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Abstract—In machine learning, particularly with tabular data,
ensemble methods and neural networks stand as the preeminent
approaches for predictive modeling. Among these, XGBoost and
TabNet have demonstrated remarkable efficacy and interpretabil-
ity. However, one critical challenge in these methodologies is their
performance on imbalanced datasets, a common yet intricate
issue in many real-world applications. This research paper
proposes novel modifications to TabNet, tailored to enhance its
performance on imbalanced tabular datasets. Our methodology
introduces multiple loss functions for the TabNet architecture.
These modifications improve the models’ sensitivity to minority
classes and enhance overall predictive accuracy on imbalanced
data. We conducted a comprehensive performance comparison
using various synthetic and real-world datasets characterized
by significant class imbalances. TabNet, combined with IBLoss,
achieved a GM score on real-world data up to 92%. On synthetic
data, the highest GM score was up to 82% using TabNet
in combination with BVSLoss. These results demonstrate that
TabNet is robust to imbalanced datasets and can learn well
even on imbalanced data. The performance is further boosted
by incorporating a loss function built for imbalanced data,
such as BVSLoss or IBLoss. On the other hand, XGBoost fails
to converge if not adapted to imbalanced data with sampling
or cost-sensitive learning, resulting in less accurate prediction
performance.

Index Terms—imbalanced learning, TabNet, XGBoost, over-
sampling, bankruptcy

I. INTRODUCTION

Machine learning has seen significant advancements in

recent years, revolutionizing domains such as natural language

processing, computer vision, and healthcare. As machine

learning models grow in complexity and capability, they face

a critical challenge when confronted with imbalanced datasets

[1]. Imbalanced datasets are characterized by a significant

disparity in the distribution of classes, where, in the case

of binary classification tasks, one class (minority class) no-

ticeably outnumbers another (majority class). This inherent

class imbalance poses a significant obstacle to the practical

application of machine learning techniques, as it can lead to

biased and suboptimal model performance [2].

Imbalanced learning is a crucial issue that is present in

many real-world scenarios such as medical diagnoses [3],

bankruptcy prediction [4] or fraud detection [5]. Positive cases

(e.g., diseases, frauds, or rare events) are often significantly

lower than negative cases, creating a natural class imbalance.

Therefore, addressing imbalanced data is essential for success-

fully deploying machine learning in these critical domains.

Secondly, the imbalanced nature of data can severely affect

model training, evaluation, and generalization [6]. Traditional

machine learning algorithms are biased towards the majority

class when applied directly to imbalanced datasets as they

assume relatively balanced class distribution. Consequently,

they may achieve high accuracy in predicting the majority

class but perform poorly on the minority class. This bias can

have serious consequences, mainly when misclassification of

minority instances is costly or has critical implications. Ad-

ditionally, traditional evaluation metrics such as the accuracy

score can be misleading in imbalanced settings, as a model

that predicts all instances as the majority class can still achieve

high accuracy but provide little practical value.

TabNet [7] and XGBoost [8] have emerged as significant

breakthroughs for their unparalleled efficacy in handling tabu-

lar data, a standard format in many real-world applications.

TabNet, with its unique deep learning approach, leverages

attention mechanisms to selectively consider features at each

decision step, offering interpretability akin to decision trees

while harnessing the power of neural networks. On the other

hand, XGBoost, a scalable and efficient implementation of

gradient boosting, has gained immense popularity due to

its performance and speed, making it a go-to algorithm for

many predictive tasks. They not only provide state-of-the-art

accuracy but also introduce a level of interpretability that is

critical in fields ranging from finance to healthcare.

Several machine-learning approaches have emerged in re-
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cent years to combat imbalanced scenarios. The most popular

ones are sampling techniques [9], ensemble learning [10],

outlier detection methods [11], cost-sensitive learning [12], al-

gorithmic modifications [13], and a mixture of the approaches

mentioned above, well-known as hybrid methods [14].

Sampling involves either oversampling the minority class

or undersampling the majority class to balance the dataset.

Cost-sensitive learning adjusts the learning process to place

a higher penalty on misclassifying the minority class. Algo-

rithmic modifications involve adapting existing algorithms to

be more sensitive to the imbalance, such as using different

thresholds for classification. Ensemble methods, like bagging

and boosting, can be effective, especially when combined

with oversampling or cost-sensitive techniques [15]. These

approaches aim to improve model performance on minority

classes without compromising overall accuracy.

In this paper, we propose several new variations of Tab-

Net architecture and compare them with the performance of

imbalanced XGBoost. The experimental results on multiple

synthetic and real-world datasets indicate that imbalanced

TabNet can match and even outperform the predictions of

imbalanced XGBoost.

II. IMBALANCED TABNET

This section briefly describes the imbalanced TabNet uti-

lized in the experimental study.

A. TabNet

TabNet [7] is a novel tabular learning method that combines

the strengths of both deep neural networks and decision trees.

Its encoder structure comprises multiple steps (Nsteps). In

this sequence, each step i receives information processed

from the preceding step (i − 1). This information is used

to select relevant features, and the step then produces a

processed feature representation. These representations from

each step are collectively aggregated and contribute to the final

decision-making process. The model takes in a dataset with

a specified batch size B and features of specific dimensions

D. Importantly, this input does not require global feature

normalization before being fed into the model. Once the data

is inputted, it goes through a batch normalization layer, which

is forwarded to a feature transformer for further processing.

The feature transformer in TabNet is composed of a series

of n gated linear unit (GLU) blocks. Each GLU block incor-

porates three essential layers: a fully connected layer, a batch

normalization layer, and a GLU layer. In a scenario where four

GLU blocks are utilized, the configuration includes two shared

blocks and two operated independently. This design aids in

achieving robust and efficient learning in terms of parameter

usage. Additionally, the architecture features a skip connection

between every two consecutive blocks, enhancing the flow of

information and gradients during the learning process. After

each block, a normalization step is applied to ensure stability

and control variance, explicitly using the
√
0.5. After batch

normalization, the processed features are directed through the

feature transformer. The transformed output is subsequently

channeled to the attentive transformer corresponding to the i-
th step via a split layer. This mechanism allows for effective

and nuanced processing of features, which is crucial for the

model’s performance in handling tabular data.

The attentive transformer in TabNet comprises four layers:

a fully connected layer, batch normalization layer, prior scales,

and sparsemax. It starts by receiving input from a split layer

and then sequentially processes this data through the fully

connected and batch normalization layers. Following these,

the input is directed to the prior scales layer, aggregating

the magnitudes of features used in previous decision steps.

This aggregation informs the model about the extent of each

feature’s usage before the current step, playing a key role in

dynamic feature selection. Finally, the data passes through the

sparsemax layer, which refines the focus on the most relevant

features for the model’s predictions. The sparsemax layer can

be defined by the following equation

P [i] =
i∏

j=1

(γ −M [j]), (1)

where γ is the relaxation parameter. The attentive transformer

in TabNet calculates the mask layer for the current step using

the results from the prior step. Its main role is to create a

learnable mask (M [i] ∈ R
B∗D), which selectively identifies

the most important features for that step. This selective process

ensures the model’s efficiency, as it concentrates the learning

on relevant features without wasting capacity on irrelevant

ones. Masking is a multiplicative process, applying these

learned masks to the features processed in the previous step

(a[i− 1]), thereby guiding the model to focus on key features

in each decision step. The mask can be expressed with the

following equation

M [i] = sparsemaxP [i− 1] ∗ hi(a[i− 1]), (2)

where h(•) is the trainable function that represents the fully

connected and batch normalization layers, P [i−1] is the prior

scales item, and the sparsemax layer is used for coefficient

normalization, resulting in sparse feature selection. The mask

enables interpretability and improves feature selection from

the attentive transformer. Mbj [i] represents j − th feature of

b − th samlpe. If Mbj [i] = 0, there is no contribution from

the feature at that step. Aggregating these masks at each step

creates a coefficient that weights the importance of each step

in a final decision.

B. Vector-scaling Loss and Binary Vector-scaling Loss

The vector-scaling loss (VSLoss) [16] and binary vector-

scaling loss (BVSLoss) are both loss functions designed for

classification tasks involving imbalanced datasets. However,

there are some key differences between these loss functions.

The VSLoss is a more general loss function that can be

used for binary and multi-class classification. It is based on

the idea of scaling the logits of the classifier before applying

the cross-entropy loss. This scaling is done in a way that is

designed to give more weight to the minority classes. The
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VSLoss involves two stages of scaling. In the first stage, the

logits are scaled by a vector of multiplicative logit parameters.

These parameters are optimized during training to achieve a

specific goal, such as minimizing the loss or maximizing the

accuracy of the classifier for the minority class. In the second

stage, the scaled logits are further scaled by a vector of additive

logit parameters. These parameters are also optimized during

training to improve the classifier’s performance, particularly in

the terminal phase of training. The VSLoss loss is expressed

as follows

LV S(y, fω(x)) = −ωy · log
(

eΔyfy(x)+ιy∑
c∈[C] e

Δcfc(x)+ιc

)
. (3)

The BVSLoss is a special VSLoss case specifically designed

for binary classification. It is based on the same idea of

scaling the logits but uses a different scaling function that is

more effective for binary classification. The BVSLoss is also

more efficient than the VSLoss as it requires no additional

parameters. The following equation defines the BVSLoss

LBV S(y, fω(x)) = ωy · log
(
1 + eιy · e−Δyyfω(x)

)
. (4)

Here, in formulas (3) and (4) fw : R
d → R

C , fw(x) =
[f1, ..., fC] is the vector of logits.

C. Influence-balanced Loss

Influence-balanced loss (IBLoss) [17] is a newly developed

loss function for classification tasks that involve imbalanced

datasets. It aims to address the class imbalance issue by adapt-

ing the loss function to the importance of each sample rather

than treating them equally. This is achieved by considering the

influence of each sample on the decision boundary during the

training process. The influence of the sample can be defined

by the influence-balanced weighting factor expressed by the

following formula

IBLoss(x;ω) =‖ ∇ωL(y, f(x, ω)) ‖1, (5)

also called the magnitude of the gradient descent. Re-

weighting samples by the magnitude of the gradient vector can

successfully down-weight samples from dominant classes. To

define the IBLoss, let h = [h1, ..., hL]
T be an input to the last

fully connected layer of the model. Next, define the output

of the fully connected layer as f(x, ω) = [f1, ..., fK ]T . The

gradient of the loss function can be computed as follows

∂

∂ωkl
L(y, f(x, ω)) = (fk − yk)hl. (6)

The weight matrix of the last fully connected layer is denoted

by ω = [ω1, ..., ωK ]T ∈ RK×L. Using (6), the IBLoss(x;ω)
is given by the following equation

IBLoss(x;ω) =‖ f(x, ω)− y ‖1 · ‖ h ‖1 . (7)

Then, the equation (7) can be used as a re-weighting factor

to downscale the influence of the majority class samples. The

IBLoss function is expressed as follows

LIBLoss(y, f(x, ω)) =
L(y, f(x, ω))

‖ f(x, ω)− y ‖1 · ‖ h ‖1 . (8)

D. Label-Distribution-Aware Margin Loss

The label-distribution-aware margin loss (LDAMLoss) [18]

is a sophisticated approach for handling class imbalance in

classification tasks. The foundation of LDAMLoss is cross-

entropy loss, commonly used in classification tasks. The cross-

entropy loss measures the difference between the predicted

probability distribution (outputted by the model) and the true

distribution (actual class labels). The standard cross-entropy

loss can be expressed as follows

LCE = − log

(
efyi∑C
j=1 e

fj

)
, (9)

where fj is the logit (i.e., the raw output of the neural network)

for class j, yi is the true class for the i−th sample. The

LDAMLoss introduces a margin term to the cross-entropy loss.

A margin in the context of classification can be thought of as

a buffer zone that separates classes. In simple terms, it’s the

”extra effort” the model needs to put into classifying a sample

correctly. LDAMLoss introduces this concept by adding a

margin term to the logits of the true class before computing

the cross-entropy loss. The margin is not constant; it varies

inversely with the square root of class frequency, which can

be expressed by the following formula

Δc =
C√
nc

, (10)

where C is a hyperparameter that controls the overall scale of

the margins, and nc is the number of samples in class c. This

design inherently gives more ”breathing space” to minority

classes. Then, the LDAMLoss formula is as follows

LLDAMLoss = − log

(
efyi−Δyi

efyi−Δyi +
∑

j �=yi
efj

)
. (11)

Here, Δyi is the margin for the true class yi of the sample.

These equations are the basis of the LDAMLoss, capturing the

essence of how it adjusts the standard cross-entropy loss to

account for class imbalance by introducing a class-dependent

margin.

E. Mean Divergence Regularization

Mean divergence regularization (MDR) [19] is a machine

learning technique used to enhance a model’s generalization

capability by ensuring that its outputs or some internal repre-

sentations do not deviate excessively from their average values

across the training dataset. This approach can be particularly

useful in complex models like deep neural networks.

Let be ŷ = F (x) ∈ [0, 1] the output of the model. If the

distribution of the network’s output p(ŷ|x), the prior proba-

bility of each class is not identical. Let’s consider standard

cross-entropy loss and dataset D = {D+, D−}. The mean of
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the cross-entropy for the dataset D can be expressed with the

following formula

LCE = − 1

|D|
|D|∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)]

≈ −
∫

m log ŷ + n log(1− ŷ) dx.

(12)

Here, m = p(x = D+) and n = p(x = D−). If ŷ = m
m+n ,

the equation (12) takes on a minimum. In case m = n, ŷ
converges to 1/2. The distribution has a skewed mean when m
is greater than n or n is greater than m. In unbalanced datasets,

negative samples are greater than positive; thus, the mean of

distribution p(ŷ|x) becomes close to 0. A regularization term

is added to the loss function to mitigate the model’s bias to the

negative class samples. The cross-entropy loss function with

regularization term can be defined as follows

LCE+MDR = LCE +
λ

2

∣∣∣∣12 − Ex [F (x)]

∣∣∣∣
2

. (13)

In the case of training the model with mini-batches of size M ,

the function has the following form:

LCE+MDR =
1

|M |
|M |∑
i=1

LCE(i) +
λ

2

∣∣∣∣∣∣
1

2
− 1

|M |
|M |∑
i=1

F (xi)

∣∣∣∣∣∣
2

.

(14)

In (13) and (14), the λ is the hyperparameter. The main goal

of the regularization term is to set a penalty as the difference

between the optimal mean 1/2 and the mean of the network’s

output and prevent the model from being highly skewed.

III. XGBOOST

XGBoost is a decision-tree-based ensemble machine learn-

ing algorithm that uses a gradient-boosting framework. Pre-

diction problems involving unstructured data (like images or

text) are not as effective as deep learning, but structured/tabular

data is often considered one of the best. The core of XGBoost

is the gradient-boosting algorithm. Gradient boosting involves

building models sequentially, where each new model incre-

mentally reduces the errors of the previous models. Models

are added until no further improvements can be made. The

gradient boosting approach minimizes a loss function, which

measures the difference between the predicted and actual

values. In XGBoost, decision trees are used as base estimators.

Each decision tree is added to correct the errors made by the

previous trees. Unlike random forests, which build each tree

independently, gradient boosting sequentially combines them.

The complexity of the XGBoost algorithm can be described

in terms of its objective function and the factors contributing to

the computational complexity of training the model. The ob-

jective function in XGBoost for training at each step includes

both a loss function and a regularization term. If we have a

dataset with n samples and m features, and f represents the

model (ensemble of trees), the objective function at iteration

t is given as

Objt =

n∑
i=1

l(yi, ŷ
y−1 + ft(xi)) + Ω(ft), (15)

where l is a differentiable convex loss function that measures

the difference between the predicted value ŷy−1 + ft(xi) and

the actual value and yi. The function Ω(ft) represents the

regularization term, which typically includes the complexity

of the tree ft being added at step t. The regularization term

Ω(ft) is usually defined as

Ω(ft) = αT +
1

2
β

T∑
j=1

ω2
j , (16)

where T represents the number of leaves in the tree, ωj is the

score on the j − th leaf, α is the parameter penalizing the

number of leaves, and β is the L2 regularization term on the

leaf weights.

IV. EXPERIMENTS

This section briefly describes the data and methodology

used throughout the experimental study.

A. Datasets

This study focuses on two types of data, the real-world

and the synthetic, to assess the performance of the pro-

posed imbalanced TabNet approaches. The overview of the

utilized datasets is presented in Table I. The synthetic datasets

(Synth 1, Synth 2, and Synth 3) were artificially generated

using Scikit-learn [21] library generators.

TABLE I
DETAILED CHARACTERISTIC OF UTILIZED DATASETS

Dataset Samples Features Imbalance
ratio

Synth 1 1000 50 3:1
Synth 2 500 100 12:1
Synth 3 500 200 33:1
Bankruptcy 13 1230 60 50:1
Bankruptcy 14 1448 60 49:1
Bankruptcy 16 2174 60 156:1
Car Claims 1800 25 7:1

The real-world data were represented by bankruptcy

prediction datasets (Bankruptcy 13, Bankruptcy 14 and

Bankruptcy 16) [22] and fraudulent claim on cars physical

damage dataset (Car Claims) [23]. Bankruptcy prediction

datasets are constituted by financial ratios of thousands of

small and medium-sized enterprises from construction busi-

ness areas operating in the Slovak Republic. These datasets

represent the timespan of 3 different evaluation years, namely

2013, 2014, and 2016. In this context, the evaluation year is

defined as the year a company is evaluated as either a going

concern (non-bankrupt) or financially distressed (bankrupt).

The data gathered from publicly accessible annual reports

characterized each company through financial ratios based on
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information from annual reports spanning three years before

the evaluation year.

The Car Claims dataset contains a wide range of informa-

tion about car insurance claims, including details about the

claimant, the vehicle involved, the damage’s extent, and the

claim’s outcome. We randomly subsampled the original dataset

with 17998 samples to decrease the number of samples while

keeping the imbalanced ratio.

B. Methodology

Before applying the selected classifiers, it was necessary

to clean the real-world data. This involved two main steps:

replacing missing values with the attribute’s average and

standardizing each feature to have a zero mean and unit

variance. Additionally, we applied one-hot-encoding to cat-

egorical data for the Car Claims dataset. We incorporated a

genetic algorithm for fine-tuning. This approach allowed for

an optimized selection of parameters, enhancing the overall

performance of the machine-learning models. For each set

of hyperparameters, we implemented a 5-fold stratified cross-

validation process.

Choosing an appropriate evaluation metric is crucial when

dealing with imbalanced data. We used the geometric mean

(GM) score [20] to assess the selected classification models’

performance. GM is defined as the square root of the product

of the sensitivity and specificity. Mathematically, it can be

defined by the following formula

GM =
√

sensitivity ∗ specificity. (17)

Sensitivity represents a true positive rate, whilst specificity

represents a true negative rate.

C. Results

Our experiments aimed to explore how TabNet performs

with different loss functions on the provided datasets, specif-

ically focusing on identifying the most effective combination

for handling imbalanced classification tasks.

The overview of the GM scores for the experiments per-

formed on synthetic datasets is depicted in Table II. The most

notable outcomes were observed using Weighted-XGBoost,

Tabnet+BVSLoss, and Tabnet+BVSLoss+MDR approaches,

with the best GM score of over 82%. Specifically for the

Synth 1 dataset, the Weighted-XGBoost model demonstrated

superior performance. The best results were obtained for the

other two synthetic datasets using a combination of Tabnet

and BVSLoss functions. Here, the best GM score yielded

from 68.2% to 82.13%. In those cases, only XGBoost-based

models perform poorly, especially for Synth 2 and Synth 3
datasets, where the number of features was high compared to

the number of samples. This caused some of the features to

be irrelevant or noisy, providing little to no predictive power.

XGBoost might focus on these features, leading to a decrease

in overall model performance.

The results of experiments performed on real-world data are

depicted in Table III. The best results in terms of GM score

were obtained using Weighted-XGBoost, TabNet+LDAMLoss,

SMOTE+TabNet, and SMOTE+XGBoost models. In the case

of the Bankruptcy 13 dataset, the Weighted XGBoost per-

formed the best with a GM score greater than 83%. A slightly

lower performance was achieved using TabNet-based models

combined with the SMOTE technique or IBLoss function.

The other eight TabNet-based models achieved similar re-

sults, while the pure XGBoost and XGBoost combined with

SMOTE achieved significantly decreased prediction perfor-

mances. On dataset Bankruptcy 14, the best performance

achieved a combination of TabNet with LDAMLoss function

and MDR. From TabNet-based models, only the pure TabNet

model achieved performance lower than 80%. From XG-

Boost models, only weighted XGBoost achieved performance

higher than 80%. A similar situation occurred in the case

of Bankruptcy 16, where TabNet-based models outperformed

most of the XGBoost-based models. The best-performing

model was TabNet, which was combined with the SMOTE

technique. On Car Claims dataset, the best performance was

achieved by the XGBoost model in combination with the

SMOTE technique. The weighted XGBoost model achieved

slightly lower performance, whilst the pure XGBoost achieved

the lowest performance from all classifiers.

V. CONCLUSIONS

The challenge of uneven tabular data distribution signifi-

cantly impacts the current landscape of machine learning. In

our study, we conducted experiments using the newly proposed

TabNet architectures. This was compared with the perfor-

mance of the XGBoost classifier, a state-of-the-art approach

to imbalanced learning. We utilized several different loss

functions and comparatively analyzed classification outcomes.

The results of these experiments led to a series of insightful

conclusions. First, the vanilla TabNet model, without using the

oversampling technique and modified loss function, was better

than the vanilla XGBoost. Second, on synthetic datasets with a

higher imbalanced ratio, imbalanced TabNet achieved a higher

GM score than imbalanced XGBoost. Even though TabNet is

a deep neural network with a vast internal capacity, it can be

generalized well even on datasets with smaller samples. Third,

the loss functions designed for imbalanced problems helped

to increase the predictive performance of TabNet compared to

TabNet with a cross-entropy loss function.
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[22] Zoričák, M., Gnip, P., Drotár, P., & Gazda, V. (2020). Bankruptcy predic-
tion for small-and medium-sized companies using severely imbalanced
datasets. Economic Modelling, 84, 165-176.

[23] Xu, B., Wang, Y., Liao, X., & Wang, K. (2023). Efficient fraud detection
using deep boosting decision trees. Decision Support Systems, 175,
114037.

321


