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Abstract—In the ongoing efforts to mitigate climate change
effect, the capability to reliably estimate forest carbon stock
on a global scale is vital to support sustainable development.
This entails the investigation of tree coverage from diverse
forest ecosystems worldwide, necessitating a substantial volume
of high-resolution images. This paper integrates a variety of
remote sensing data sources, from aerial to satellite imagery,
for the training and development of our AI system. Given
the heterogeneous nature of these data sources, we develop
a standardization method to ensure consistent image size and
resolution between source platforms. Our harmonized dataset
includes 86,088 training images and 21,768 validation images,
each with a high resolution of 1.194 m2 per pixel. We introduce
a novel technique for tree semantic segmentation which offers
a more effective alternative to traditional individual tree crown
delineation for large-scale tree coverage estimation. To assess the
adaptability of our AI models, we conducted experiments on
a hand-annotated satellite image test set and achieved a High
Vegetation IoU score of 45.73%. Building on these findings, we
present an interactive web-based Geographic Information System
for navigating high vegetation segmented satellite images and
estimating carbon stock on a global scale.

Index Terms—remote sensing, tree semantic segmentation,
aerial imagery, satellite imagery, domain adaptation

I. INTRODUCTION

Carbon dioxide (CO2) is a primary greenhouse gas, and

its increased concentration in the atmosphere is a leading

contributor to global warming and climate change. Forests play

a crucial role in mitigating these effects by acting as carbon

sinks. Understanding and estimating the carbon stock of forests

is vital for several environmental and economic reasons such

as 1) Climate change mitigation [1] ; 2) Carbon credits trading

[2]; 3) Sustainable forest management [3]; 4) Conservation

planning [4]; and 5) Environmental policy development [5];

among others.

Measuring tree coverage is essential to support forest carbon

stock estimation [6]. Numerous studies have been conducted

to measure tree coverage from aerial or satellite imagery and,

∗ Corresponding author.

in some cases, in conjunction with ground-based surveys but

mostly on a regional scale [7]–[9].
Despite the advances in deep learning and remote sensing,

accurate global tree coverage estimation faces a number of

challenges. Firstly, the training data sources are heterogeneous.

For example, data collected from independent studies may

vary in terms of labeling, image quality, size, and resolution.

Secondly, there are discrepancies between training and test

data distributions, influenced by factors such as different

vegetation types, weather conditions, and other environmental

variables. Last but not least, the volume of unseen images

required to map the world is enormous. To put this into

context, covering just Ireland, which has an area of 84,421

km2, requires approximately 1.1 million images at a resolution

of 1.194 m2 per pixel, each of size 256 × 256 pixels.
To address these challenges, we propose harmonizing dis-

parate datasets to maximize the amount of available training

data. Additionally, we explore tree semantic segmentation as

an alternative to individual tree crowns (ITC) delineation as

ITC delineation does not capture tree shapes reliably espe-

cially in images with lower resolution or regions with dense

canopies. Our contributions are as follows:

1) We standardized and harmonized diverse datasets from

different platforms (e.g. aerial and satellite imagery)

with multi-modalities (e.g. LiDAR and RGB) and au-

tomatically generated a large amount of semantic seg-

mentation masks. We also hand annotated aerial and

satellite images to validate our methods. We have made

our datasets publicly available to support future research.

2) We conducted extensive experiments on the newly es-

tablished datasets and reported our baselines.

3) Building on these findings, we introduce a web-based

GIS designed for navigating satellite images. Our system

harnesses state-of-the-art semantic segmentation mod-

els, trained on diverse datasets but perform vegetation

semantic segmentation on satellite images and estimate

forest carbon stock on a global map.
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(a) LiDAR 3D point cloud (b) RGB Image (c) Segmented RGB Image

Fig. 1: The classified 3D LiDAR points (a) are extracted and then projected onto the corresponding RGB image (b) to create

the semantic segmentation mask (c). In the mask, the areas highlighted indicate regions classified as High Vegetation.

II. RELATED WORK

Numerous large-scale studies have effectively investigated

tree density, canopy cover, and the delineation of individual

trees using aerial [7], [10]–[19] and satellite imagery [9], [20],

[21]. We applied a search strategy similar to [22] to collect

articles related to tree detection, ITC delineation and tree

semantic segmentation from aerial and satellite imagery and

selected 86 relevant articles. From these studies, we compiled

a list of publicly accessible datasets. Our selection criteria are

limited to datasets that are either freely available for download

or can be obtained through reasonable efforts by contacting

the authors. The compiled datasets are listed and compared in

Table I.

Following the success of early convolutional neural net-

works (CNNs) like LeNet and AlexNet, there has been

widespread adoption of CNNs in the field of remote sensing.

Tree coverage estimation in remote sensing typically falls

into three categories: tree detection, ITC delineation and tree

semantic segmentation. There is a broad range of models

discussed in the literature. These include LeNet [23] for tree

detection, Resnet50 [7], [14], [24], U-Net [21], Mask R-CNN

[18], [25], GoogLeNet [26], MT-EDv3 [9], AlexNet, VGG16,

Resnet18, Resnet152 [16], Faster R-CNN [27] for ITC delin-

eation and DeepLabv3+ [20] , U-Net [12], [28], Strong-Weak

Faster-RCNN [17], as well as Single Shot Detector (SSD) [13]

for tree semantic segmentation.

III. DATA SOURCES

We utilized data from 7157 tiles across 37 sites within

the National Ecological Observation Network (NEON), which

provides an extensive array of airborne remote sensing data

products. These include Discrete Return LiDAR Point Cloud

[37], High-Resolution Orthorectified RGB Camera Imagery

[38], Ecosystem Structure (Canopy Height Model) [39], Veg-

etation Structure [40], Vegetation Indices [41], among others.

NEON’s airborne surveys cover each site extensively, typically

spanning over at least 10,000 hectares. A key feature of

NEON’s data is the consistent use of the Universal Transverse

Mercator (UTM) coordinate system across all products, along

with the standard organization into 1km × 1km tiles, which

enables effective cross-referencing.

With the focus on tree semantic segmentation, we utilized

two key data sources from NEON i.e. the High-Resolution

Orthorectified RGB Camera Imagery and the Discrete Return

LiDAR Point Cloud. The RGB images offer detailed visual

information which is essential for identifying tree features.

Meanwhile, the LiDAR data, comprising a 3D classified point

cloud, is processed and projected onto a 2D plane. This

projection is used to create ground truth semantic segmentation

masks corresponding to the RGB images.

In conjunction with the aerial imagery data from NEON,

we manually annotated 1,246 satellite images collected from

publicly available GIS services. These satellite images com-

plement our aerial images offering a global perspective with

their wider availability. Satellite imagery often differs from

aerial imagery in terms of color, resolution, and contrast. This

diversity in image sources enhances our dataset with a broader

range of visual characteristics.

A. NEON Discrete Return LiDAR Point Cloud

LiDAR, which stands for Light Detection and Ranging, has

been used for laser distance measurements since the 1960s.

LiDAR works by sending out a laser pulse that travels through

the air, hits objects like trees, ground, or buildings, and then

some of this light bounces back. The time it takes for this light

to return is measured to determine distances.

The NEON LiDAR system gathers data in the form of a

3D point cloud with an average density of 5 pts m−2. Each

point within this cloud is classified in accordance with the

American Society for Photogrammetry and Remote Sensing

(ASPRS) definition and is associated with UTM coordinates

and intensity values. For generating the semantic segmenta-

tion masks, we utilized the points classified under the High
Vegetation category. The High Vegetation class in LiDAR is

defined by ASPRS as trees being taller than 1.3 meters.
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Dataset Name Modality Platform Specification Annotation

RGB LiDAR Other No of
Images

Size
(px)

Res
(m/px) Geo BBox Instance

Seg
Semantic
Seg

Biomassters [29] x Satellite 310k 256 x 256 10∼60
Reforestree [30] x Aerial 4663 400 x 400 0.02 x x
IDTReeS 2020 [31] x x Aerial 85 200 x 200 0.1 x x
TreeSatAI [32] x Aerial 50,381 300 x 300 0.2 x
LoveDA [15] x Satellite 5,987 1024 x 1024 0.3 x
Larch Casebearer [33] x Aerial 1,543 1500 x 1500 x x
Sahara and Sahel [21] x x Satellite 11,128 0.5 x x
SWISSIMAGE 10 cm [34] x Aerial 42,700 10k x 10k 0.1∼2 x
Auto Arborist [35] x Aerial 2,637,208 512 x 512 0.05
NEON Crowns [36] x x Aerial 11,000 10k x 10k 0.1 x x
Ours x x Multi 107,856 256 x 256 0.1∼1 x x

TABLE I: A list of publicly available datasets for tree detection from aerial or satellite imagery.

Fig. 2: Tree coverage is defined as the ratio of the area covered

by tree canopies to the total area, represented as a percentage.

The sites exhibit a balanced distribution of low, medium, and

high tree coverage, with the exception of JORN, which has

almost no tree coverage.

B. NEON High-Resolution Orthorectified RGB Camera Im-
agery

NEON provides high-resolution orthorectified camera im-

ages that are assembled into mosaics, organized in 1km ×
1km tiles. This arrangement maintains a uniform spatial grid,

ensuring a spatial resolution of at least 0.1 meters per pixel.

Consequently, this results in image sizes of 10000 × 10000

pixels. These images are provided in GeoTIFF format with

UTM coordinates, enabling cross-referencing with the LiDAR

product.

C. Public GIS Satellite Imagery

We annotated a set of 1246 images from publicly available

GIS services, each measuring 256 × 256 pixels, with two

classes: Background (class 0) and High Vegetation (class 1).
For each image, two annotators were assigned to ensure the

accuracy of the process. We also excluded areas that appeared

to be grassland to align with common practices in carbon stock

estimation, where grassland is usually not considered [42].

IV. DATA PREPROCESSING

Our processing pipeline is designed to achieve two main

tasks: 1) Creating semantic segmentation masks by extracting

classified LiDAR 3D point clouds and projecting them onto a

2D plane, ensuring alignment with the corresponding RGB im-

ages; 2) Standardizing the resolution and image size of images

from both NEON aerial and GIS satellite images to maintain

consistency. To ensure consistency in datum, projection, and

units of measure between data sources, we transform all their

Coordinate Reference Systems (CRS) to EPSG:4326 using the

Python library pyproj before any preprocessing steps.

In the first task, we resized RGB images to a dimension

of 1000 × 1000 pixels. Given that each tile corresponds to

a 1 km ×1 km area, this resizing results in images with a

resolution of 1 m2 per pixel. We projected the 3D LiDAR

point cloud onto a 2D plane. The LiDAR 3D point cloud

from NEON typically exhibits a density ranging from 5 to

30 points m−2. Therefore, we selected the highest point

within each square meter as the representative classification.

Points not classified as High Vegetation were excluded. From

these selected points, we created binary semantic segmentation

masks for the corresponding RGB images. In these masks,

each pixel is categorized as either Background (class 0) or

High Vegetation (class 1). (Fig. 3).

 1m

highest points

 1px

Vegetation

Ground

Fig. 3: Projection of a classified LiDAR 3D point cloud onto

a 2D plane

In the second task, we rescaled the NEON images and

masks obtained from task 1 from a resolution of 1 m2 per

pixel to 1.194 m2 per pixel to align with the resolution of our

satellite images. For this step, we simply resized the images
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with nearest neighbor resampling. We employed a sliding

window technique, moving from the top left to the bottom

right of each image to crop it into patches of 256 × 256 pixels.

When utilizing the sliding window approach, if the last patch

on the right or at the bottom does not fit the 256 × 256 pixel

size, we backtrack from the right or bottom edge to ensure

each patch is consistently 256 × 256 pixels. The cropping

process resulted in a total of 107,856 patches.

V. EXPERIMENTS

We structured our experiments to evaluate three key aspects:

1) Model Fitting to NEON Data: this aspect estimates the

model’s capacity for learning and fitting to the NEON

dataset.

2) Single-Site Domain Adaptation: also known as ”Train

on All Sites, Test on One Site”, this part of experiment

assesses the model’s ability to adapt to an unseen site

from within NEON network.

3) Aerial to Satellite Domain Adaptation: this assesses

the model’s ability to learn from aerial imagery and

effectively generalize to satellite imagery, representing

a shift between source platforms.

A. Model Fitting to NEON Data

To test the model’s capacity in fitting to the NEON dataset,

we used all 107,856 images from all 37 NEON sites for

training and validation. We allocated approximately 80% of

the 107,856 patches, amounting to 86,088 images, to the

training set and assigned the remaining 20%, which is 21,768

images, to the validation set. This distribution was stratified

by site and tile so that all patches from the same tile were

placed in the same set, either training or validation.

B. Single-Site Domain Adaptation (Train on All Sites, Test on
One Site)

We employed the approach of Leave-One-Out cross valida-

tion at site level to test the model’s ability to adapt to an unseen

site. During a ”site iteration”, one site was left out as the test

set which is entirely unseen during the training phase, while

the remaining sites were stratified into training and validation

sets.

C. Aerial to Satellite Domain Adaptation

We used the full model trained in Section.V-A Model Fitting
to NEON Data to test on the satellite images. Fig. 5 illustrates

our data split strategies.

VI. SETUP

A. Models and Hyperparameters

DeepLabv3+ [43] with a Resnet50 backbone [44], pre-

trained on ImageNet [45] was selected as our baseline model.

The models were trained using Stochastic Gradient Descent

(SGD) with an initial learning rate of 0.01, momentum set to

0.9, and weight decay of 0.0005. The learning rate followed a

polynomial decay rate over the training iterations. We trained

the models with a batch size of 32 for 20 epochs. The

models were developed in Pytorch and all the experiments

were conducted on a system with Ubuntu 22.04 powered by an

Intel Core i9 20 cores with 256GB memory and two NVIDIA

3090 GPUs with 24 GB GPU memory each.

B. Data Augmentation

To enhance the robustness of our models, we incorporated

a series of data augmentation techniques including: Random

Brightness, Random Contrast, Color Conversion from RGB

to HSV, Random Saturation, Random Hue, Color Conversion

from HSV back to BGR, Random Channel Swapping, Random

Resizing, and Random Cropping. Each of these augmentation

methods was applied to the training samples with a probability

of 0.5.

C. Evaluation Metrics

We used Intersection over Union (IoU) metric, also known

as Jaccard Index, to evaluate the model performance. IoU

is defined as the area of the intersection over union of the

predicted segmentation and the ground truth. We report both

IoU for Background and High Vegetation class as well as the

mean IoU (mIoU).

VII. RESULTS

A. Model Fitting to NEON Data

Overall, the ”Full Model” trained on all NEON sites,

classifies High Vegetation and Background with good results,

yielding IoU scores of 83.41% and 81.72%, respectively, and

a mean IoU of 82.57% on the validation set (Table II).

High Vegetation IoU (%) Background IoU (%) mIoU (%)
83.41 81.72 82.57

TABLE II: The model was trained using data from all NEON

sites (Section. V-A). The reported results are based on the

validation set.

B. Single-Site Domain Adaptation

During Leave One Out training, the model’s performance

on the training folds remained nearly constant and comparable

to that of the Full Model. This outcome was anticipated, as

the quantity of images excluded from each individual site

constitutes only about 3 to 5% of the total image count.

The model’s performance on unseen test sites varied, with

some sites showing increased High Vegetation IoU and others

experiencing a decrease. (Fig. 4).

The JORN site exhibits the most substantial decrease in

performance metrics, with its High Vegetation IoU scores

of only 8.77%. This outcome presents a noteworthy case,

as JORN is known to have virtually no tree coverage. Its

inclusion in the dataset was deliberate, aimed at evaluating

the model’s adaptability in scenarios characterized by either

extremely dense or virtually nonexistent tree coverage. On the

other hand, some test sites achieve higher High Vegetation IoU

compared to the training performance for e.g. BART, BLAN,

DELA, GRSM etc.
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Fig. 4: Train on All Sites, Test on One Site: The line plot represents the training performance across all sites and the bar plot

represents the performance on the unseen test excluded during training.

Site 1 Site 2 Site N

NEON Aerial Imagery Satellite Imagery

Full Model

Site 1

Site 2

Site N

Train Val

Site 1

Site 2

Site N

Leave One Out

Site 1

Site 2

Site N

Train/Val Test

Site�i

S \ {i}

Aerial to Satellite

Site 1

Site 2

Site N

Train/Val Test

Satellite

Fig. 5: Data split strategies for Full Model, Single-Site Domain

Adaptation and Aerial to Satellite Domain Adaptation models.

C. Aerial to Satellite Domain Adaptation

Applying the Full Model to our hand-annotated GIS satellite

imagery, we observe a decrease in High Vegetation IoU, which

dropped to 45.73%. Despite this decline, the results remain

promising for practical applications.

High Vegetation IoU (%) Background IoU (%) mIoU (%)
45.73 84.54 65.14

TABLE III: The model was trained using data from all NEON

sites (Section. V-A). The reported results are based on the GIS

satellite imagery set.

VIII. AI-POWERED GEOGRAPHIC INFORMATION SYSTEM

FOR TREE COVERAGE AND CARBON STOCK ESTIMATION

Based on the promising results of our models, we introduce

a publicly available GIS for tree coverage and carbon stock

estimation.

A. Carbon Stock Estimation Workflow

Current methodologies for estimating carbon stock on a

large scale primarily involve using allometric equations [46]–

[51] that establish a relationship between the structure and

species of trees and their estimated carbon stock through

empirical experiments. These equations estimate carbon stock

based on field data collected from small sample plots, which

is then extrapolated to site and regional levels [42]. We

adopt a similar approach for our end-to-end GIS, assuming

a relationship exists between forest tree species, tree coverage

and their carbon stock.

Fig. 7 illustrates our end-to-end carbon stock estimation

workflow. The inputs include RGB satellite imagery to es-

timate forest tree coverage, and other modalities such as

LiDAR and Canopy Height Model are used to calculate forest

structure. Additionally, Eco-regions metadata provides genus

and species information. These inputs are then combined with

allometric equations to output carbon stock estimation. When

other modalities and eco-regions metadata are not available,

the system defaults to conservative allometric equations.

B. System Design

Our application consists of four main blocks, a Semantic

Segmentation back-end (develop with PyTorch), a Web API

back-end (developed with Python FastAPI), a Geo-spatial

Indexing and Caching back-end (developed with MongoDB)

and a Web User Interface (developed with React) as shown

in Figure 8. The Semantic Segmentation back-end hosts our

models for tree semantic segmentation. The Web API back-end

serves the upper layers (i.e Geo-spatial Indexing and Caching

and WebUI) and communicates with the Semantic Segmenta-

tion back-end for inferencing. The Geo-spatial Indexing and

Caching back-end stores the semantic segmentation masks to

save on computation. The masks are indexed based on their

geographic location leveraging the geospatial capabilities of

MongoDB.

C. User Interface

The user interface of the system presents an interactive map,

allowing users to seamlessly navigate and explore real-time

tree semantic segmentation as shown in Figure 6. As they pan

and zoom across the map, the segmented representations of

trees dynamically update, providing an intuitive visualization.

To facilitate quick navigation, a search box is prominently
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Fig. 6: The GIS interface allows the user to navigate satellite images and perform tree semantic segmentation in real-time. The

user can select an area and view the estimated carbon stock within the selected area.

RGB�
Satellite�
Imagery

Other�
Modalities

Eco- regions�
Metadata

Tree�
Coverage�

Estimation

Forest�
Structure

Genus /�
Species

Allometric
Equations

Biomass /�
Carbon Stock

Fig. 7: Our GIS carbon stock estimation workflow.

Semantic�
Segmentation

Web API Web UI

Geo- spatial�
Indexing and�

Caching

Fig. 8: Our GIS system architecture.

positioned at the top left, enabling users to instantly jump

to specific locations by entering relevant keywords or co-

ordinates. Additionally, a toolbox is available on the right,

offering a suite of tools for various tasks. The user can

delineate specific areas of interest using point-based selections,

rectangular regions, and other geometric shapes. Once areas

are selected using these tools, they are highlighted on the map,

and additional information is computed on-the-fly, such as the

estimated biomass and carbon stock.

IX. DISCUSSION

Our Full Model provides an indication of the appropriate

model size necessary for learning from forest environments,

such as those within the NEON network. During Leave One

Out training, some sites such as JORN exhibit a significant

decrease in High Vegetation IoU, often resulting from a shift

in forest characteristics from those in training data. In this

case, JORN is reported to have almost no tree coverage as

derived from LiDAR data.

Fig. 9: In the comparison of ground truth (first row) versus

predictions (second row) for JORN site, the images contain no

ground truth masks, even though some areas visually resemble

trees or vegetation.

Upon visual inspection of the predicted masks against the

ground truth for JORN site (Fig. 9), it is observed that nu-

merous false positives likely arose from discrepancies between

LiDAR data and RGB data in the definition of trees i.e. LiDAR

data does not classify small trees or bushes as High Vegetation
due to the threshold of tree height. On the other hand, large

bushes can visually resemble a large canopy from a bird’s eye

view, which can be challenging to distinguish even for human

experts. This poses a challenge in predicting tree coverage

using only RGB imagery. While RGB images offer visual

details, they lack the structural information about trees that

LiDAR data can provide.

By contrast, sites such as MLBS achieve 95.55% High
Vegetation IoU and ”near-perfect” predictions in most samples

(Fig. 10). In this case, the explanation for this is that MLBS

site has very high tree coverage (85%, Fig. 2) and mono-

culture forests such as MLBS appear uniform from an aerial

perspective due to the predominance of a single tree genus and

species. Therefore, in training, the model only needs to learn

the unique features of this single tree genus and species, in

order to be able to effectively predict across the entire forest

due to the low biodiversity. Within the NEON network, there
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Fig. 10: Test sites such as MLBS achieved ”near-perfect”

predictions.

is a high correlation between tree coverage and test time High
Vegetation IoU with a Pearson correlation coefficient of 0.88.

Fig. 11: Tree coverage vs test time Vegetation IoU. Pearson

correlation coefficient = 0.88.

We use our AI models to develop a GIS for carbon stock

estimation. Currently, our system operates in a two-step pro-

cess, initially predicting tree coverage and then integrating this

with data from various modalities and allometric equations for

carbon stock calculation. As part of our future work, we aim

to enhance our datasets and models to support multi-modality

training, enabling a more direct approach where the model

takes in all modalities as input and directly outputs carbon

stock estimates.

X. CONCLUSIONS

In this study, we introduce a new dataset from aerial and

satellite imagery for tree semantic segmentation of its various

baseline models. We also introduce an end to end GIS for tree

coverage and carbon stock estimation. Our works demonstrate

the potential of AI in environmental analysis, offering valuable

tools for sustainability research. We anticipate our dataset

and baselines will be a valuable contribution to the remote

sensing community to tackle tree coverage and carbon stock

estimation at scale. Our current work primarily focuses on

RGB imagery due to its greater availability from satellite, and

aerial sources. However, future directions will include explo-

ration of additional modalities, such as infrared, multispectral

or hyperspectral bands, to enhance model performance.
Data availability
Our code and analysis are released on GitHub

https://github.com/SustainableML/2024 ieee cai. Data

are available upon request.
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