular algorithm in FL. However, recent experiments

have revealed that FedAvg performance experiences a sharp

decline [2] in heterogeneous data.

To address this issue, Personalized Federated Learning

(PFL) seeks to provide each client with a personalized model

to excel in their local data context. Given the complexity of

real-world data and the diverse situations faced by individual

clients, PFL aligns more closely with reality. Algorithms such

as FedPer [3] and LG-FedAVG [4] personalize the model’s fea-

ture extractor and classifier layers. These two algorithms have

divergent opinions on which layers should be personalized,

emphasizing the urgent need for an interpretable personalized

parameter selection scheme.

To this end, We offer a more interpretable scheme for the

automated selection of personalized parameters. We propose

a simple yet effective approach that leverages the uncertainty

of Bayesian neural networks (BNN) to select personalized pa-

rameters. Parameters with higher uncertainty indicate a greater
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scope for improvement, with changes in these parameters

exerting minimal impact on the outcome compared to others.

Through experiments carried out on various benchmark

datasets, we have demonstrated the superiority of our method

over FedPer and LG-FedAvg. Furthermore, we conducted

experiments tailored to diverse datasets and network archi-

tectures to ascertain their impact on the algorithm. This

underscores the rationality of our approach to personalized

parameters selection, which outperforms previous layer-based

personalization techniques.

II. PROPOSED METHOD

In this section, we will discuss the method we propose,

namely Federated BNN for Parameter Selection (FedBPS).

A. Bayesian Neural Network

BNN treat parameters as distributions rather than single

fixed values. we employ the Laplace approximation method [5]

to estimate posterior distribution rather than Variational Infer-

ence (VI) and Markov Chain Monte Carlo (MCMC). Because

we do not require precise posterior results but rather their

relative magnitudes. Laplace approximation utilizes second-

order derivative information at a specific point to approximate

the distribution as a Gaussian distribution, with the distribution

depicted as follows.

w ∼ N (w0, (∇2
wL(D;w)|w0

)−1) (1)

In our case, we assume no correlation between elements;

hence, the posterior of parameters will follow a diagonal

Gaussian distribution.

B. BNN For Personalized Parameters Selection

When a parameter exhibits a high variance, it implies that

the parameter’s value is uncertain, and changes in this param-

eter have a smaller impact on model performance compared to

other parameters. Therefore, such parameters are well-suited

for use as personalized parameters, as they can accommodate

personalized tasks without significantly affecting the global

subnetwork performance.

wi = wi �M + wg � (1−M), (2)

where M indicates whether the parameter is personalized or

not. In PFL, each client has their own personalized model.

Consequently, selecting personalized parameters can lead to
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TABLE I
THE FINAL TEST ACCURACY ON DIFFERENT DATASETS UNDER NON-IID

SETTINGS.

Method MNIST FMNIST CIFAR10

FedAvg 98.49 87.28 71.53
FedPer 96.48 92.09 75.27
LG-FedAvg 96.44 91.92 76.52

FedBPS(ours) 96.87 92.51 76.80

TABLE II
THE IMPACT OF DIFFERENT DATASETS ON HYPERPARAMETERS IN A

HETEROGENEOUS DATA SETTING.

Proportion MNIST FMNIST CIFAR10

30% 95.44 91.13 75.27
50% 97.74 93.14 75.72
70% 96.87 92.52 76.80
90% 96.23 92.19 76.23

disparities. To address this, we will first aggregate the global

parameter distribution N (μg, σg) and then determine which

parameters should undergo personalization by using σg . We

opt for an aggregation scheme based on KL divergence.

μg =

N∑

i=1

πiμi, σg =

N∑

i=1

πiσi + πi(μi − μ)2 (3)

From the formula, it is evident that the variance of the aggre-

gated model is determined by the mean of client model vari-

ances and the variance of that mean. Consequently, the global

model comprises components with low variance and minimal

discrepancies among clients, while personalized parameters

exhibit high variance or substantial inter-client disparities.

III. EXPERIMENTS

A. Setup

Datasets And Partition We evaluate our algorithm and

the baseline on three popular datasets: MNIST, Fashion-

MNIST, and CIFAR-10. To simulate each client’s heteroge-

neous dataset, we follow the approach of [6]. Each client

possesses major and minor classes.

Baselines We will compare the following three baselines.

FedAvg, FedPer and LG-FedAvg. Our method, FedBPS, using

70% of the parameters as personalized parameters.

Implementation details For each method, we will adopt

common settings for local training. We will use SGD with a

learning rate of η = 0.01, a batch size of B = 128. In FL, the

local epoch will be set to E = 5. The total communication

rounds will be set to T = 60 for MNIST and Fashion-MNIST,

and T = 100 for CIFAR-10. For the neural networks, we will

employ LeNet-5 for MNIST and Fashion-MNIST. For CIFAR-

10, we will broaden the channels of the first and second

convolutional layers of LeNet to 16 and 32, respectively. To

investigate the effect of network depth on hyperparameters,

we will conduct experiments using ResNet architectures of

varying depths on the CIFAR-10 dataset.

TABLE III
THE IMPACT OF THE DEPTH OF RESNET ON HYPERPARAMETERS IN A

HETEROGENEOUS DATA SETTING.

ResNet20 ResNet32 ResNet44 ResNet56

30% 72.13 72.47 72.17 71.75
50% 73.21 72.96 73.19 73.34
70% 74.92 74.25 73.94 73.73
90% 75.08 74.96 74.49 74.60

B. Numerical Results
We conducted experiments on three distinct datasets, and

it is evident from the results in Table I that our method

outperforms the baseline in most scenarios. Our algorithm has

demonstrated superior performance on more complex datasets.
The proportion of personalized parameters has a profound

impact on the effectiveness of the algorithm. Here, we continue

to assess the influence of hyperparameters on experimental

results across these datasets. We conducted experiments with

personalization proportions of 30%, 50%, 70%, 90%, and the

final results are presented in Table II. It should be noted that

the optimal personalization proportion varies depending on the

dataset and model used. These results can only suggest that

the optimal proportion may fall between 50% and 90%.
For ResNet architectures of different depths, the result

are presented in Table III. The recommended personalization

proportion falls within the range of 70% to 100%, which

differs from the earlier LeNet architecture. However, it is

evident that the depth of network with similar architecture has

minimal influence on the choice of personalization proportion.

IV. CONCLUSION

In this paper, we introduced an approach for selecting per-

sonalized parameters to enable PFL, leveraging the uncertainty

obtained from BNN for parameter selection. Our method offers

enhanced flexibility, allowing for the selection of personal-

ized parameters at a finer granularity, and the algorithm’s

performance demonstrates insensitivity to the introduction of

additional hyperparameters.
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