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Abstract—Spoken Language Assessment (SLA) is a subjective
task, where different human raters often assign differing scores
for the same input. It also often has a bounded score range.
Prior work of applying a Gaussian Process (GP) to SLA uses
a Gaussian output, which is unbounded, and does not consider
inter-rater uncertainty. This paper investigates using a bounded
beta density function output for a GP in SLA and proposes to
extend this bounded GP framework to utilise the multiple output
samples per input in the training set. In the experiments, various
types of Neural Network (NN) and GP models are trained. This
paper investigates combining ensembles of these GPs and NNs.
Experiments on the speechocean762 dataset show that using a
beta output is better able to predict the inter-rater uncertainty
than a Gaussian output. Using multiple output samples in the
training set further improves the beta-output GP’s inter-rater
uncertainty prediction. Combination between a GP and NN yields
improvements.

Index Terms—Gaussian process, bounded output, uncertainty,
ensemble combination, spoken language assessment

I. INTRODUCTION

The task of Spoken Language Assessment (SLA) is to

assign a score to spoken audio from a student, relating to

the oral proficiency. Being a subjective task, different human

raters may assign varying scores to the same audio, because of

the limited coverage of the rubric and each teacher’s bias. The

task can be made more objective, by increasing the coverage

of the rubric to make decisions in cases where the raters

disagree. However, such decisions may not generalise well to

the diversity of requirements of different users. Furthermore,

expressing information about whether raters disagree may

allow the feedback given by the system to not unfairly penalise

the student user when raters would have disagreed on the

score, and to instead seek clarification or human intervention.

Rather than making the task more objective, this paper instead

modifies the model to better fit the subjectivity of the task,

thereby allowing better generalisation to diverse users and

providing uncertainty output information that can be used

to calibrate feedback. Subjectivity is often accounted for by

providing annotations from multiple human raters per input in

the dataset. It may be useful for an automatic model to also

take this uncertainty into consideration. This paper investigates

making a Gaussian process (GP) [1] better utilise and predict

such uncertainty.

This work was supported by the A�STAR Computational Resource Centre
through the use of its high performance computing facilities.

Three novelties are proposed in this paper. Work in [2]

uses a GP for SLA, with a standard Gaussian output density

function and while only considering a single reference output

for each input in the training set. A Gaussian output has an

infinite support. In SLA, the output score is often assumed

to be bounded, which may not match well with this. The

first novelty is to take the approach in [3] of a GP with a

bounded output density, and apply it to a real-world SLA task.

Matching the support may improve the uncertainty modelling.

A GP naturally exhibits distributional uncertainty [4], with a

predicted variance that increases for test inputs far from the

training inputs. It also reduces the influence of model uncer-

tainty [5], through its interpretation as a marginalisation over a

distribution of functions [1]. The second novelty is to improve

the data uncertainty [5] modelling of a bounded-output GP, by

extending the formulation to take into account the inter-rater

agreement, represented by the diversity of annotations from

different raters for the same input. The computational cost

of this approach is reduced by omitting redundant random

variables. Finally, having investigated different SLA model

types, using bounded and unbounded GPs, and also Neural

Networks (NN), the third novelty in this paper is to investigate

combining ensembles [6] of these different model types to

further reduce the influence of model uncertainty. This builds

upon prior works that often only combine ensembles with

different NN parameters [7] or NN topologies [8].

II. RELATED WORK

A GP with a beta density output can be implemented using

Laplace’s approximation [3]. This is similar to using Laplace’s

approximation to implement a GP for classification [9]. This

paper investigates applying such a beta-output GP to SLA.

This paper also proposes to extend the beta-output GP to con-

sider having multiple output samples in the training set. This

differs from a multi-output GP [10], [11], because here, all

outputs arise from the same task. Considering multiple output

samples per input aims to incorporate some data uncertainty

[5] into a GP, which instead naturally models distributional

uncertainty [12] through an output standard deviation that

increases for inputs that are further away from the training set.

Data uncertainty can also be captured by NNs, by interpreting

the NN outputs as parameters of a distribution [13] and
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explicitly training these toward the distribution represented by

the multiple raters [14], [15].

III. GAUSSIAN PROCESS

A GP computes the outputs, y, from input feature vectors,

X, by first placing a jointly Gaussian prior on latent variables,

f ,

p (f |X) = N (f ;0,K (X,X)) . (1)

The covariance is defined by the kernel, K, which computes

a similarity between features. The squared exponential kernel,

kij (X,X′) = s2 exp

[
−
(
xi − x′

j

)� (
xi − x′

j

)
2l2

]
, (2)

is used here, where i and j are the data point indexes, l is a

length hyper-parameter, and s is a scale hyper-parameter.

The marginal likelihood of the outputs is computed as

p (y|X) =

∫
p (y|f) p (f |X) df , (3)

and the hyper-parameters may be optimised by maximising

F = log p
(
yref

∣∣X)
, (4)

where yref are the training set reference outputs. During

inference, the predicted output, ŷ, from a test set input, x̂,

can be inferred from the posterior,

p (ŷ|x̂,y,X) =

∫
p
(
ŷ
∣∣∣f̂) p

(
f̂
∣∣∣x̂,y,X)

df̂ , (5)

by, for example, choosing the mean. Here, f̂ represents the

latent variable for the test set data point.

A. Gaussian density output

In a standard GP, the output density function is Gaussian,

p (y|f) =
N∏
i=1

N (
yi; fi, σ

2
)
, (6)

where N is the dataset size and σ is a hyper-parameter that

can represent noise in the observed output. It is assumed in

(6) that the outputs for different data points are independent

of each other, when given the latent variables. Choosing the

output density as a Gaussian allows p(y|X), p(f̂ |x̂,y,X), and

p(ŷ|x̂,y,X) to also be Gaussian.

B. Beta density output

A Gaussian density function, with an infinite support, may

not match well with tasks having a bounded output. A beta

density,

B (y;α, β) =
Γ (α+ β)

Γ (α) Γ (β)
yα−1 (1− y)

β−1
, (7)

has a bounded support and may thereby better match the

assumptions of the application domain. Here, Γ is the gamma

function, and α and β are the parameters of the density

function. This can be used as the output density of a GP, to

allow the GP to also have a bounded output support,

p (y|f) =
N∏
i=1

B
(

yi−ymin

ymax−ymin
; νΦ (fi) , ν (1− Φ (fi))

)
ymax − ymin

, (8)

where ν is a hyper-parameter that controls the sharpness of the

density function, and ymax and ymin are the upper and lower

bounds of the support respectively. The beta density mean is

computed by parsing the latent variable through a function

that squashes its value to be within [0, 1], such as the normal

cumulative density, Φ(f) =
∫ f

−∞N (f ′; 0, 1)df ′.
However, when using a beta output density, the resulting

density functions that are used in hyper-parameter optimisation

and inference are no longer closed within a single family.

To allow for computational tractability, approximations such

as Laplace [9], variational [16], and expectation propagation

[17] can be used, with a comparison in [18]. The experiments

in this paper use Laplace’s approximation, as its cheaper

computational cost allows for quicker experimentation [18].

This substitutes the joint log-posterior of y and f ,

log p (y,f |X) = log p (y|f) + log p (f |X) , (9)

with its second-order Taylor expansion around the f that max-

imises (9). This yields approximated forms for the marginal

likelihood in (3) and posterior in (5) that are related to

Gaussians, which can then be used to optimise the hyper-

parameters and perform inference. A more detailed description

of the application of Laplace’s approximation and expectation

propagation to a beta-output GP may be found in [3].

IV. MULTIPLE OUTPUT SAMPLES FOR EACH INPUT

The uncertainty represented by a model’s output posterior

may be taxonomised into three types [4], [5], of data, model,

and distributional uncertainties. Distributional uncertainty is

the expectation that the outputs for test inputs far from the

training inputs should be predicted with higher uncertainty. In

a GP kernel, distant test inputs have a small correlation with

the training data, and thus will have uncertain predictions.

Data uncertainty expresses a distribution over the possible

hypotheses for inputs that overlap, due to noise, limited

information in the input, or subjectivity in the task. Model

uncertainty is the lack of knowledge of which model best

represents the data, exemplified by the different biases that

influence the predictions. Combination in an ensemble, in

section VI, aims to reduce the influence of model uncertainty,

and obtain a purer representation of data uncertainty, by being

a Monte Carlo approximation of a Bayesian NN (BNN) [19].

A GP may already be doing this implicitly, since it can be

interpreted as marginalising over a distribution of functions

[1]. In SLA, the collection of multiple rater scores, expressed

as a reference distribution later in (14), suggests marginalising

out a human analogue of model uncertainty, and thus this

reference distribution may be interpreted as a reference of data

uncertainty. The reference distribution can also be interpreted

281



as representing the fraction of raters who would have assigned

each score.
Work in [2] only uses a single reference output per input

in the training set. This paper instead proposes to allow the

bounded GP to better utilise the reference data uncertainty

in the training data. It is hoped that by leveraging upon the

multiple rater scores in the training set, the bounded GP would

be better able to predict the fraction of raters for each score

on the test set, expressing a more accurate data uncertainty.

This expression of uncertainty may be useful to calibrate the

feedback that is given to a user. For example, if a student

user is predicted to have a low score, but it is also predicted

that multiple raters would have disagreed on that score, then it

may not be appropriate to penalise the student, but to instead

seek clarification or human intervention, so that better learning

outcomes can be achieved.
The bounded GP formulation thus far does not consider

multiple output annotations per input, but instead assumes

there being only a single output reference per input. In SLA,

a single reference score can be computed by combining the

scores from the multiple raters as a majority vote [20], mean

[21], or median [21]. However, this omits information about

the inter-rater uncertainty. This paper proposes that the hyper-

parameters of the GP can be optimised while considering the

multiple rater scores in the training set, by maximising the

joint marginal log-likelihood of all output samples,

Fjoint = log p
(
Yref

∣∣X)
, (10)

instead of only the combined scalar reference in (4). Here,

Yref represents the collection of the annotated scores from all

of the multiple raters, for all of the training data points. A

naive extension to allow for multiple output samples per input

is to repeat the input for each output sample. However, this

will increase the dimension of the kernel matrix proportionally

to the number of repetitions. The computational cost involved

in matrix multiplication scales quadratically with the matrix

dimension, and that of matrix inversion scales cubically. Thus,

this repetition approach may not be computationally feasible.
Repeating the inputs results in a kernel that expresses

perfect correlation between the latent variables associated with

these repetitions. Perfectly correlated random variables are

redundant, and there is no need to compute them explicitly

[22]. This paper proposes that for a GP with a beta output

density, multiple output samples per input in the training set

can be modelled by replacing the single sample output density

of (8) with the joint likelihood of observing all output samples,

without expressing the redundant latent variables,

p (Y|f) =
N∏
i=1

Ri∏
r=1

B
(

yir−ymin

ymax−ymin
; νΦ (fi) , ν (1− Φ (fi))

)
ymax − ymin

,

(11)

where r indexes the rater and Ri is the number of raters for the

ith data point. Omission of the repetitions retains the original

kernel size, thus preserving the computational cost. It is

assumed that the output samples are conditionally independent

of each other, when given the latent variables. This output

density can be substituted into the Taylor approximation of

(9) for both training and inference. During inference, (11) is

used for the training data, but the posterior still uses the single

sample output density of (8) for p(ŷ|f̂) in (5). Using multiple

output samples per input is instead applied to a GP with a

Gaussian output density in [22], [23], where unlike here, the

density functions can be expressed analytically.

V. SPOKEN LANGUAGE ASSESSMENT SETUP

In SLA, each audio input of sequential features is assigned

an oral proficiency score within a bounded range. Prior works

have used NNs, which can either be designed for regression

with a sigmoid output layer that computes a continuous scalar

score [24], or classification with a softmax output over the

possible integer score classes [25]. Bidirectional Long Short-

Term Memory (BLSTM) [26] or self-attention [27] together

with pooling can accommodate different sequence lengths

between the input and output [28], [29]. It may not be trivial

to use a GP for sequential inputs. Work in [2] extracts hand-

crafted sentence-level features to predict sentence-level scores.

The GP kernel can also be designed to operate on sequences

[30]. In this paper, a NN SLA model was first used to extract

sentence-level bottleneck features, which were then used as

inputs to a GP [31], to compute sentence-level scores. The

NN was not jointly fine-tuned together with the GP, to avoid

the risk of overfitting [32].

The input features to the NN comprised a concatenation

of goodness of pronunciation [33], log phone posterior [34],

log posterior ratio [34], tempo [24], phonetic embedding [24],

and pitch [35] features, forming a sequence with one feature

vector per phone in the sentence. The NN model comprised a

BLSTM layer with 32 nodes per direction, a pooling layer that

computed an equally weighted average over all phones in the

sentence, a linear layer to map to the output dimension, and

an output sigmoid or softmax layer. The continuous sigmoid

output was scaled to the bounds of the score range. Sentence-

level bottleneck features for the GP were extracted after the

pooling layer. Dropout [36], with a 60% omission probability,

was used before the BLSTM and linear layers. The NNs

were trained toward a combined reference score, computed

as a mean between the multiple rater annotations. Note that

this differs from [21], which instead computes the combined

sentence-level reference as a median. A model with a sigmoid

output, named NNscalar, was trained toward this combined

reference using a Mean Squared Error (MSE) criterion. A

model with a softmax output, named NNcategorical, was trained

toward the combined reference using a cross-entropy criterion.

VI. ENSEMBLE COMBINATION

Different model types may be biased in varied ways,

yielding different predictive behaviours and presenting an

uncertainty of which to use. A combination may reduce the

influence of this model uncertainty and leverage upon this

diversity. This paper proposes to combine NN and GP models.

An ensemble of GP and NN models is also used in [37], as

a teacher for knowledge distillation. The GP posterior is first
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discretised by cumulating the likelihoods of the continuous

output scores that would have been rounded to each discrete

integer score,

P
(̊
ŷ = c

∣∣∣x̂,y,X)
=

∫ c+0.5

c−0.5
p (ŷ|x̂,y,X) dŷ∑

c′

∫ c′+0.5

c′−0.5
p (ŷ′|x̂,y,X) dŷ′

, (12)

where ˚̂y represents the discrete random variable of the output,

that can take possible integer values c. The discrete posteriors

of multiple models are then combined as a mixture model,

P
(̊
ŷ = c

∣∣∣x̂) =

M∑
m=1

λmP
(̊
ŷ = c

∣∣∣x̂;m)
, (13)

where m enumerates the models in the ensemble, M is the

ensemble size, and λm are combination weights satisfying∑
m λm = 1 and λm ≥ 0. This Monte Carlo approximation

of a BNN may reduce model uncertainty, yielding a purer data

uncertainty. The combined hypothesis can be inferred from the

combined posterior, by choosing the mean, median, or mode.

The discretisation of the GP posterior is aligned with the

standard practice for the speechocean762 dataset, of first

rounding the hypothesis and reference scores to the closest

integers, before computing the evaluation metrics [21]. Fur-

thermore, the discretisation facilitates combination between

continuous output GPs and categorical NNs. It may also be

possible to perform combination as a mixture of continuous

densities. However, this may not be straightforward, because

of the need to then choose a single hypothesis as either the

mean, median, or mode of the combined density.

VII. EXPERIMENTS

Experiments used the speechocean762 dataset [21]. This

comprises 2500 sentences and 125 disjoint speakers, in each

of the training and test sets. The sentences are read in English

by native Mandarin speakers. Only the sentence-level pronun-

ciation accuracy scores were used. These scores were provided

by 5 human raters per sentence, and range between 0 to 10.

Following [21], a time delay NN hybrid speech recognition

model [38] was first trained on the Librispeech [39] 960 hours

data, following the standard Kaldi [40] recipe, up till the cross-

entropy stage. This was used to force align the speechocean762

training and test audio toward the transcriptions. This forced

alignment was then used to compute SLA features, described

in section V. The NN models, also described in section

V, were trained using the speechocean762 training set, with

10% of the sentences held out for validation. Sentence-level

bottleneck features were extracted from a NN model, and

principle component analysis whitening was used to better

abide by the tied covariance assumption of the kernel in (2).

These transformed bottleneck features were used as inputs

to the GP. The GP hyper-parameters were optimised using

gradient descent. The bottleneck features from NNscalar were

used, as initial experiments suggested better GP performance

than when using features from NNcategorical.

TABLE I
PERFORMANCE OF NN AND GP SLA MODELS

Model PCC↑ MSE↓ KL↓
NNscalar 0.711 1.232 -
NNcategorical 0.701 1.208 1.26
GPgauss 0.710 1.149 3.10
GPbeta 0.714 1.133 2.36

During inference, both the hypothesised and combined

reference scores were rounded to the closest integers be-

fore computing the evaluation measures, following [21]. The

models were evaluated against the combined reference by

measuring the Pearson’s Correlation Coefficient (PCC) and

the MSE. A discrete Kullback-Leibler (KL) divergence was

used to assess the model’s ability to match the uncertainty of

the multiple raters. A continuous KL divergence was avoided,

because of the difficulties of normalisation and interpretation.

The continuous GP posterior was first discretised using (12).

Then, the discrete KL divergence was computed as

KL =

̂N∑
i=1

∑
c

Ri∑
r=1

δ
(
c, ŷref

ir

)
N̂Ri

log

1
Ri

Ri∑
r′=1

δ
(
c, ŷref

ir′
)

P
(̊
ŷ = c

∣∣∣x̂i,y,X
) , (14)

where N̂ is the test set size, ŷref
ir is the reference score

from the rth rater for the ith test sample, and the reference

distribution is a mixture of Kronecker delta functions, δ. Sta-

tistical significance for MSE and KL divergence was measured

using a two-tailed paired t-test. Significance for PCC was

measured using the Z�
1 approach in [41], by first computing an

approximately normally distributed transformation [42] from

the two PCCs being compared, then computing the two-tailed

normal cumulative density of this transformed quantity.

The first experiment investigates using a GP with a beta

output density for SLA, referred to as GPbeta, compared against

NNs and a Gaussian-output GP, referred to as GPgauss. The

results in table I suggest that for PCC and MSE, the GPs

perform comparably against the NNs. Using a beta output

may yield improvements over a Gaussian output, but not

significantly, with ρPCC = 0.246 and ρMSE = 0.260. The

beta output performs at least as well as a Gaussian output,

despite the approximations in its implementation. PCC and

MSE evaluate how well the scalar hypothesis matches with

a scalar combined reference score. It may also be useful to

evaluate how well the posterior of the model matches with

the distribution of scores from the multiple raters, using the

KL divergence. The results suggest that GPbeta is significantly

better than GPgauss at matching the distribution of scores from

the multiple raters, with ρKL < 0.001. The KL divergence

was not computed for NNscalar, because this model does not

compute a probabilistic output.

The next experiment assesses the proposed extension of

allowing a beta-output GP to utilise multiple output samples

for each input in the training set. The results in table II suggest

that using separate training set output scores from the multiple

raters may not yield PCC or MSE gains. However, the KL di-
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TABLE II
USING MULTIPLE RATER SCORES IN A BETA-OUTPUT GP

Training outputs PCC MSE KL

single mean 0.714 1.133 2.36
multiple 0.711 1.282 0.90

TABLE III
ENSEMBLE COMBINATION BETWEEN GPS AND NNS

Combination PCC MSE KL

NNscalar + NNcategorical 0.727 1.126 1.62
GPgauss + GPbeta 0.712 1.137 2.37
GPbeta + NNcategorical 0.728 1.068 1.29
GPgauss + GPbeta + NNscalar + NNcategorical 0.731 1.096 1.49

vergence results suggest that when using the multiple training

set output scores, the test set posterior computed by the GP is

able to more closely match the distribution of reference scores

from the multiple raters, with ρKL < 0.001. This suggests that

although a GP is designed to primarily capture distributional

uncertainty [12], incorporating information about the training

set data uncertainty into the bounded GP does allow it to also

better predict the test set data uncertainty.

Having already trained various model types, the final exper-

iment investigates combinations between ensembles of these

NN and GP models. Four models were used, namely NNscalar,

NNcategorical, GPgauss, and GPbeta. The GPs did not use multiple

output samples in the training set. The combined posterior was

computed using (13) with equal weights, and the combined

hypothesis was inferred as the mean. The results in table III,

compared to the single models in table I, show that combining

NNscalar and NNcategorical yields PCC and MSE improvements,

while combining GPgauss and GPbeta may not. This suggests

that GPgauss and GPbeta may predict similar hypotheses. Com-

bining GPbeta with NNcategorical yields improvements, especially

for MSE. This suggests that NN and GP models may be-

have differently from each other. The diversity between the

predictions of two models can be assessed using the inter-

model PCC, which between NNscalar and NNcategorical is 0.832,

GPgauss and GPbeta is 0.975, and GPbeta and NNcategorical is

0.848. A smaller value indicates a wider prediction diversity.

These results support the observed trends from combination,

showing that the GPgauss and GPbeta hypotheses are similar,

while GPbeta and NNcategorical are more diverse. Adding GPgauss

and NNscalar into the combination of GPbeta and NNcategorical

does not yield consistent further gains. The combinations do

not improve the KL divergence, indicating the difficulty of

trying to compute a purer data uncertainty by marginalising

out the model uncertainty in an ensemble.

VIII. CONCLUSION

This paper has applied a bounded-output GP to SLA,

proposed to extend the bounded-output GP framework to ac-

commodate having multiple output samples in the training set,

and investigated ensemble combination between GP and NN

models. These aim to predict a more accurate data uncertainty,

which may better inform the type of feedback that should be

given to a user. A bounded GP is able to better predict the test

set data uncertainty than an unbounded GP. Using multiple

output samples in the training set for a bounded GP further

improves this prediction. A combination of GPs and NNs is

able to leverage upon their diverse behaviours to yield PCC

and MSE improvements.
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mer, and K. Veselý, “The Kaldi speech recognition toolkit,” in ASRU,
Hawaii, USA, Dec 2011.

[41] J. H. Steiger, “Tests for comparing elements of a correlation matrix,”
Psychological Bulletin, vol. 87, no. 2, pp. 245–251, 1980.

[42] O. J. Dunn and V. Clark, “Correlation coefficients measured on the same
individuals,” Journal of the American Statistical Association, vol. 64, no.
325, pp. 366–377, Mar 1969.

285


