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Abstract—Launching services provided by launch boat (LB)
operators are indispensable for vessels in port areas. In the
current business practice, the operator follows a “one-trip-per-
booking” method, where each booking corresponds to a LB
transporting passengers to their destination. Undoubtedly, this
method does not efficiently utilize the LB’s capacity. A more
appealing approach is to consolidate or batch multiple service
bookings into a single LB, enabling it to travel to multiple
destinations within one trip. Using large-scale GPS data of
LBs, we conduct data-driven analysis to gain insights into LB
trajectory and traveling pattern. Based on them, we propose a
real-time batching algorithm to consolidate a maximum of two
bookings into a task with marginal service delay. We then address
the scheduling of LBs to fulfill the consolidated tasks using rule-
based real-time approaches. To validate our proposed framework,
we conduct a case study in Singapore Port. The results show
that after implementing the data-driven batching and scheduling
algorithms, we achieve a reduction of more than 25% in the

This paper is supported by the “Maritime AI research programme” funded
by the Singapore Maritime Institute (SMI), SMI-2022-MTP-06. Any opinions,
findings, conclusions and/or recommendations expressed in this report are
those of the researchers and do not reflect the views of SMI.

traveling distances of LBs, while maintaining a high level of
service quality for passengers.

Index Terms—launch boat operations, big-data analytic, tra-
jectory prediction, demand batching, task scheduling

I. INTRODUCTION

The maritime industry plays a crucial role in the founda-

tions of major economies and transportation networks. As of

2019, approximately 80% of total trade is conducted through

maritime transport [1], and there is a continuous increase in

demand for these services [2]. Intercontinental trade, bulk

transportation of raw materials, and the import/export of

affordable food and manufactured goods heavily depend on

the shipping sector. However, ensuring the reliability and

efficiency of services for vessels and cargo remains an ongoing

challenge for stakeholders across relevant sectors. This chal-

lenge is particularly prominent in busy ports like Singapore

Port, a pivotal maritime gateway to key Asian markets situated

at the crossroads of East-West trade. Singapore Port ranks
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among the world’s busiest transshipment hubs, with 10,364

vessel arrivals reported by the Maritime and Port Authority of

Singapore in October 2023 [3]. These vessels, upon arrival,

require an extensive array of services.

A vital service for vessels is the launching service. Given

the considerable size and draft of vessels, they typically anchor

in designated anchorage areas before proceeding to berths at

specified times for operations such as transshipment. Since

these anchorages are often located miles away from the shore,

crew members require transportation to and from terminals or

piers for both personal and business activities. This necessity

has led to the establishment of launching services, utilizing

small-sized boats commonly known as launch boats (LBs),

to facilitate the transfer of passengers between terminals/piers

and the vessels at sea. With the substantial number of vessels

arriving and staying in Singapore, there is a significant demand

for these launching services.

In the current launching service model, vessels initiate the

process by submitting service requests and creating advanced

bookings. These bookings include detailed information such as

the preferred service request time, the number of passengers,

and specific pick-up and drop-off locations, typically corre-

sponding to terminals or anchorages. Subsequently, the LB

operator schedules LBs and executes the operations based on

the “one-trip-per-booking” practice, in which each booking

is matched with a single LB tasked with transporting the

passenger(s) to the intended destination. Undoubtedly, this

method does not make efficient use of the capacity of the LB.

A more appealing method is to consolidate or batch multiple

service bookings into a single LB, which travels to multiple

destinations within one trip. Implementing this consolidation

strategy holds the potential to significantly enhance operational

efficiency and yield positive financial results for both the

service provider and their customers. This transformation of

an established industry or economy, facilitated by intelligent

computing platforms, aligns with the concept of “Uberisation”.

The “Uberisation” of launching service underscores the

importance of real-time and demand-responsive operations,

presenting considerable challenges. From a practical stand-

point, there are various sources of uncertainty that complicate

the scheduling of LBs. The uncertainty can arise from factors

such as fluctuating demand, resource availability, the constant

movement of vessel and LB locations, advanced bookings,

and customer modifications. For instance, service demand and

bookings exhibit spatial-temporal variability and uncertainty.

Customers may not be present on time for the service and

may even change their booking time and location at the

very last minute since the current launching service does

not impose substantial penalty fees for booking changes or

delayed arrivals of customers. Furthermore, some bookings

are made in advance before the vessels arrive at Singapore.

As a result, the exact arrival times of vessels and the pick-up

location of launching service are not known to the operators.

Consequently, there is a continuous influx of updates to

booking information and requests from customers.

From a research standpoint, there is a noticeable gap in

the availability of effective algorithms for “uberising” the

launching service within the practical constraints outlined

above. Notably, there is an absence of research dedicated

to LB operations. Given that LBs can be considered special

harbor crafts operating in the sea areas of ports, this paper

aligns with the scheduling and operational planning of other

harbor crafts, such as tugboats and pilot boats. In tugboat

operations, tugboats play a crucial role in assisting vessels

by pushing or towing at specific tug points. The successful

mooring or unmooring of vessels depends on each tug point

operating with sufficient horsepower. The related scheduling

problem is usually formulated as a mixed-integer programming

(MIP) model and then solved by off-the-shelf solvers such

as CPLEX [4], tailored branch-and-cut algorithms [5], or La-

grangian relaxation heuristics [6]. Vessel pilotage is mandatory

in most seaports globally. When vessels enter or exit a seaport

terminal, sea pilots navigate them through the correct and

safe waterways. Pilots assume control of the ship in certain

waterways and assist captains in maneuvering through various

challenges such as currents, sandbanks, and tidal currents.

This scenario gives rise to the pilotage planning problem,

involving decisions on scheduling vessel traffic in a seaport,

assigning work shifts to pilots, and scheduling pilots within

each work shift for vessel navigation. Similar to the tugboat

problem, pilotage planning problems are often studied as MIP

models and addressed using algorithms such as branch-and-

price [7], [8]. Note that the tugboat and pilotage problems are

NP-hard and computationally challenging even for moderate-

sized problems. While existing algorithms can solve realistic-

sized instances within a reasonable computation time, they still

fall short of the speed required for real-time implementation.

Resolution of these instances may take up to hours, which is

not compatible with the “Uberisation” concept. In this context,

the consolidation of bookings and the scheduling of tasks need

to be executed in real-time, especially considering the frequent

updates of booking requests by customers. As a result, MIP-

based approaches cannot satisfy such a need. Additionally, LB

operations consider the consolidation of bookings, a facet not

studied in the tugboat and pilotage problems.

Motivated by the above constraints and research limitations,

our goal is to develop practically implementable booking

consolidation and scheduling algorithms through combined

predictive and prescriptive analytics. The contributions of this

paper are as follows: (i) Predictive Analytic for LB Trajectory:
Using large-scale GPS and AIS data of LB history trajectories,

we conduct analysis to gain insights into the movement and

operational patterns of LBs. By examining service times,

origin-destination pairs, and uncertainties, we extract valuable

information for accurately predicting the traveling trajectory

and distance of LBs between any pair of locations. (ii)

Two-Stage Framework for Booking Consolidation and LB
Scheduling: In addressing real-time demands, we introduce

a two-stage framework. In the first stage, we propose a

batching algorithm capable of consolidating a maximum of

two bookings into a task. This algorithm exploits the similarity

of bookings, measured in terms of the additional delay caused
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by batching two bookings into a single task. It operates

extremely fast to meet real-time deployment needs. In the

second stage, we tackle the scheduling of LBs to fulfill

these consolidated tasks, presenting various rule-based real-

time scheduling approaches. (iii) Case Study Using Singapore
Port Data: To validate our proposed framework, we conduct

a case study using data from a launching service provider in

Singapore Port. The results demonstrate the efficiency of the

batching algorithm, processing daily bookings in less than 0.4

seconds on a typical laptop. For 3,694 bookings in November

2021, the algorithm successfully consolidated 2,192 bookings

(approximately 60% of total bookings) into 1,096 tasks, with

an acceptable delay observed after each batching operation.

Furthermore, after implementing the scheduling optimization

algorithms, we achieve a reduction of more than 25% in

the travel distances of LBs compared to current operational

practices.

The remainder of this paper is organized as follows. Sec-

tion II provides the problem description. Section III presents

a summary of launch boat trajectory estimation. Subsequently,

Section IV details the booking batching algorithm and the

scheduling algorithm, followed by a case study in Section V.

Finally, we conclude this paper in Section VI.

II. PROBLEM DESCRIPTION

This paper considers a LB operator in Singapore owning

a fleet of LBs. At a given planing timing, there are a set

of launch service bookings in the system, denoted by set

I := {1, 2, ..., I}. The details of each booking consists of

the name of the mother vessel, the number of passengers, the

pick-up and drop-off locations, the service request time (srt)

that indicates the expected boarding of passengers on the LB,

and the required standby time that the passengers want the LB

to stand by the vessel and wait for their returning trips.

The LB operator faces the task of scheduling LBs to fulfill

bookings, with the current operation relying on the “one-

trip-per-booking” practice. In this approach, each booking is

individually matched with a single LB, responsible for trans-

porting passengers to their designated destination. However,

this method does not utilize the LB’s capacity efficiently.

The operator is keen on exploring an alternative strategy:

consolidating or batching multiple service bookings into a

single launch boat that can travel to multiple destinations

within a single trip. While this consolidation has the potential

to significantly enhance operational efficiency, it is imperative

to ensure that the service quality for passengers remains close

to that of the “one-trip-per-booking” practice. To this end,

this paper conducts both predictive and prescriptive analytics

in the subsequent sections to derive an effective booking

consolidation and scheduling for the launching service.

III. PREDICTION: LAUNCH BOAT TRAJECTORY

ESTIMATION BASED ON BIG GPS DATA

In the predictive analytics, we focus on predicting the

trajectories and traveling distances of LBs during the booking

fulfillment process, which are crucial inputs to subsequent

tasks such as booking consolidation and LB scheduling. Es-

sentially, given any two positions in the port and the nearby

sea area, we predict the traveling distance (and time) of LBs.

Indeed, there are historical trajectories stored in the dataset

that can possibly be used as references; however, they are not

directly applicable to the “unseen” positions.

To this end, we utilize the Waterway Pattern-Mining Frame-

work developed in [9]. The framework takes large-scale his-

torical GPS data as inputs and generates the waterway pattern

of LBs, reflecting the LBs’ navigating routines shaped by

multiple aspects, such as maritime traffic operations, planning,

LB maneuverability, and water’s hydrographical features rep-

resenting practical sea routes through voluminous real-world

navigational instances. Fig 1(a) shows the generated waterway

pattern of LBs in the Singapore port using massive GPS data

of LBs from the years 2021 and 2022. The area covered in blue

represents the waterway of LBs. Then, given two positions in

the covered area, the framework returns a predicted path and

an estimated distance following the “most likely” pattern. It

is deployed as a callable API to support real-time usage.

Fig. 1. Launch boat trajectory and travelling distance analysis with GPS data.

It is important to validate the results of the Waterway

Pattern-Mining Framework. In our GPS dataset, we have

records of the actual trajectory distances for some position

pairs. We conduct validation by comparing the actual “tra-

jectory distance” and the distances generated by the API of

the Waterway Pattern-Mining Framework (“API distance”).

Fig 1(b) shows the comparison. After excluding the 1.2% of

outlier data, the API distance is, on average, 5.56% shorter

than the trajectory distance. This implies that the accuracy of

the predicted distance is, on average, 94.44%, which is high

enough for practical usage. We will thus use this approach

in the subsequent prescriptive analytics (interested readers are

referred to a similar approach [10]).

IV. PRESCRIPTION: BOOKING CONSOLIDATION AND

LAUNCH BOAT SCHEDULING

A. Batching algorithm

In the existing LB operation, each LB is allocated to a

single booking to transport passengers to a specific destina-

tion. However, this conventional practice underutilizes the LB

capacity and results in inefficient resource utilization. In this

paper, we study the approach for booking consolidation and

create a fast and efficient algorithm. Based on the input and

domain knowledge from the industry, we place our emphasis
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on consolidating a maximum of two bookings into a task. In

this context, it involves considering two key factors: i) the

capacity of the LB should not be violated. For a typical LB,

the capacity is 12 passengers; and ii) the similarity of the two

bookings should be high.

Here, the similarity S is an index that measures how “simi-

lar” two bookings are in terms of the additional service delay

caused by batching them into a single task under feasible LB

capacity. Intuitively, when two bookings are batched together,

it may result in additional delays for passengers since the

LB must accommodate extra routes for pick-ups or drop-offs

at different locations, in contrast to the traditional “one-trip-

per-booking” approach. If the additional delay introduced by

batching remains relatively small, then the similarity index

is considered to be high. However, if the delay exceeds a

predefined threshold τ (e.g., 30 or 45 minutes), the similarity

index is set at zero, indicating that batching is not a viable

option due to the excessive delay it would cause.

Algorithm 1 presents how we compute the similarity matrix

S given a list of bookings in set I. For an illustration, suppose

Algorithm 1 Computing similarity under delay threshold τ .

1: Input: A list of bookings I, delay threshold τ .

2: Initialize S = 0
3: for i ∈ I and k ∈ I do
4: Compute the number of passengers on board OBik

5: if OBik ≤ 12 then
6: Estimate T o

i , T o
k , T b

ik, and T b
ki

7: Compute Δik = T b
ik − T o

i and Δki = T b
ki − T o

k

8: if Δik < τ and Δki < τ then
9: Sik = Ski = 2− Δik

τ − Δki

τ
10: Return: S.

that we want to compute the similarity of Booking i and

Booking k, denoted as Sik. Let the estimated (ideal) service

end times of Booking i and Booking k without batching be

T o
i and T o

k , computed by the associated service request times

plus the operation times in the fulfillment process. Let the

service end times of Booking i and Booking k when they

are batched together be T b
ik and T b

ki. Then, the additional

delay of Booking i caused by batching it with Booking k is

Δik = |T b
ik − T o

i |. Similarly, the additional delay of Booking

k caused by batching it with Booking i is Δki = |T b
ki − T o

k |.
If one or more of the following conditions appear: (i) Δik ≥

τ ; (ii) |Δki| ≥ τ ; or (iii) LB capacity is not met, then the

batching does not satisfy the delay threshold or the capacity

of LB. In this case, Sik is set to 0. Otherwise, Sik = 2 −
Δik/τ −Δki/τ , which is a positive number between 0 and 2.

Note that, as indicated in Line 8, S is symmetric.

Given S, we then proceed to determine the batching de-

cision. Note that only those booking pairs with positive

similarity indices are considered feasible batches. Algorithm 2

presents a greedy batching algorithm where we iteratively put

two bookings (m,n) with the maximum similarity index into

a batch (Lines 4-5) and then update the similarity matrix by

setting the similarity indices related to bookings (m,n) to

0 so that bookings (m,n) would not be considered in the

subsequent iteration. This process is repeated until all elements

in the remaining similarity matrix are 0, i.e., there does not

exist any feasible batch.

Algorithm 2 Greedy heuristic for similarity-based batching.

1: Input: List of bookings I and Similarity matrix S.

2: Initialize the set of batches B = ∅.

3: while max(i,k) Sik > 0: do
4: (m,n) = argmax(i,k) Sik

5: B = B ∪ {(m,n)}
6: Bmi = Bim = Bin = Bni = 0, ∀i ∈ I
7: end while
8: Return: B.

Algorithms 1 and 2 run fast enough to meet real-time

deployment needs. In our testing, it takes less than 0.4 sec-

onds to process 100 bookings on a typical laptop, which is

approximately the average number of daily bookings for a

“bigger-than-average” launch boat service provider in Singa-

pore Port. Note that when estimating the delays, we compare

the service fulfillment time of a booking without batching and

the service fulfillment time of a booking when batches with

other bookings. Clearly, the traveling distance and time in each

leg of the fulfillment process need to be estimated, and this

can be done using the API distances that have been developed

in the predictive analytic of launch boat trajectory prediction

in Section III.

B. Scheduling algorithm

The batching algorithm transforms the original bookings

into a set of service tasks, involving one or two bookings and

an estimated service fulfillment time. Figure 2 summarizes the

process of how we schedule the LB for task fulfillment.

Fig. 2. Overview of selection of launch boat.

Since the exact location of LB is uncertain prior to initi-

ating each task, it is advisable to ensure LBs are ready for

service before the designated service fulfillment time. This is
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represented by the status of an LB exhibiting a speed value

of zero at the most recent timestamp preceding the service

fulfillment time for a chosen task. In cases where there is no

LB with the latest speed recorded as zero, LBs with the latest

non-zero speed are considered. Subsequently, a set of priority

rules is employed to make the final selection of an LB from

the candidate list.

Priority rules, serving as criteria for LB selection, are used.

Their major advantage is the ease of implementation, coupled

with low time complexities, rendering them suitable for real-

time ad-hoc event scheduling [11]. The proposed priority rules

leverage predicted travel time and distance along the travel

path, outlined in Fig 3. These rules are articulated as follows:

• Smallest total travel time (STT): Select the LB with

the smallest total predicted travel time from its current

location to the final destination of the last booking;

• Earliest arrival time (EAT): Select the LB that arrives at

the first pickup location of the first booking the earliest;

• Earliest arrival time with smallest travel time from current

location to the first pickup location (EATSTF): Select

the LB that arrives at the first pickup location of the

first booking the earliest with the smallest total predicted

travel time from its current location to the first pickup

location;

• Earliest arrival time with smallest total travel time

(EATSTT): Select the LB that arrives at the first pickup

location of the first booking the earliest with the smallest

total predicted travel time from its current location to the

final destination of the last booking; and

• Earliest arrival time with the shortest distance from the

current location to first pickup location (EATSDF): Select

the LB that arrives at the first pickup location of the first

booking the earliest with the shortest calculated distance

from its current location to the first pickup location.

Fig. 3. Travel path of launch boat to fulfil task.

It is important to note that when evaluating LB options,

the distance traveled from the initial pickup location to the

final destination remains consistent regardless of the chosen

LB. Therefore, a sufficient criterion is to compare the distance

covered from the current location of each LB to the initial

pickup location. In instances where no LB is available at the

service fulfillment time (indicating that all LBs are currently

engaged in tasks), the selection will prioritize the LB with the

earliest completion time in fulfilling its ongoing task for the

subsequent task assignment.

V. CASE STUDY

To test the effectiveness of the algorithms, we conduct a case

study based on a LB booking company in Singapore Port. We

use its booking data from November 1st to November 30th,

2021, comprising a total of 3,694 initial bookings. There are

30 LBs ready to be utilized. In the current practice , the LBs

travel a total distance of 69,318 km to fulfill these bookings.

A. Batching result

We first employ the batching algorithm on 3,694 initial

bookings. Table I presents the summary of results under

different delay thresholds τ . Here, #N2 is the number of

batch tasks, i.e., each is formed by consolidating two bookings

together. In contrast, #N1 is the number of non-batch tasks,

i.e., each is a single booking that cannot be batched with any

other bookings and has to be fulfilled separately.

We observe that applying a 30-minute delay threshold, there

are 1,096 tasks with 2 bookings and 1,502 tasks with 1

booking. This outcome indicates that 59.33% of the bookings

can be successfully batched. Intuitively, if we increase the

delay threshold τ , then more bookings can be batched together.

In particular, when τ = 90, the batching rate is near 75%.

TABLE I
SUMMARY OF BATCHING RESULTS OF 3694 BOOKINGS IN NOVEMBER

2021 UNDER DIFFERENT DELAY THRESHOLD τ .

τ #N2 #N1 Batching Rate [%]
30 1096 1502 59.33
45 1227 1240 66.43
60 1301 1092 70.44
90 1380 934 74.72

The obtained results highlight that the prevailing “one-trip-

per-booking” approach significantly underutilizes the potential

for enhancing operational efficiency through booking consol-

idation. Even by introducing a 30-minute threshold, a notable

batching rate can be achieved. It is noteworthy that, according

to feedback and domain expertise from our industrial partner

in this research, the customers of the launching service exhibit

a relatively low sensitivity to delays compared to users of land

taxi and ride-sharing services. A 30-minute delay appears to

be both reasonable and acceptable from the customers’ per-

spective. This insight further underscores the practicality and

viability of our proposed approach, which not only improves

efficiency but also aligns with the acceptable service standards

from the customer’s point of view.

B. Scheduling result

Utilizing the batching results under the 30-minute threshold,

we simulate the fulfillment of associated tasks employing

different priority rules. In Table II, a summary of the total

distance traveled is presented. The total distance covered by

LBs is reduced by approximately 25% under all rules except

EAT. EAT, not factoring in the shortest distance traveled

but prioritizing the earliest arrival at the first pickup point,

results in a 7.27% higher total distance traveled compared
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to the current practice. These findings highlight that the

combination of a well-selected batching algorithm with an

effective scheduling algorithm can significantly decrease the

overall distance traveled by LBs.

TABLE II
SUMMARY OF TOTAL DISTANCE TRAVELLED.

Priority Rules Current
Practice [km]

With
Consolidation
[km]

Difference [%]

STT 69,318.09 51,977.43 -25.02
EAT 74,358.28 +7.27
EATSTF 51,824.76 -25.24
EATSTT 51,648.08 -25.09
EATSDF 51,865.17 -25.18

Note that the decrease in distance traveled primarily benefits

the operator. In practice, it is also important to avoid a

substantial reduction in service levels for passengers. In this

context, we evaluate the service level by assessing the tardiness

of each booking. Tardiness is computed as the difference

between the service request time for each booking and the

actual service fulfillment time. As such, the start time of each

booking needs to be taken note of during the simulation run.

As indicated in Table III, priority rules focusing on the

earliest arrival time (specifically prioritizing reaching the first

pickup point promptly) exhibit superior performance in terms

of tardiness measures. More than 3,440 launch boat bookings

boast tardiness of less than five minutes, constituting over 93%

of the total bookings. In adherence to the 30-minute delay

threshold for booking consolidation, priority rules linked to

earliest arrival time—namely, EAT, EATSTF, EATSTT, and

EATSDF—manage to keep maximum tardiness just slightly

above 30 minutes.

TABLE III
NUMBER OF BOOKINGS WITH TARDINESS BELOW AND ABOVE FIVE

MINUTES.

Priority Rules Number of bookings with Maximum value of
tardiness ∈ [in minutes] tardiness [in minutes]
[0, 5] (5,∞)

STT 3408 286 40.9
EAT 3447 247 30.3
EATSTF 3446 248 30.3
EATSTT 3447 247 30.3
EATSDF 3564 130 30.3

In summary, the above findings demonstrate that our ap-

proach to booking consolidation and scheduling significantly

reduces the travel distance of LBs during task fulfillment while

maintaining a high level of service quality for passengers.

VI. CONCLUSION

Recognizing the limitations of the current launching ser-

vices operation in Singapore Port, we explored an alternative

approach to booking consolidation and scheduling. Our goal

was to enable the fulfillment of a maximum of two bookings

in a single trip. To achieve this, we introduced a real-time

batching algorithm designed to consolidate bookings with-

out introducing excessive additional delays. Subsequently, we

addressed LB scheduling for these consolidated tasks using

various rule-based real-time approaches. Through a case study

conducted in Singapore Port, the results illustrated that the

proposed booking consolidation and scheduling significantly

reduces the travel distance of LBs during task fulfillment while

upholding a high level of service quality for passengers.

This paper has a few acknowledged limitations. Firstly,

we focused exclusively on the consolidation of two bookings

into a task. Investigating the consolidation of more bookings

could provide valuable insights, but service levels should

not be significantly compromised. Secondly, the batching

and scheduling processes are carried out sequentially. An

integrated approach could further enhance the performance and

effectiveness of the “Uberisation” concept.
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