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Abstract—Machine learning models often struggle to generalise
to out-of-distribution (OOD) data. One promising solution for
solving this problem is test-time training domain adaptation,
which adjusts a trained model to the new test data without
revisiting the source dataset, thus preserving the privacy of
source data. However, existing test-time training methods have
not considered the mining of category information of the test
data in the training for domain adaptation, thus suffering in
inaccurate domain alignment. In this paper, we propose a novel
method called category-aware test-time training (CAT3) to adapt
the pre-trained model to test data on the fly. CAT3 first trains a
model with multiple diverse classifiers using the source datasets
and conducts a source data summarisation. Then, it assigns the
pseudo-labels for the test data that have consistent classification
results from the trained classifiers and adjusts the pre-trained
model by aligning these reliable test data to their correspond-
ing source data categories iteratively. Unlike existing test-time
training methods, CAT3 reveals the category information of the
test data and aligns these reliable test data to the source data at
the category level instead of the dataset level. Empirical results
demonstrate that CAT3 can outperform the current state-of-the-
art methods on several benchmarks, indicating our proposed
method’s effectiveness.

Index Terms—Domain adaptation, test time training, category-
aware learning

I. INTRODUCTION

Machine learning usually assumes that the datasets used

for training and testing share the same data distribution [1].

However, such an assumption does not hold in many real

scenarios. For example, data distributions in changing environ-

ments for real-world applications like medical image analysis

and autonomous driving. The distribution shift may cause a

dramatic prediction accuracy drop. One popular approach to

tackle this issue is domain adaptation (DA), which aligns

the training and test data distributions in the latent space

iteratively, as shown in Figure 1 (a). It has achieved promising

results in various visual tasks [2, 3]. Unfortunately, domain

adaptation requires the access to the training data when

conducting prediction on test data, which faces difficulties due

to privacy concerns, large sizes of source datasets, and other

constraints. Another approach is domain generalisation (DG)
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— learning a universal model on the training domain and

aiming to generalise well to unseen test domains (Figure 1

(b)). Domain generalisation does not require revisiting the

source datasets or accessing the test data during the model

building [4]. However, its performance is usually inferior to

DA due to lacking the knowledge about test data distributions.

The recent advance in solving this dilemma is the test-time

training (TTT): adapting the trained model to the test data on

the fly [5–8].

The existing TTT methods [7–9] achieve the adaptation

by involving additional self-supervised tasks. The basic idea

of methods in [7, 8] is ingenious and compelling: in the

training phase, they train the model for the main task and the

additional self-supervised learning (SSL) task on the source

dataset simultaneously. During the test time, they fine-tuned

the trained model using the SSL task. In addition, source

hypothesis transfer (SHOT) [9] freezes the source hypothesis

after pre-train the model on the source dataset, then adapts the

feature generator module only. However, these existing TTT

ones align the target to the source distribution at the dataset

level, which lacks mining the category information implicit

in the unlabelled target samples and suffers a sub-optimal

performance.

In this paper, we propose a novel method called category-

aware Test-Time Training (CAT3) to align the test data to

the source data on the fly via the summary information

of the source dataset. The proposed method includes two

stages: 1) we train the model with the source dataset and

conduct the offline representation summarisation for the source

domain. The trained model and the offline representation

summarisation are stored and used in test time. 2) at the

test time, we align the test data distribution to the training

data distribution by enforcing the consistency between the

online test data representation estimation and the offline source

data representation summarisation. Specifically, we compute

the mean and covariance matrix of each source class as

the offline representation summarisation. Then, we match the

offline representation summarisation from the training and test

sets iteratively in the second stage. To obtain reliable pseudo-

labels of the test data for the matching, we connect multiple

classifiers (for simplicity, we will employ two classifiers

in this work) on the top of the feature extractor, and the

classifiers are encouraged to be diverse via negative correlation

learning [10]. The test samples with consistent predictions

from these classifiers are signed with the pseudo-labels and
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(a) Conventional domain adaptation (b) Domain generalization (c) Test-time training

Fig. 1. Illustration of the different settings of DA (a), DG (b), and TTT (c). (a) conventional DA aligns the distribution of the training (source) and test
(target) domains while needing the co-existence of source and target datasets which may lead to many concerns. (b) DG learns a generalised model from the
training domain that can generalise well to unseen test domains without utilising the target knowledge. (c) TTT adapts the test domain to the training domain
on the fly without access to the training data and test data annotations.

adopted for online representation summarisation. The novelty

and main contributions are summarised as follows:

• We propose a test-time training domain adaptation frame-

work (CAT3) that reveals the semantics of the test sam-

ples to adapt a pre-trained model to test data on the fly

without accessing the source data and target annotations.

This learning paradigm leverages the knowledge of un-

labelled test data and preserves the privacy of the source

datasets to benefit the model’s performance.

• We design a new distribution alignment strategy to ef-

ficiently align different data distributions via exploiting

the latent semantics of the target test samples. Unlike

the existing test-time training methods that ignore the

category information of the data samples in domain

alignment, our method proposes to identify test data with

reliable pseudo-labels to align with its corresponding

source data categories.

• Extensive experiments on various benchmarks have been

conducted. The results demonstrate that our model can

outperform current state-of-the-art (SOTA) methods.

II. RELATED WORK

A. Domain adaptation

DA aims to mitigate the domain gap between the source

and target domains as much as possible. Existing methods

typically align the two domains by minimising the discrepancy

losses [11–13] or employing the adversarial training strat-

egy [14, 15]. For example, Saito et al. developed a strong-

weak distribution alignment strategy to achieve distribution

alignment on local and global levels [16]. Feng et al. [17] pro-

posed a contrastive domain adaptation with consistency match.

These methods have achieved promising results. However, they

require the access to the source data for domain alignment,

which is challenging to meet in many practical scenarios with

privacy concerns and other constraints.

B. Domain generalisation

DG aims to learn a universal model from source domains

and expects the trained model can be generalised well to an

arbitrary unseen out-of-distribution (OOD) target domain [18].

The main advantage of DG is that it does not require revisiting

Fig. 2. Illustration of the proposed CAT3. It first trains the model on the
source dataset and summarises the distribution of each category. Then it aligns
the unlabelled test samples to their source data category by mining the latent
semantic information of the test data iteratively during the alignment process
to adapt the trained model for the test data domain.

the source datasets nor accessing the test data during the model

building [4]. One popular family of DG methods mainly tries

to learn domain invariant features by kernel approach [19, 20]

and domain-adversarial learning [21, 22]. For example, Shao

et al. [22] proposed a multi-adversarial discriminative domain

generalisation method. Another popular family of DG methods

is domain augmentation. It simulates samples from fictitious

domains with gradient-based adversarial perturbations [23, 24]

and adversarially trained generators [25, 26]. Recently, a

few studies have shown that data augmentation during train-

ing [27–30] and during testing [31–33] can improve model

robustness and generalisation ability significantly. However,

the performance of the DG approaches is usually inferior to

domain adaptation due to lacking the knowledge of the test

data distributions.

C. Test-time training domain adaptation

To improve the model’s prediction accuracy without revis-

iting the source datasets, test-time training domain adaptation

(T3DA) updates the model on the fly according to test samples

and the summary information of the source data. One key

advantage of T3DA is that there is no need to presuppose the

test domain as in DG, and no need to rely on source training
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Fig. 3. An overview of the proposed CAT3 method. It contains two stages.
In the first stage (blue box), we propose a dual-classifier (C1 and C2 are both
for the main task, and they are negative correlation to each other) model for
source training, after training, we summarise the distribution for each class,
then save it as a part of the model. In the second stage (green box), we
fix the trained dual-classifier as it encodes the source data distribution, then
update the feature extractor by aligning the target representation to the source
distribution with the reliable pseudo label generated by the dual-classifier.

data as in DA. The pioneer test-time training methods create

an additional self-supervised learning (SSL) task [6, 7] and

train the model with such auxiliary SSL task together with

the main task. Then it adapts the trained model through the

auxiliary SSL task with the test data. The key limitation of this

approache is that it may result in severe over-fitting of the SSL

task [8]. Accordingly, one challenge is how to overcome this

issue. We also note that all the existing methods align the

distribution without considering the latent semantics of the

target test data. Our proposed method belongs to the test-time

training approach, and it presents a novel framework, CAT3,

that tackles these challenges.

III. METHODOLOGY

A. Problem formulation

We aim to tackle the unsupervised DA problem without

revisiting the source dataset. Let us denote the source and

target domains as Ds and Dt, respectively. For an unsu-

pervised DA problem, we observe a set of ns labelled data

Ds = {xs
i , y

s
i }ns

i=1 sampled from Ds and a set of nt unlabelled

data Dt = {xt
i}nt

i=1 sampled from Dt. The target domain Dt

is relevant to Ds but Dt �= Ds. For test-time training domain

adaptation, we are allowed to use the source data Ds for the

model pre-training. After the deployment of this pre-trained

model Ms, we aim to adapt Ms to the test data Dt on the

fly without revisiting Ds and obtain the new model Mt to

achieve accurate classification of the test data.

B. Framework of CAT3

The overview of the proposed CAT3 method is shown in

Figure 3. Our method includes two stages. In Stage 1, the

source data are adopted to pre-train the feature extractor g and

two classifiers f1 and f2 for classifying the source samples.

Then, the source data samples are mapped to the feature

space for the source data summarisation. In Stage 2, the

feature extractor g is fine-tuned using the test data to adapt

the pre-trained model Ms to Mt on the fly. Furthermore, by

considering the performance improvement of using contrastive

learning in test-time training as varied in [8], we also use

contrastive learning as the SSL task.

C. Pre-training and source data summarisation

In the first stage, we train a model with two diverse

classifiers on the source dataset. Specifically, we first map

the source samples with the feature extractor g(θ, ·) into the

feature space as zi = g(xi). The feature representations of the

source data z1, z2, . . . , zns
will be classified by two different

classifiers f1 and f2. To learn two diverse classifiers, we

adopt the negative correlation learning strategy [10], which

is originally designed for ensemble learning. Mathematically,

we minimise the following function:

L1 = Lsc + λ1Lnc + λ2Lss, (1)

where Lsc is the classification loss for the source data, Lnc is

the loss for the negative correlation learning, and Lss is the

self-supervised learning loss for the source data (i.e., the loss

for the SSL task). The two hyper-parameters of λ1 and λ2 are

adopted to trade off the contributions of the three loss items.

In the main task, the classification loss for the source dataset

Lsc is defined as follows:

Lsc =
1

ns

ns∑

i=1

σ(f1(zi),yi) + σ(f2(zi),yi), (2)

where σ(·, ·) is the cross-entropy loss function for the two

inputs.

In negative correlation learning, a correlation penalty term is

introduced to the loss function of each classifier, thus enabling

the joint training of both classifiers. The negative correlation

learning loss for the two classifiers is defined as:

Lnc =
1

ns

ns∑

i=1

(f1(zi)− f̄)2 + (f2(zi)− f̄)2, (3)

where f̄ = f1(zi)+f2(zi)
2 is the average value of the outputs

from the two classifiers.

In the SSL,two enhanced perspectives derived from an

identical source instance are employed as a positive duo, while

all other combinations are considered negative for training

purposes. It has a self-supervised learning head φ to map

the feature representations of the two augmented views into

a lower-dimensional space. For given a batch of nb samples,

we obtain the lower-dimensional representations as {hk}2nb

k=1.

Then, the negative pairs are encouraged to be far away and

the positive pairs are pulled closer by minimising the loss

function:

Lss = − 1

2nb

2nb∑

k=1

log
1k==l exp(

cos(hk,hl)
τ )

∑2nb

m=1 1k �=m exp( cos(hk,hm)
τ )

, (4)

where τ is a temperature scaling parameter.
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Upon the completion of the training for the model Ms via

Equation (1), we conduct the offline source data summarisation

to characterise the distribution of each source data category.

For the c-th source category, we denote the feature vectors

as Zc = [zα1
, zα2

, . . . , zαnc
], where α1, α2, . . . , αnc

are the

indices of the c-th category samples and nc is the number of

samples in category c. Then, we compute its empirical mean

and covariance matrix as:

uc =
1

nc
(zα1

+ zα2
+ · · ·+ zαnc

) (5)

and

Σc =
1

nc − 1
(ZT

c Zc − (ITZc)
T (ITZc)), (6)

where c = 1, 2, . . . , C and C is the total number of categories.

D. Time-time training strategy

In Stage 2, we conduct the test-time training with self-

supervised learning and domain alignment. Note that we

freeze the weights of the classifiers and fine-tune the feature

extractors and the SSL head as shown in Figure 3. For the

SSL task, we adjust the model weights on the test data by

minimising the loss function, as same as the first stage, in

Equation (4).

For the domain alignment, we first map the test samples

with the pre-trained feature extractor g into the feature space

as ẑ1, ẑ2, . . . , ẑnt
and compute the prediction results from

the two classifiers f1 and f2 for each test sample xt
i. Then,

we assign a pseudo-label for the test sample with consistent

prediction results from the classifiers and classify it into

its corresponding category. For the c-th target category, we

denote the feature vectors as Ẑc = [ẑβ1
, ẑβ2

, . . . , ẑβnc
], where

β1, β2, . . . , βnc
are the indices of the c-th category test samples

and nc is the number of samples in category c. Next, we

compute its empirical mean and covariance matrix as:

ûc =
1

nc
(ẑβ1

+ ẑβ2
+ · · ·+ ẑβnc

) (7)

and

Σ̂c =
1

nc − 1
(ẐT

c Ẑc − (IT Ẑc)
T (IT Ẑc)). (8)

The domain alignment is based on minimising the distance

between the distribution statistics estimated from a mini-

batch of test data (i.e., ûc and Σ̂c) and the pre-stored source

summarisation statistics (i.e., uc and Σc):

Lda =

C∑

c=1

(‖ûc − uc‖22 + ‖Σ̂c − Σc‖2F ), (9)

where ‖ · ‖ denotes the Euclidean norm and ‖ · ‖F denotes the

Frobenius norm.

In summary, we minimise the following objective function

in the second stage:

L2 = Lss + ηLda, (10)

where η is a hyper-parameter to trade off the two terms.

The objective functions for the two stages, i.e., Equation (1)

and Equation (10), can be optimised using a stochastic gradient

Fig. 4. The classification of CAT3 under different image corruptions on
CIFAR10 and CIFAR100.

TABLE I
THE AVERAGE CLASSIFICATION ERROR RATES (%) OF OUR PROPOSED

CAT3 AND OTHER PEER METHODS ON CIFAR10-C, CIFAR100-C [39],
AND CIFAR10.1 [36].

Method CIFAR10-C CIFAR100-C CIFAR10.1
Test 29.1 61.2 12.1
BN [37] 15.7 43.3 14.1
TTT-R [7] 14.3 40.4 11.0
SHOT [9] 14.7 38.1 11.1
TENT [5] 12.6 36.3 13.4
TTT++ [8] 10.2 34.4 10.4
CAT3 9.2 32.4 9.0

descent optimisation algorithm, such as ADAM [34]. After the

training, we infer the test samples by averaging the outputs of

the two trained classifiers.

IV. EXPERIMENTAL STUDY

We test our method under three scenarios: common image

corruptions on CIFAR10 and CIFAR100 [35] and natural

domain shifts (CIFAR10.1 [36]). We compare CAT3 with the

current SOTA, including test-time training domain adapta-

tion methods, namely Batch Normalization (BN) [37], Test-

Time Entropy Minimization (TENT) [5], Source Hypothesis

Transfer (SHOT) [9], Test-Time Training (TTT-R) [7], and an

improved test-time training (TTT++) [8]. Also, we report the

performance of the source-trained model (without any test-

time training adaptation) by directly evaluating it on the test

data.

A. Experimental settings

We use the ResNet-50 [38] network as the backbone for

the feature extraction by following the same setting with [8]

for a fair comparison. The entire network is implemented in

PyTorch and trained on an NVIDIA DGX Station A100, which

includes four NVIDIA A100 Tensor Core GPUs. To optimise

our method’s objective functions, we adopt the ADAM opti-

miser with a learning rate of 0.001 and the maximal number

of training epochs as 500.

B. Common image corruption

Firstly, we evaluate our CAT3 method by using 15 kinds of

common image corruptions. The evaluation process followed

the protocol of TENT [5] and TTT++ [8]. The source do-

main is the original CIFAR10 and CIFAR100 [35], and the

target domain is generated by involving 15 kinds of different

corruptions (e.g., snow, frog, blur, and noise effects) in the
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TABLE II
THE CLASSIFICATION ERROR RATES (%) OF OUR PROPOSED CAT3 AND

THE PEER METHODS ON THE VISDA-C DATASET.

Class Test BN TENT SHOT TTT++ CAT3

plane 56.52 44.38 13.43 5.73 4.13 4.01
bcycl 88.71 56.98 77.98 13.64 26.20 20.33
bus 62.77 33.24 20.17 23.33 21.60 19.5
car 30.56 55.28 48.15 42.69 31.70 29.42
horse 81.88 37.45 21.72 7.93 7.43 6.25
knife 99.03 66.60 82.45 86.99 83.30 75.44
mcycl 17.53 16.55 12.37 19.17 7.83 7.79
person 95.85 59.02 35.78 19.97 21.10 20.37
plant 51.66 43.55 21.06 11.63 7.03 6.53
sktbrd 77.86 60.72 76.41 11.09 7.73 6.77
train 20.44 31.07 34.11 15.06 6.91 5.93
truck 99.51 82.98 98.93 43.26 51.40 45.86
Avg. 58.72 48.12 42.73 25.04 22.46 20.68

original test set as the CIFAR10-C and CIFAR100-C [39].

Firstly, we employ a ResNet-50 [38] as the backbone and

train it on the source dataset. Then, we do test-time training

on the 15 generated target test sets and compute the average

classification error based on all 15 target test sets. The batch

size is set as 256 in the procedure of test-time training.

For the online feature alignment, we use the dynamic queue

by following [8], which contains 16 batches. The average

classification error on the CIFAR10-C and CIFAR100-C [39]

datasets are reported in Table I and Figure 4, from which we

can find that:

• The model pre-trained on the original datasets of CI-

FAR10 and CIFAR100 cannot generalise well to the

common image corruption scenarios. The test error rates

on CIFAR10 and CIFAR100 reach 29.1% and 61.2%,

respectively.

• All test-time training domain adaptation methods can

significantly improve the performance of the pre-trained

model. For example, the method of BN can reduce the

error rate from 29.1% to 15.7% on CIFAR10 and from

61.2% to 43.3% on CIFAR100.

• CAT3 outperforms all the peer methods on the two test

datasets. It reduces the error rate of the current SOTA

method (TTT++) from 10.2% to 9.2% on CIFAR10 and

from 34.4% to 32.4% on CIFAR100. However, CAT3

struggles to handle the corruptions of “impluse noise” and

“frosted glass blur” and results in the error rates of 12.9%
and 14.4% on CIFAR10 and 42.1% and 39.7% on CI-

FAR100. This result shows that we need to improve CAT3

for handling the scenarios with bit errors and “frosted

glass” windows or panels. For other common image

corruptions, CAT3 can have a lower error rate, especially

for the corruptions of “zoom blur”, “brightness”, and

“contrast”. These results indicate that the category-aware

strategy contributes to the accurate domain alignment and

verifies the effectiveness of CAT3 for handling common

image corruptions.

C. Natural domain shift

In addition, we assess the performance of our proposed

CAT3 on a natural distribution shift scenario. The models

are pre-trained on CIFAR10 and tested on CIFAR10.1 [36].

As demonstrated in [36], the natural distribution shift from

CIFAR10 to CIFAR10.1 typically makes the model an accu-

racy drop around 4% to 10% for a wide range of deep neural

networks. The comparison of the test-time training methods is

reported in Table I, from which we can see that:

• The model pre-trained on the original datasets of CI-

FAR10 suffers an error rate of 12.1% on the CIFAR10.1

dataset. The natural distribution shift causes a much

milder problem for the pre-trained model compared with

some of the common image corruptions.

• Most test-time training domain adaptation methods can

improve the performance of the pre-trained model. How-

ever, some of the domain adaptation methods make the

case worse. For instance, the method of BN increases the

error rate of the pre-trained model from 12.1% to 14.1%.

The potential reason is that BN assumes different samples

and spatial locations are shifted in a similar manner [37],

which is not held in the natural distribution shit scenario.

• CAT3 outperforms all the peer methods on CIFAR10.1. It

reduces the error rate of current SOTA method (TTT++)

from 10.4% to 9.0%. It verifies the effectiveness of CAT3

for handling the natural distribution shift.

D. Ablation study

To study the effectiveness of different components of our

method, we construct three variants of CAT3, including the

variant that only uses the SSL task to adapt the model, the

variant that assigns the pseudo-label with one classifier only

(i.e., w/o f2) for domain alignment, the variant that minimises

the distance between the mean of each category (i.e., w/o Σc).

The results are shown in Table II, from which we see that:

• The incorporation of the SSL task can adopt the model

well for the data with common image corruptions and

natural distribution shit. The model only with the Lss

obtains the error rate of 11.1% on CIFAR10-C and 10.7%
on CIFAR10.1.

• The category-level domain alignment can achieve promis-

ing results even with only one classifier (i.e., w/o f2)

to assign the pseudo-labels for the test samples. The

involvement of the second classifier can reduce the error

rate further.

• The minimisation of the distance between the two do-

mains using the covariance of the data categories can

reduce the error significantly. Specifically, it can reduce

the error rate by 5%, 5.1%, and 4.8% on CIFAR10-C,

CIFAR100-C, and CIFAR10.1, respectively.

• Full CAT3 outperforms all of its three variants on all

three datasets, which indicates that all the developed

components are essential to CAT3 and contribute to its

final performance.
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(a) Source test data representations obtained
by the pre-trained model

(b) Target test data representations obtained
by the pre-trained model

(c) Target test data representations obtained
by the fine-tuned model with CAT3

Fig. 5. The embeddings of the learnt representations from the pre-trained model and the fine-tuned model with CAT3. The source data are from the CIFAR10
dataset, and the target test samples are from CIFAR10 with the corruption of “snow”. The samples from different categories are denoted in different colours.

TABLE III
THE CLASSIFICATION ERROR RATES (%) OF CAT3 AND ITS THREE

VARIANTS ON CIFAR10-C, CIFAR100-C [39] AND CIFAR10.1 [36].

Method CIFAR10-C CIFAR100-C CIFAR10.1
Lss only 11.1 36.9 10.7
w/o f2 9.7 34.1 9.6
w/o Σc 14.2 37.5 13.8
Full CAT3 9.2 32.4 9.0

E. Visualisation of learnt representations

To visually understand the effectiveness of CAT3 for repre-

sentation learning on CIFAR10 with the corruption of “snow”

on the target test data, we adopt the t-SNE algorithm [40]

to project the learnt representations into a 2D plane, as

shown in Figure 5. Specifically, we plot the embeddings of

the representations obtained by the pre-trained model for the

source data (Figure 5 (a)) and the test data (Figure 5 (b)) and

the embeddings of the representations obtained CAT3 for the

test data (Figure 5 (c)).

From the results in Figure 5 (a), we can see that the test

samples from different categories in the source data are well

grouped into different clusters (denoted in different colours),

except a few samples are mixed with other groups. These

results are consistent with the fact that the pre-trained model

can typically achieve high accuracy on CIFAR10.

As shown in Figure 5 (b), the representations from the pre-

trained model for the target data from different categories are

not well distinguished. Some of the target data categories

are mixed. Since the learnt representations from the pre-

trained model for the target test data are not distinguishable,

its classification error rate can be as high as 29.1% for the

CIFAR10-C dataset.

From Figure 5 (c), we can see that the samples from

different categories are well grouped into different clusters.

It means that by using the test-time training with CAT3, the

model can project the target test samples into different clusters

in the feature space. Only a small portion of samples are mixed

into samples from other categories, which is consistent with

the result that the error rate is 9.2% on CIFAR10-C and the

error rate on the test data with the corruption of “snow” is

8.37%.

V. CONCLUSION

In this paper, we proposed a novel domain adaptation

method CAT3 to adapt the pre-trained model for the test

data on the fly. It does not require revisiting the source data

during the domain adaptation process, thus preserving the

source data privacy and extending its application to more

scenarios with constraints to store the source data. We intro-

duced the category-aware domain alignment strategy, which

had yet to be explored in test-time training. We employed

negative correlation learning to train two classifiers for the

label prediction to obtain more accurate pseudo-labels for the

test samples during the iterative domain alignment. By con-

ducting extensive experiments, we verified the effectiveness

of our proposed method on several benchmarks, which cover

the common corruptions and natural distribution shift. CAT3

can outperforms the current SOTA methods on all three test

benchmarks with a significant margin. One limitation of our

method is handling the scenario where some categories may

have a very limited number of test samples. Our method may

not be stable since the mean and covariance of one category

can change significantly during different iterations of category-

level alignment, which will be investigated in future work.
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