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Abstract—Crafting personalized recommendations for users
with minimal interaction histories, a prevalent challenge in
user cold-start recommendation within recommendation systems
(RSs), is characterized by its pervasive nature. This issue is
particularly pronounced in modern over-parameterized RSs built
on deep networks, heightening the risk of overfitting for cold-
start users. The significance of addressing the user cold-start
problem extends to user satisfaction, platform growth, and
ongoing algorithmic evolution. Recent approaches have mod-
eled this challenge as a few-shot learning task, intending to
rapidly generalize to personalized recommendations with limited
training samples. However, existing methods are hampered by a
high risk of overfitting and the substantial computational cost
associated with learning large deep models. In response, this
paper introduces ColdU, an innovative approach that leverages
the capabilities of a multi-layer perceptron (MLP) to effectively
approximate complex functions. To achieve parameter efficiency
in modulating sample embeddings, the same MLP is employed
for each element of the embeddings, with distinct MLPs used
for different layers of the predictor. This design maintains
the flexibility of MLPs while reducing the size of learnable
parameters, facilitating easy personalization of recommendation
models for cold-start users. Extensive experiments conducted on
benchmark datasets consistently validate ColdU as a state-of-the-
art solution, underscoring its efficacy in providing personalized
recommendations for users with limited interaction histories.

Index Terms—user cold-start recommendation, few-shot learn-
ing, meta learning

I. INTRODUCTION

Recommendation systems (RSs) [1] target at providing

suggestions of items that are most pertinent to a particular

user, such as movie recommendation [2] and book recom-

mendation [3]. Nowadays, RSs are abundant online, offering

enormous users convenient ways to shop regardless of location

and time, and also providing intimate suggestions according

to their preferences. However, user cold-start recommendation

[4] remains a severe problem in RSs. On the one hand, the

users in RSs follow the long tail effect [5], with some users

having just a few interaction histories. On the other hand,

new users continuously emerge, naturally having rated only

a few items in RSs. This problem is even more challenging

as modern RSs are mostly built with over-parameterized deep

networks, requiring a substantial amount of training samples

for good performance and risking overfitting for cold-start

users [6]. The user cold-start recommendation problem is of

paramount importance in recommendation systems due to its

direct impact on user experience, platform growth, and algo-

rithmic advancements. Successfully addressing the cold-start

challenge contributes to enhanced user satisfaction, positively

impacting user retention and engagement. As online platforms

continue to grow, accommodating diverse user behaviors and

preferences becomes essential, necessitating personalized rec-

ommendation strategies. Moreover, a robust solution to the

cold-start problem not only influences revenue and customer

satisfaction for businesses but also drives algorithmic evolu-

tion, fostering advancements in recommendation methodolo-

gies. The ongoing research and innovation spurred by the

user cold-start problem contribute not only to addressing the

challenges of new user scenarios but also to the continual

improvement of recommendation algorithms for both new and

existing users.

Recently, a number of approaches model user cold-start

recommendation problem as a few-shot learning problem [7].

Few-shot learning aims to rapidly generalize to new tasks,

specifically personalized recommendations for cold-start users,

with limited training samples, i.e., sparse interaction his-

tories. Several works [8]–[12] employ the classic gradient-

based meta-learning strategy, Model-Agnostic Meta-Learning

(MAML) [13]. MAML learns an effective initialized parameter

from a set of tasks and adapts it to a new task by performing

a few steps of gradient descent updates on a restricted number

of labeled samples. This line of models has shown great

promise in alleviating the user cold-start problem. However,

the challenge lies in the expertise required to fine-tune the

optimization procedure to prevent overfitting, and there are

concerns regarding the potentially lengthy inference time

associated with gradient-based meta-learning strategies.

Another approach in addressing the user cold-start rec-

ommendation problem involves the use of hypernetworks

[14] to directly map user interaction histories to user-specific

parameters, a concept explored in works such as [9], [15]–[17],

[30]. These modulation-based methods typically consist of

an embedding layer, modulator, and predictor. The modulator

is responsible for generating user-specific parameters, which

then modulate the predictor using a modulation function.

For instance, MAMO [9] employs external memory to guide

personalized parameter initialization, TaNP [15] learns to map

user interaction history to generate user-specific parameters,

CMML [16] utilizes the same set of user-specific parameters

across different layers, and PNMTA [17] additionally leverages

a pretrained encoder to capture generalized representation.

These approaches typically adopt feature-wise linear modu-

lation function (FiLM) [18] to modulate the representation

through scaling and shifting based on conditioning informa-

tion. In contrast, the state-of-the-art method ColdNAS [30]

suggests searching for the right functions at the right positions

to modulate. However, it is worth noting that these methods
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often require learning additional large networks to guide

the learning of recommendation models, potentially incurring

additional computational and storage expenses.

In this paper, we introduce ColdU, a novel approach de-

signed to address the user cold-start recommendation problem

by incorporating user-specific modulation. Our method begins

by encoding the task context, followed by the generation

of user-specific adaptive parameters, which are utilized to

modulate the predictor in a layer-wise fashion. In terms

of modulation, we harness the capabilities of a multi-layer

perceptron (MLP) to effectively approximate complex func-

tions. To achieve parameter efficiency in modulating sample

embeddings, we employ the same MLP for each element of

sample embedding, with distinct MLPs utilized for different

layers of the predictor. This design preserves the flexibility

of MLPs while reducing the size of learnable parameters,

facilitating easy personalization of recommendation models

for cold-start users. Our extensive experiments on benchmark

datasets addressing the user cold-start problem consistently

illustrate that ColdU outperforms existing methods, achieving

state-of-the-art performance.

II. PRELIMINARIES ON USER COLD-START

RECOMMENDATION

A. Related Works

Crafting personalized recommendations for cold-start users

poses a significant challenge, given their limited interaction

histories [4]. Historically, collaborative filtering (CF)-based

approaches [23]–[25], which predict user-item interactions

by capturing relationships in a low-dimensional space, have

demonstrated leading performance in recommendation sys-

tems (RSs). Nevertheless, these CF-based methods rely solely

on the user’s historical data, rendering them ineffective in

addressing the user cold-start problem. To mitigate this chal-

lenge, content-based methods leverage user/item features [4]

or even incorporate user social relations [26] to enhance

predictions for cold-start users. A recent deep learning model,

DropoutNet [6], employs a neural network with a dropout

mechanism applied to input samples for inferring missing data.

However, extending these content-based methods to accommo-

date new users, often necessitates retraining the model, posing

a potential limitation.

A recent trend in addressing the user cold-start problem

involves framing it as a few-shot learning problem [7]. The

resulting models are designed to swiftly generalize and pro-

vide recommendations for new users with limited interaction

histories. Many of these approaches adhere to the classical

gradient-based meta-learning strategy, such as Model-Agnostic

Meta-Learning (MAML) [13]. In this strategy, an initial set of

parameters is learned from training tasks, followed by local

updates on provided interaction histories through gradient

descent. Several existing works explore different directions

to enhance performance. MeLU [8] selectively adapts model

parameters during the local update stage, while MetaCS [27]

opts to adapt all model parameters. MAMO [9] introduces ex-

ternal memory to guide model adaptation, and MetaHIN [10]

employs heterogeneous information networks to leverage rich

semantics between users and items. REG-PAML [11] suggests

using a user-specific learning rate during local updates, and

PAML [12] incorporates social relations to share information

among similar users.

While gradient-based meta-learning approaches exhibit

adaptability to training data, they are computationally inef-

ficient during test-time and often require expert tuning of

the optimization procedure to prevent overfitting. A more

recent approach involves hypernetwork-based methods, where

a network guides the learning of recommendation models.

TaNP [15] learns to map item interaction records to modu-

late item-specific parameters, while ColdNAS [30] identifies

the proper modulation function and position through neural

architecture search. However, both methods necessitate learn-

ing relatively large networks, introducing additional learning

burdens.

B. Problem Formulation

In user cold-start recommendation problem, we focus on

user ui who only has rated a few items. Following recent

works [10], [15], [27], we model the user cold-start recom-

mendation problem as a few-shot learning problem. The target

is to learn a model from a set of training user cold-start tasks

T train and generalize to provide personalized recommendation

for new tasks.

In this paper, scalars are represented by lowercase letters,

vectors are denoted by lowercase boldface letters, and matrices

are denoted by uppercase boldface letters. Each task Ti corre-

sponds to a user ui. It has a support set Si = {(vj , yi,j)}Ns
j=1

containing existing interaction histories which records user

ui gives rating yi,j to item vj . It also has a query set

Qi = {(vj , yi,j)}Nq

j=1 containing interactions to predict. Ns

and Nq are the number of interactions in Si and Qi. In user

cold-start recommendation, Ns is small.

III. THE PROPOSED COLDU

In this section, we introduce the proposed ColdU, whose

architecture is plotted in Figure 1. We first present the details

of key components of ColdU: embedding layers, and an user-

specific predictor. Then, we describe the learning and inference

procedure of ColdU.

A. Embedding Layer

Both users and items can associate with several content

features. Following existing models [9], [15], [17], we first

use embedding layer E with parameter ΘE to embed the

categorical features from users and items into dense vectors,

i.e., (ui,vj) = E(ui, vj ;ΘE).
For each ui, we get a content embedding for each categor-

ical content feature, and concatenate them into the initial user

embedding. Given B user contents, the user embedding of ui

is obtained as:

ui = [ W 1
Uc

1
i | W 2

Uc
2
i | · · · | WB

U cBi ], (1)
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Fig. 1. An illustration of the proposed ColdU.

where [ · | · ] is the concatenation operation, cbi is the one-hot

vector of the bth categorical content of ui , and W b
E represents

the embedding matrix of the corresponding content feature in

the shared user feature space. Then, given B′ item contents,

the item embedding vj for an item vj of is similarly obtained

using embedding layers with parameters {W b
V }B

′
b=1.

Collectively, ΘE = {W 1
U , . . . ,W

B
U ,W 1

V , . . . ,W
B′
V } de-

notes the parameters of embedding layer of both users and

items.

B. User-specific Predictor

Usually, a multi-layer perception (MLP) is used as P [15],

[25], [28]. Hence, we design our user-specific predictor upon

the MLP. Assume a L-layer MLP is used. Let hl denote its

output from the lth layer, and let h0 = [ui | vj ].

We first aim to map the user interaction histories of user ui

into a task context embedding ci. Specifically, We use a fully

connected layer to get representation ri,j of each interaction

history ri,j :

ri,j = ReLU(WR[ ui | vj | yi,j ] + bR), (2)

where WR and bR are learnable parameters. The task context

embedding ci of ui is obtained by aggregating the interactions

in Si via mean pooling:

ci =
1

N

N∑

j=1

ri,j . (3)

To provide personalized recommendation for each ui, we

then generate user-specific adaptive parameters using ci. At

the lth layer of predictor, we use a fully connected layer to

map ci to user-specific parameter φl
i as

φl
i = W l

Mci + blM . (4)

Subsequently, how to use the user-specific parameter φi

to change the prediction process can be crucial to the per-

formance. As MLP can approximate a wide range of func-

tions [29], we use it to modulate hl−1 in a parameter-efficient

way. Specifically, the kth element of hl−1 is modulated by φ
as

ĥl[k] = ReLU
(
wl

P (h
l−1[k] | φl

i[k]) + blP
)
, (5)

where wl
P and blP are parameters shared across elements

hl−1[1], . . . ,hl−1[Nd] for hl−1 ∈ R
Nd . While different layers

of predictor use different (wl
P , b

l
P )s.

Then, hl is obtained from the modulated ĥl as

hl = ReLU(W l
Qĥ

l + blQ). (6)

When l = L, ŷi,j = hL is the final prediction.

For notation simplicity, let ΘP represents the parame-

ters of the user-specific predictor, including WR, bR in (2),

{W l
M , blM}Ll=1 in (4), {wl

P , b
l
P }Ll=1 in (5), and {W l

Q, b
l
Q}Ll=1

in (6).

C. Learning and Inference

For task Ti ∈ T train associated with user ui, we obtain the

feature embeddings for ui and vjs which are rated by ui by

embedding layers. Then, the user interaction histories recorded

in Si are mapped to user-specific parameters {φl
i}l = 1L,

which are then used to modulate the prediction process. For

each (vk, yi,j′) ∈ Qi, let h0 = [ui | vj′ ]. We obtain its

sample representation by (5) and (6), and return ŷij′ as the

final prediction. The loss between the prediction ŷi,j and true

label yi,j is calculated by mean squared error (MSE):

Li =
1

Nq

Nq∑

j′=1

(yi,j′ − ŷi,j′)
2. (7)

The model parameters ΘE ,ΘP of ColdU are optimized

with respect to the following objective:

Ltrain =
∑

Ti∈T train

Li. (8)

Algorithm 1 shows the complete training procedure.

During inference, consider a new task Ti′ corresponds

to a new user ui′ , its support set Si′ and query set Qi′

are provided. we directly apply ColdU with the optimized

Θ∗
E ,Θ

∗
P . Specifically, we take step 4-17 in Algorithm 1 to

obtain prediction for each (vj′ , yi′,j′) ∈ Qi′ .

IV. EXPERIMENTS

We perform experiments on three benchmark datasets to

evaluate the effectiveness of the proposed ColdU.

Experiments were conducted on a 24GB NVIDIA GeForce

RTX 3090 GPU, with Python 3.7.0, CUDA version 11.6.

Results are averaged over five runs.
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TABLE I
SUMMARY OF BENCHMARK DATASETS USED IN THIS PAPER.

Dataset # User (The Ratio of Cold-start Users) # Item # Rating User Feature Item Feature

MovieLens 6040 (52.3%) 3706 1000209 gender, age, occupation, Zip code publication year, rate, genre, director and actor

BookCrossing 278858 (18.6%) 271379 1149780 age, location year, author, publisher

Last.fm 1872 (15.3%) 3846 42346 user ID item ID

Algorithm 1 Training procedure of ColdU.

Input: hyperparameter L;

1: randomly initialize all parameters in ΘE ,ΘP ;

2: while not converge do
3: for every Ti ∈ T train do
4: for every (vj , yi,j) ∈ Si do
5: get representation ri,j of (vj , yi,j) by (2);

6: end for
7: obtain task context embedding ci of Si by (3);

8: for l = 1, . . . , L do
9: map ci to user-specific parameter φl

i by (4);

10: end for
11: for Every (vj′ , yi,j′) ∈ Qi do
12: initialize sample embedding h0 = [ui | vj′ ];
13: for l = 1, . . . , L do
14: modulate embedding as ĥl by (5);

15: update sample embedding as hl by (6);

16: end for
17: return ŷi,j′ ;
18: end for
19: calculate loss Li by (7).

20: end for
21: calculate the objective Ltrain by (8);

22: optimize ΘE ,ΘP with respect to Ltrain by gradient

descent;

23: end while
24: return optimized Θ∗

E ,Θ
∗
P .

A. Datasets

We use three benchmark datasets (Table I):

• MovieLens1 [2]: a dataset containing 1 million movie

ratings of users collected from MovieLens;

• BookCrossing2 [3]: a dataset containing users’ ratings on

books in BookCrossing community;

• Last.fm3: a dataset containing user’s listening count of

artists from Last.fm online system. Negative samples for

the query sets are generated following [15].

We split data following the recent state-of-the-art Cold-

NAS [30]. The ratio of T train : T val : T test is set as 7 : 1 : 2.

The users associating with T train, T val, T test are not overlapped.

For MovieLens and Last.fm, users whose interaction history

1https://grouplens.org/datasets/movielens/1m/
2http://www2.informatik.uni-freiburg.de/∼cziegler/BX/
3https://grouplens.org/datasets/hetrec-2011/

length lie in [40, 200] are kept. Each support set is comprised

of N=20 randomly selected user interactions, while the query

set consists of the remaining interactions for the same user.

In the case of BookCrossing, which exhibits a severe long-tail

distribution of user-item interactions,users whose interaction

history length falls within the range [50,1000) are put into

the training set, denoted as T train. Subsequently, users with

interaction history lengths in the range [2,50) are divided into

70%, 10%, and 20%, and assigned to T train, T val, and T test

respectively. For each user, half of their interaction history are

randomly sampled to form the support set, while the remaining

interactions constitute the query set.

B. Baselines

We compare ColdU with the following representative user

cold-start methods. We run the public codes provided by the

respective authors if they are available.

• DropoutNet4 [6]: a traditional deep cold-start model

which randomly dropouts preference informations during

training.

• MeLU5 [8]: a gradient-based meta learning method

adapted from MAML [13] which selectively updates

model parameters by gradient descents.

• MetaCS [27]: a gradient-based meta learning method

similar to MeLU, except that it updates all parameters

during meta-learning. As the codes of MetaCS are not

available, we implement MetaCS based on the codes of

MeLU.

• MetaHIN6 [10], a method incorporating heterogeneous

information networks into MAML to capture rich seman-

tics from meta-paths.

• MAMO7 [9]: a method also follows MAML but the

model parameters are modulated by memory-augmented

attention mechanism before local-update.

• TaNP8 [15]: a hypernetwork-based method which learns

to map item interaction records to modulate item- specific

parameters.

• ColdNAS9 [30]: a hypernetwork-based method which

additionally uses neural architecture search to find the

proper modulation function and modulation position.

4https://github.com/layer6ai-labs/DropoutNet
5https://github.com/hoyeoplee/MeLU
6https://github.com/rootlu/MetaHIN
7https://github.com/dongmanqing/Code-for-MAMO
8https://github.com/IIEdm/TaNP
9https://github.com/lars-research/coldnas
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TABLE II
TEST PERFORMANCE (%) OBTAINED ON BENCHMARK DATASETS. THE BEST RESULTS ARE BOLDED AND THE SECOND-BEST RESULTS ARE UNDERLINED.

FOR MSE AND MAE, SMALLER VALUE IS BETTER. FOR NDCG3 AND NDCG5 , LARGER VALUE IS BETTER.

Dataset Metric DropoutNet MeLU MetaCS MetaHIN MAMO TaNP ColdNAS ColdU

MovieLens

MSE 100.90(0.70) 95.02(0.03) 95.05(0.04) 91.89(0.06) 90.20(0.22) 89.11(0.18) 87.96(0.12) 87.44(0.16)

MAE 85.71(0.48) 77.38(0.25) 77.42(0.26) 75.79(0.27) 75.34(0.26) 74.78(0.14) 74.29(0.20) 74.10(0.19)

nDCG3 69.21(0.76) 74.43(0.59) 74.46(0.78) 74.69(0.32) 74.95(0.13) 75.60(0.07) 76.16(0.03) 76.21(0.07)

nDCG5 68.43(0.48) 73.52(0.41) 73.45(0.56) 73.63(0.22) 73.84(0.16) 74.29(0.12) 74.74(0.09) 74.83(0.21)

BookCrossing

MSE 15.38(0.23) 15.15(0.02) 15.20(0.08) 14.76(0.07) 14.82(0.05) 14.75(0.05) 14.15(0.08) 14.03(0.08)

MAE 3.75(0.01) 3.68(0.01) 3.66(0.01) 3.50(0.01) 3.51(0.02) 3.48(0.01) 3.40(0.01) 3.34(0.02)

nDCG3 77.66(0.18) 77.69(0.15) 77.68(0.12) 77.66(0.19) 77.68(0.09) 77.48(0.06) 77.83(0.01) 77.88(0.04)

nDCG5 80.87(0.15) 81.10(0.15) 80.97(0.09) 80.95(0.04) 81.01(0.05) 81.16(0.21) 81.32(0.10) 81.45(0.14)

Last.fm

MSE 21.91(0.38) 21.69(0.34) 21.68(0.12) 21.43(0.23) 21.64(0.10) 21.58(0.20) 20.91(0.05) 20.85(0.06)

MAE 43.02(0.52) 42.28(1.21) 42.28(0.76) 42.07(0.49) 42.30(0.28) 42.15(0.56) 41.78(0.24) 41.78(0.19)

nDCG3 75.13(0.48) 80.15(2.09) 80.81(0.97) 82.01(0.56) 80.73(0.80) 81.03(0.36) 82.80(0.69) 81.87(0.25)

nDCG5 69.03(0.31) 75.03(0.68) 75.01(0.64) 75.98(0.33) 75.45(0.29) 75.98(0.41) 76.77(0.10) 76.83(0.12)

(a) MovieLens. (b) BookCrossing. (c) Last.fm.

Fig. 2. Varying number of layers of the predictor in ColdU.

Hyperparameter Setting: We find hyperparameters using

the T val via grid search. In ColdU, the batch size is 32. We

choose a 4-layer predictor. The dimension of hidden units is

set as h1 = 128,h2 = 64,h3 = 32. The learning rate is

chosen from {5×10−6, 1×10−5, 5×10−5, 1×10−4} and the

dimension of ri,j in (2) is chosen from {128, 256, 512, 1024}.

Evaluation Metric: The performance is evaluated by mean

average error (MAE), mean squared Error (MSE) which

evaluate the numerical gap between the prediction and the

ground-truth rating, and normalized discounted cumulative

gain nDCG3 and nDCG5 which represent the proportion

between the discounted cumulative gain of the predicted item

list and the ground-truth list. For MAE and MSE , lower value

is better. For nDCG3 and nDCG5, the higher value is better.

C. Performance Comparison

In Table II, we present the comprehensive user-cold start

recommendation performance across all methods. Notably,

ColdU exhibits better performance over other approaches

across all datasets and metrics.

Among the compared baselines, DropoutNet performs the

least favorably due to its non-few-shot learning nature, lack-

ing the ability to adapt to diverse users. Within the realm

of meta-learning based methods, MeLU, MetaCS, MetaHIN,

and MAMO utilize a gradient-based meta-learning strategy,

potentially susceptible to overfitting during local updates.

In contrast, TaNP and ColdNAS employ approaches that

involve learning to generate user-specific parameters for guid-

ing adaptation. TaNP employs a fixed modulation structure,

which may not be optimally suited for different datasets.

In contrast, ColdNAS automatically discovers an effective

structure. Importantly, ColdU leverages the power of MLP to

approximate complex functions. In particular, the use of MLP

allows for the flexible modulation of the predictor in a layer-

wise manner, enabling adaptability to the intricate patterns

present in diverse cold-start user scenarios.
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D. Effect of the Depth of Predictor

Finally, we analyze the effect of the depth L of predictor

in ColdU. Figure 2 plots results obtained on MovieLens,

BookCrossing and Last.fm.

As can be seen, the impact of choosing different values for L
within a certain range reveals a low influence on performance.

L = 4 already yields exceptional results as demonstrated in

Table II. Thus, we choose L = 4 for simplicity.

V. CONCLUSION

In conclusion, this paper sheds light on the persistent chal-

lenge of user cold-start recommendation in recommendation

systems. Introducing ColdU, our proposed approach leverages

user-specific modulation through MLPs, achieving a balance

between flexibility and parameter efficiency. Extensive experi-

ments on benchmark datasets demonstrate ColdU consistently

outperforms existing methods, establishing its prowess in

addressing the user cold-start problem and contributing to

the ongoing evolution of recommendation algorithms. The

findings affirm the importance of personalized recommenda-

tion strategies for users with minimal interaction histories,

showcasing the potential for advancements in the field.
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