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Abstract—Facial landmark detection is a very fundamental task
and its accuracy plays a significant role for many downstream
face-related vision applications. In practice, the facial landmark
detection can be affected by a lot of natural degradations.
One of the most common and important degradations is the
shadow caused by light source being blocked with an external
occluder. While many advanced shadow removal methods have
been proposed to restore the image quality in recent years, their
effects on facial landmark detection are not well studied. For
example, it remains unclear whether the shadow removal could
enhance the robustness of facial landmark detection to diverse
shadow patterns or not. In this work, for the first time, we
construct a novel benchmark (i.e., SHAREL) to link the two
independent but relatable tasks (i.e., shadow removal and facial
landmark detection). In particular, SHAREL covers diverse face
shadows with different intensities, sizes, shapes, and locations.
Moreover, to mine hard shadow patterns against facial landmark
detection, we propose a novel method (i.e., adversarial shadow
attack), which allows us to construct a challenging subset of the
benchmark for a comprehensive analysis. With the constructed
benchmark, we conduct extensive analysis on three state-of-the-
art shadow removal methods and three landmark detectors. We
observed a highly positive correlation between shadow removal
and facial landmark detection tasks, which probably will provide
insight to improve the robustness of the facial landmark detection
in the future.

Index Terms—Face shadow, shadow removal, Facial Landmark
detection

I. INTRODUCTION

Facial landmark detection (1; 2; 3) is a fundamental step for

numerous facial related applications, e.g., face recognition and

verification (4; 5), 3D face reconstruction (6), and safety-critical

applications, e.g., deepfake detection (7; 8). While recent deep-

learning techniques bring us continuously improved landmark-

detection performance, most of them are designed to handle

images of “clean faces”. However, in real-world applications,

face images usually contain image degradations, such as noise

(9; 10), shadow (11; 12), and haze (13), which degrades the

aesthetic quality of images directly and may further affect the

performance of landmark detectors.

This research is supported by the National Research Foundation, Singa-
pore, and DSO National Laboratories under the AI Singapore Programme
(AISG Award No: AISG2-GC-2023-008). †Corresponding author: Qing Guo
(tsingqguo@ieee.org).

As a natural phenomenon, shadow is very common on face

images – in practice, the light to any face region can be

occluded by surrounding objects or by part of itself. This is

especially true for portrait images captured in the wild with

unconstrained environments. As shown in Fig. 1(a), portrait

shadow happens in two kinds of scenes: foreign shadow and

facial shadow. Foreign shadow appears when there is an external

occluder (e.g., a tree or a hat brim) blocking the light source

to reach out to the subjects’ face. Foreign shadow presents an

arbitrary 2D shape in the natural image, relying on the shape

of the occluder and position of the light source. In contrast,

facial shadow casting on the face by the face itself due to the

facial geometry presents a small space of 2D shapes when

natural lighting is not perfectly uniform (17).

The foreign shadow effects on facial landmark tasks are

under-explored, although there are works (11; 12) exploring

illumination invariance for face recognition which cannot be

simply extended to facial landmark detection. Such works are

mainly designed for facial shadows caused by the intensity

and position of the light source in the indoor scene. Note that

foreign shadows are almost always distracting compared to

facial shadows. Image intensity edges appear in most of foreign

shadow scenes, which are uncorrelated to facial geometry and

will obfuscate facial 3D structure. By contrast, the intensity

edges introduced by facial shadows are more likely to be helpful

for inferring the shape of face. Therefore, we aim to remove

the foreign shadow entirely. In this work, we set the research

scope to tackle foreign shadows. As a result of shadow cast,

spatial-variant illumination and color distortion in the shadow

region (18) degrade the image quality and undermine the image

features significantly. As shown in Fig. 1(b), shadowed faces

hurt the image quality with large root mean square errors

(RMSEs), and present unreasonable and much deteriorated

landmark locations at the eyebrows (See Case1) and mouth

(See Case2), as measured by much degraded NME scores.

An intuition way to alleviate the performance loss caused by

shadow is to restore the underlying shadow-free image utilizing

current state-of-the-art (SOTA) shadow removal methods.

However, there are two challenges posing to such a solution:

� The interplay between light, occluder, and the subject

directly affects the shadow appearance. As a result, in the
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Figure 1: Illustrations of (a) various shadow scenes on facial landmark detection benchmarks (14; 15) and (b) effects of foreign shadow on image quality
and facial landmark detection (16). Red: prediction. Green: ground truth. RMSE measures the image degradation caused by shadow, and NME evaluates the
detection error.

real world, shadow patterns are significantly diverse, which

increases the difficulty of shadow removal algorithms. � Even

though shadow removal methods could obtain high visual-

quality images with lower RMSE, the landmark detection

performance may even get worse compared to that of shadow

images due to the potential domain shift between landmark

detection and image quality enhancement. Existing works

(haze (19) and rain (20) removal) demonstrate that visual

quality improvement benefits little or even hurts the high-

level perception task performance. All above facts motivate

us to answer two basic questions: how shadow affects the

landmark detection, and whether shadow removal can benefit

the robustness of landmark detectors.

To this end, for the first time, we propose to link the

two seemingly independent but intrinsically related tasks, i.e.,

shadow removal and facial landmark detection, by constructing

a totally novel dataset and benchmark. There are few studies

on this topic in both communities before this work. Note that,

constructing such a benchmark is challenging and not trivial

since the shadow patterns are not exhaustive, and existing
facial landmark detection benchmarking techniques (14; 15)

collecting natural images cannot meet the requirements: �
There are about less than 2% of data in each benchmark (14; 15)

presenting foreign shadow scenes, which is not enough for a

comprehensive study on the robustness evaluation. � For those

foreign shadow samples, as shown in Fig. 1 (a), though with

increasing shadow intensity, they primarily exhibit less abrupt

edges and their shadow patterns are limited.

To alleviate these challenges, we propose novel solutions

to ensure the comprehensiveness: � We employ the physical

model of shadow and synthesize facial shadow images by

considering four common factors (i.e., intensity, size, shape,

and location) with three severities, � We investigate the shadow

from the perspective of adversarial attack and propose a totally

new attack (i.e., adversarial shadow attack) to identify shadow

patterns that are more challenging to landmark detection. �
We introduce a real-world shadow face dataset for verifying the

generalization ability of facial landmark detectors. With these

elaborated designs, we can quantitatively and systematically

study the effect of shadows on the facial landmark detection.

Overall, we summarize our contributions as follows:

• We construct a synthetic shadow-face dataset by comprehen-

sively considering shadow intensity, size, shape, and location

to analyze the effects of shadow on image visual quality and

facial landmark detection.

• We proposed a novel adversarial shadow-face dataset to

cover more challenging shadow patterns for facial landmark

detectors. We also explore a real shadow dataset to verify

and improve the facial landmark detectors’ robustness.

• With the three subsets, togethter as SHAREL, we compre-

hensively and quantitatively study the effects of shadow and

shadow removal to image visual quality and the performance

of facial landmark detection.

II. DATASETS CONSTRUCTION

A. Overview

Natural shadow presents diverse shadow patterns in the

wild due to the influences of occluders and light sources. For

example, different light occluders can lead to diverse shadow

appearances with different sizes and shapes. In addition, the

illumination level, material of occluders and object surface

where shadow casts determine the reflection and scattering of

the light, which may affect the intensity at the shadow region.

Nevertheless, enumeration of all permutations formulating

patterns is not practical due to dynamic and complex scenes.

To alleviate this issue and analyze the effects of shadow and

shadow removal on facial landmark detection extensively, we

propose three dataset construction strategies: � We follow the

well-known physical shadow model to synthesize shadowed

faces on the clean facial landmark detection dataset (i.e., 300W

(14)) and consider four factors (i.e., intensity, size, shape, and

location) with three severities (See Sec. II-B). � To mine

hard shadow images that affect landmark detection easily,

we think this problem from the perspective of adversarial

attack and propose a novel synthesis method (i.e., adversarial
shadow attack) in Sec. II-C. � To address the potential shifting

problem between synthesized shadow faces and the real ones,

we introduce 100 real shadow face images as a subset of the

whole dataset (See Sec. II-D).
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Figure 2: Three dataset construction strategies including physical model-based synthesis (Sec. II-B), adversarial shadow attack (Sec. II-C), and real shadowed
face collection (Sec. II-D). Green: ground truth. Red: prediction. NME measures the landmark detection performance. The lower, the better.

B. Synthetic Shadowed Faces

Physical model of shadow. We adopt the well-known and

widely used physical model of shadow in (21). Specifically,

following the illumination and reflectance formulation of an

image (21), we can represent a clean (i.e., shadow-free) image

captured under a single primary light source as

Icln
p = LpRp = (Ld

p +La
p)Rp, (1)

where Icln
p , Lp, and Rp are pixel intensity, illumination, and

reflectance at the p-th pixel, respectively. The illumination

stems from two sources, i.e., the direct illumination Ld and the

ambient illumination La. When an occluder appears in front

of the light source, the direct illumination disappears while

the ambient illumination is also affected. We can represent the

p-th shadowed pixel as

Ishd
p = αLaRp = α(Icln

p −Ld
pRp), (2)

where α is a scalar and determines the attenuation of the

ambient illumination, which is caused by the occluder. With a

clean image Icln and a dark image Ishd, we can represent an

image I containing a shadow region, following (22; 23), as

I = Ishd �M+ Icln � (1−M), (3)

where M is a binary map that defines the shadow region and is

determined by the occluder. To generate more realistic shadow,

we reformulate Eq. (3) to

I = Ishd �ρ(D�M)+ Icln � (1−ρ(D�M)), (4)

where ρ models light scattering and spatial variation and D
is a face depth map. Note that, the images of living faces

have face-like depth information, which are critical for anti-

spoofing application. D can make generated shadow more

realistic, which is not considered in previous shadow models

(22; 23). Moreover, to generate realistic shadow pattern, we

borrow the implementation in (22; 24) and use the function

ρ to render the depth-aware mask (i.e. D�M) to become a

shadow matte image by modeling the light scattering beneath

human skin and modeling the spatial variation of the shadow

via a spatially-varying blur. Please find more details in (22).

Then, we can substitute Eq. (2) into Eq. (4) and get

I = Shadow(Icln,M,α)

= (1− (1−α)ρ(D�M))Icln +αβρ(D�M), (5)

where β =−LdR representing the response of the camera to

the reflected direct illumination and the ambient attenuation

α does not depend on the light source (e.g., wavelength) (21).

Moreover, as demonstrated in (23), β is a three-channel vector

and can be estimated from the α via a linear transformation.

Overall, given a clean face image Icln, a shadow map M, a
depth map D, and the α , we can synthesize a shadowed face
I. In practice, we use the 3DDFA-V2 (25) to predict the depth

map from the clean image.

Synthesized shadows with different factors and severities.
To cover extensive shadow patterns in the real world, we

generate shadowed faces for a clean face image from four

factors: intensity, size, shape, and location.

i. Intensity. The illumination level and material of object

surfaces determine the reflection and scattering of light,

resulting in shadow with diverse intensities. We model the

shadow intensity via the parameter α in Eq. (5) since it

directly models the relationship between shadowed pixels

and illuminated pixels. α is about in range [0.0, 1.0) for

realistic shadow scene (23). We uniformly sample α from

ranges [0.8,1.0), [0.4,0.6), [0.0,0.2), for light, medium and
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heavy shadows. The lower α , the heavier the shadow. For

different shadow intensity level design, we want to quantify

how much texture and content degradation shadow brings, and

how that affects visual quality and landmark detection. We

present three kinds of intensities for the same face in Fig. 2.

ii. Size. The size of an occluder blocking the light and

position of the light source directly affect the area of the shadow

(i.e., shadow size). We model shadow size via the number of

non-zero pixels in M in Eq. (5) and consider three different

severities, i.e., small, medium, and large shadow regions.

Intuitively, large-size shadow will degrade image quality more

than small-size shadow because face-related information (e.g.,

structure) becomes less. Given a specified shadow shape, we

can set the shadow areas (i.e., number of non-zero pixels in M)

to take up 10% ∼ 20% , 45% ∼ 55%, and 80% ∼ 90% areas

of the face images by rescaling the shadow region in M, which

corresponds to three severities, i.e., small, medium, and large

shadow regions. We show the three different shadow sizes for

the same face in Fig. 2.

iii. Shape. Occluders with different 3D geometrical shapes

and the lights with different positions relative to the same

occluder also affect the shadow shapes. We represent the

shadow shape via the shadow mask in M in Eq. (5). To

cover diverse shadow shapes, we collect a silhouette dataset

containing 132 shapes of natural objects, and classify them into

three levels by a shape complexity metric defined in (26), which

is denoted as E. The shape complexity metric considers two

aspects during measurement, i.e., the distance distribution of

the contour points of a shape to its centroid and the smoothness

of the contour. Intuitively, if the complexity of a shape is low,

the shape may tend to be a circle or has smooth contour. We

present three shapes for the same face in the Fig. 2, their

complexity values are 0.04, 0.10, and 0.15 from severity 1 to

3. With the collected silhouette dataset, we first calculate the

shape complexity for each collected shape. Then, we sort all

shapes according to the complexity and evenly divide them

into three severities, i.e., low, medium, and high complexities.

iv. Location. We further consider the shadow position in

the face image due to the facial geometry. For example, facial

landmarks include clues of eyebrows, eyes, nose, jaw, and

mouth. Shadow degradation to different parts of the facial

structure will help quantitatively recognize the importance of

each structural information to landmark detection. We shift the

centroid point of the shadow mask in M to the center of the

three regions.

Synthetic shadowed face subset Dsyn. With the above

synthesis strategies, given a clean face image, we can generate

three shadowed faces for each factor, which corresponds to

three severities. We have 34 = 81 shadowed faces across all

factors and severities for each clean image. Then, based on

the facial landmark dataset 300W (14) that contains 689 clean

face images for testing landmark detectors, we can generate a

larger dataset with 81×689 = 55,809 shadowed images. We

present some examples in Fig. 2. Although the constructed

dataset covers diverse shadow patterns, it cannot represent all

possible situations, in particular, the hard cases that SOTA

landmark detectors cannot address. To alleviate this issue, we

further propose a novel adversarial attack in Sec. II-C to mine

the hard shadow patterns.

C. Adversarially Shadowed Faces

Given an image, adversarial attack is to calculate an

imperceptible noise-like perturbation under the guidance of a

targeted deep model, and then add it to the image. As a result,

the corrupted image can mislead the targeted model easily. We

can regard the adversarial attack as a way to mine hard noise

patterns that cannot be addressed by the targeted deep model.

Here, we propose a novel attack method, i.e., adversarial
shadow attack, and further extend it to generate hard shadow

patterns that are able to fool the landmark detectors. Therefore,

we can evaluate the shadow robustness.

Intuitively, we can tune the physical parameters of shadow

model, i.e., Shadow(Icln,M,α) in Eq. (5), like the α and M
under the supervision of landmark detectors to cover different

shadow patterns with different intensities, sizes, shapes, and

locations. Specifically, given a clean face image Icln and a

pre-trained landmark detector ϕ(·) we want to evaluate, we

can: 1) First use Eq. (5) to synthesize the shadowed image, and

feed it to ϕ(·). 2) We get the detection results and calculate

the loss according to the ground truth (i.e., y). 3) We tune

the physical variables M and α iteratively to maximize the

landmark detection loss. As a result, the synthesized face

can fool the detection easily while maintaining the physical

properties of the shadow. We can formulate the above process

by

argmax
M,α,ϑ

J (ϕ(Shadow(Icln,Affϑ (M),α)),y), (6)

subject to ‖M−M0‖p < εM,‖α −α0‖< εα ,‖ϑ −ϑ0‖p < εϑ ,

where J (·) is the loss function of landmark detection.

Different from the raw synthesis function in Eq. (5), we

conduct the affine transformation (i.e., Affϑ (·)) on M before

feeding it for synthesis, which allows us to mine more shadow

shapes with a given shadow mask. The ϑ contains six affine

parameters. Like general adversarial attack methods, we set

the Lp norm to M, α , and ϑ to force the optimization space

within a ball of εM, εα , and εϑ , around their initialization (i.e.,

M0, α0, and ϑ0), respectively.

To solve the Eq. (6), we follow the general adversarial

attack methods: � We set M0, α0, and ϑ0, and get the initial

synthesized image. � We feed the generated image to the

landmark detector ϕ(·) and calculate the loss. � We conduct

back-propagation and get the gradients of M, α , and ϑ w.r.t.

the loss function. � We calculate the sign of the gradients

and use them to update the three variables by multiplying

the gradients with three step sizes. � We generate a new

synthesized image and loop step-2 to step-4 for a number of

iterations. In terms of the initialization, we select M0 from the

collected 132 silhouette images and set α0 to be 0.8. Then,

we initialize ϑ0 as

[
1.0 0.0 0.0
0.0 1.0 0.0

]
, Affϑ (M) = M during

initialization. We set the step size of α , ϑ , and M as 0.01,
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0.02, and 0.0012, respectively. The number of iterations is

set to be 40. we use ∞ norm for Lp, and set εα , εϑ , and εM

as 0.4, 0.8, and 0.048, respectively. As a result, adversarial

shadow images can present more hard shadow patterns against

landmark detectors, as shown in Fig. 2, the NMEs in Dadv

could be over 10 compared to around 3 in Dsyn.

Adversarially shadowed face subset Dadv. With the above

method, given a landmark detector and the 300W dataset, we

first conduct attack for each image, and then evaluate the

detector on the adversarially shadowed faces. Thus, for each

detector, we have an exclusive new version of 689 adversarially

shadowed face images to evaluate their robustness.

D. Real Shadowed Faces

Real shadowed face subset Dreal. To verify the shadow effect

on visual quality and landmark detection in the real-world

scenario, we introduce a real-world shadow portrait dataset

(22). However, this dataset lacks facial landmark annotations for

landmark detection evaluation. We first obtain pseudo ground

truth by a SOTA pre-trained HRNet (27), and then refine it

manually as the final landmark ground truth. Finally, we have

9 subjects and 100 pairs of shadowed and shadow-free portrait

images captured in the outdoor scenes with varied face poses,

shadow shapes, and illumination conditions. Figure 2 presents

some examples.

III. SHADOW REMOVAL & LANDMARK DETECTION

BENCHMARK (SHAREL)

A. Setups

Datasets. As introduced in Sec. II, our main data is constructed

based on the landmark detection benchmark 300W (14). 300W

contains 3,148 face images for training and 689 images for

testing, where almost all images in 300W are clean (shadow-

free). Each image is labeled with 68 landmarks. We construct

SHAREL based on the testing dataset of 300W. We add

shadow patterns to the 300W and get Dsyn; we propose

adversarial shadow attack and obtain Dadv for each landmark

detector; we collect real shadowed faces (i.e., Dreal) to further

enrich our dataset. Finally, our dataset {Dsyn;Dadv;Dreal} has

{55,809;689;100} shadowed and shadow-free image pairs

(total 56,598 pairs) that are labeled with 68 landmarks.

We additionally construct {D t
syn,D

t
adv} from a randomly

selected subset (1,500 clean images) of 300W training set for

training shadow removal models. Each of {D t
syn,D

t
adv} contains

1,500 shadow-free and shadowed image pairs. For D t
syn, each

clean image uniformly selects a severity for each factor to

generate the shadow image. D t
adv follows the same shadow

generation way of Dadv.

Metrics. To clarify the shadow and deshadow effect on image

quality, we adopt the Root Mean Square Error (RMSE) metric

in LAB color space for evaluation, similar to (18; 28; 29). For

facial landmark detection evaluation, we adopt Normalized

Mean Error (NME) metric with inter-ocular distance as

normalization strategy following (16; 27; 30). Both the lower,

the better.

Evaluated methods. With our SHAREL, we can evaluate the

quality restoration capability of the shadow removal methods

and the detection accuracy of facial landmark detectors on

different shadow or deshadowed patterns. We first analyze three

SOTA facial landmark detectors, i.e., SAN (16), HRNet (27),

and LUVLi (30), under different shadow patterns. All land-

mark detectors are pre-trained on clean face images. Further,

we utilize three SOTA deep shadow removal methods, i.e.,

MaskShadow-GAN (29), SP+M-Net (28), and AEFNet (18),

to handle the shadowed faces in SHAREL and discuss whether

and how these methods can help improve landmark detection

performance. All shadow removal algorithms are trained on

dataset D t
syn and D t

adv separately for fair comparison, and

shadow removal models trained on D t
syn are also utilized to

test on real data.

B. Evaluation Results and Discussion

How does shadow affect visual quality and facial land-
mark detection? In Fig. 3(a-c), we report the RMSEs of

shadow images and landmark detection results with NMEs

in {Dsyn,Dadv,Dreal} to identify the shadow degradation on

image quality and detection performance. Fig. 3(d-g) report

the shadow pattern analysis on Dsyn with four factors. The

detector adopted in (d-g) is SAN (16). The results show that: �
Compared with shadow-free images, shadow images have high

RMSEs since the shadow harms the image quality significantly.

More intense the shadow degradation, worse the visual quality.

For example, the RMSE of shadow and shadow-free images

of large-size with 15.52 is higher than that of small-size with

2.74 in Dsyn (Fig. 3(e)). Intensity, size, and location, instead of

shape, are dominant factors affecting the shadow degradation. �
According to the NME results, we observe that: the performance

of all landmark detectors drops when shadow appears in images

and hard shadow pattern, i.e., higher-severity shadow and

adversarial shadow, hurts the detection task most. Specifically,

the landmark detector SAN (16) achieves 4.05 NME on clean

images of Dadv, while the NME of shadow images increases by

152.3% to 10.22 (Fig. 3(b)). In Dsyn, heavy-intensity shadow

achieves 6.26 NME with 54.7% performance drop compared

to NME of clean images, while the performance loss caused

by light-intensity shadow is 10.2% by SAN (16) (Fig. 3(d)).

In summary, shadow hurts the image quality and landmark
detection significantly. Higher-severity presents high degrada-
tion capacity, that is, two tasks suffer from larger performance
loss with increasing RMSEs and NMEs.
How does shadow removal affect visual quality and facial
landmark detection? We perform shadow removal on shadow

images, and present RMSEs and NMEs of shadow-removed

images in {Dsyn,Dadv,Dreal} to evaluate the effectiveness

of shadow removal methods. The results are shown in the

Fig. 3. We can observe that: � Shadow removal methods

present different capabilities on the image quality enhancement

(Fig. 3(a-c)). To be specific, SP+M-Net (28) and AEFNet

(18) can enhance the image quality significantly in all subsets.

MaskShadow-GAN (29) further hurts the quality in the subsets

{Dsyn,Dreal} while achieving counterpart result in Dadv. The
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Figure 3: Shadow removal and landmark detection performance on SHAREL. (a-c): shadow removal (RMSE) and landmark detection (NME) results
of {Dsyn,Dadv,Dreal} subsets, respectively. Each color represents results on shadow-free images (e.g., Clean+*), shadow images (i.e., Shadow+*), and
shadow-removed images with three shadow removal methods (e.g., AEFNet/SP+M-Net/MaskShadow-GAN(Shadow-GAN)). Different icon shapes represent
different landmark detectors. (d-g): shadow pattern analysis of landmark detection (NME) and shadow removal (RMSE) results of Dsyn for intensity (d), size
(e), shape (f), and location (g). Blue dash line represents the result on clean images by the pre-trained landmark detector SAN (16). Each group represents
results on shadow images (i.e., Shadow), and shadow-removed images with three shadow removal methods (e.g., Shadow-GAN/SP+M-Net/AEFNet). Each
color represents a severity type. Relative performance gain, i.e., the percent of NME/RMSE drops, after shadow removal compared to shadow images is listed.

former mainly stems from that MaskShadow-GAN, i.e., a GAN-

based image translation method, introduces artifacts during

training. The reason why MaskShadow-GAN performs better

on Dadv may be that shadow pattern generated by MaskShadow-

GAN overlaps with that of Dadv since both of them are

generated in an adversarial training way. � Higher-severity

shadow pattern achieves much larger relative gain for image

quality enhancement. For example, large-size shadow-removed

images via AEFNet acquire 63.2% visual quality improvement

compared to 40.2% quality degradation of small-size shadow

in Dsyn (Fig. 3(e)). The latter further quality degradation stems

from the over smoothing of current shadow removal methods.

In addition, Dadv also achieves much larger gain compared to

Dsyn by SAN after shadow removal via SP+M-Net and AEFNet

(Fig. 3(a-b)). � The same performance gain trend, of shadow

removal methods and higher-severity shadow pattern, presents

in the landmark detection evaluation. In Fig. 3(e), after shadow

removal via AEFNet, the large-size shadow pattern obtains the

highest 22.5% NME decreasing compared to 0.6% of small-size

shadow. Dadv achieves 58.5% detection improvement compared

to 13.0% of Dsyn by SAN (Fig. 3(a-b)).

In summary: � Current SOTA shadow removal methods can
effectively improve the image quality and landmark detection
simultaneously. � Higher-severity achieves much larger per-
formance gain after shadow removal for image quality and
landmark detection. � There is a positive correlation between
shadow removal and landmark detection tasks. However, such

positive correlation does not always exist in computer vision
tasks, e.g., between deraining and object detection (20), and
between haze removal and classification (19).

IV. CONCLUSION

We have proposed a shadow-removal benchmark dataset

(i.e., SHAREL) to explore the mutual influence of shadow

removal and facial landmark detection tasks. We first proposed

three strategies to construct the benchmark. Based on physical

shadow model, we synthesize the shadowed faces considering

four factors (i.e., intensity, size, shape, and location) with

three severities to cover diverse shadow patterns. We also

proposed an adversarial shadow attack as hard shadow patterns

to make the landmark detection fail easily. Real shadowed face

dataset for landmark detection is to reduce the distribution shift

with synthetic data. With SHAREL, we explored the shadow

and shadow-removal effects to visual quality and landmark

detection comprehensively. We observed that there is a highly

positive correlation between shadow removal and the facial

landmark detection task, especially, when degradation level

is higher. We believe the proposed benchmark dataset and

the positive correlation between shadow removal and facial

landmark detection will provide insight to boost the robustness

of facial landmark detection.
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