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Abstract—Bayesian Federated Learning (FL) has been recently
introduced to provide well-calibrated Machine Learning (ML)
models quantifying the uncertainty of their predictions. Despite
their advantages compared to frequentist FL setups, Bayesian
FL tools implemented over decentralized networks are subject
to high communication costs due to the iterated exchange of local
posterior distributions among cooperating devices. Therefore, this
paper proposes a communication-efficient decentralized Bayesian
FL policy to reduce the communication overhead without sacrific-
ing final learning accuracy and calibration. The proposed method
integrates compression policies and allows devices to perform
multiple optimization steps before sending the local posterior
distributions. We integrate the developed tool in an Industrial
Internet of Things (IIoT) use case where collaborating nodes
equipped with autonomous radar sensors are tasked to reliably
localize human operators in a workplace shared with robots. Nu-
merical results show that the developed approach obtains highly
accurate yet well-calibrated ML models compatible with the
ones provided by conventional (uncompressed) Bayesian FL tools
while substantially decreasing the communication overhead (i.e.,
up to 99%). Furthermore, the proposed approach is advantageous
when compared with state-of-the-art compressed frequentist FL
setups in terms of calibration, especially when the statistical
distribution of the testing dataset changes.

Index Terms—Federated Learning, Bayesian deep learning,
Compression, Decentralized networks, Consensus

I. INTRODUCTION

Nowadays, Federated Learning (FL) is used to obtain high-

quality Machine Learning (ML) models that are trained from

decentralized data sources without disclosing any private infor-

mation [1]–[4]. Given the privacy-preserving features of FL,

several industrial applications have integrated it to provide en-

hanced learning functionalities compared to conventional data

center-based training strategies. Examples of such applications

include Industrial Internet of Things (IIoT) services [5], [6],

autonomous driving use cases [7], [8], and healthcare [9],

[10]. Still, most of the studied FL implementations focus on

standard (frequentist) strategies, where the goal is to find a

single (optimized) set of ML model parameters that best fit the

training data. Following such a strategy has been shown to pro-

duce models that output overconfident predictions regardless

of their correctness, especially when the local datasets of the

devices are limited in size [11], [12]. This raises major safety

concerns for industrial services as downstream tasks may rely

on the overconfident and often incorrect output provided by the
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Neural Networks (NNs). To overcome this limitation, Bayesian

FL tools [13] target the learning of the posterior distribution in

the model parameter space. By doing so, a reliable uncertainty

measure can be obtained and used to make more informed

decisions, consequently improving safety.

Bayesian FL tools are typically implemented considering

approximate methods as obtaining the full posterior is of-

ten intractable [11]. The first class of techniques relies on

Variational Inference (VI) methodologies [14], [15] where a

surrogate distribution is learned in place of the true posterior,

while the second uses Markov Chain Monte Carlo (MCMC)

approaches [16], [17] that approximate the posterior density

via random samples. Focusing on MCMC approaches, some

distributed implementations have been developed for central-

ized [17], [18] or fully distributed network topologies [12],

[16], while assuming uncompressed communications. More

advanced designs have been introduced recently to reduce the

communication footprint in Bayesian FL setups. For exam-

ple, in [19], a communication-efficient Bayesian FL policy

is developed where devices compress their local gradients

and apply variance reduction techniques to improve learn-

ing performances. Similarly, authors in [20] propose several

compression operators for Langevin-based FL strategies that

rely on primal, dual, and bidirectional compression. Other

approaches instead quantize the gradients exchanged during

the learning process with 1-bit compression [21] or propose

new Lagevin schemes that support compressed communica-

tions [22]. Despite this recent progress, all the aforementioned

techniques focus on centralized strategies while completely

overlooking decentralized Bayesian FL tools.

Contributions. The paper proposes a novel communication-

efficient Bayesian FL strategy suitable for fully decentralized

industrial setups, referred to as Compressed Decentralized

Bayesian Federated Learning (CD-BFL). In industrial contexts

where safety is paramount, Bayesian FL tools are needed to

obtain reliable ML models that support trustworthy predic-

tions. Compared to previous works that rely on centralized ar-

chitectures, this is the first work that develops a fully decentral-

ized method integrating compressed communications among

devices. The proposed tool draws inspiration from [23] and

extends it to support Bayesian FL strategies based on Langevin

dynamics approaches. Specifically, CD-BFL integrates com-

pression policies and allows devices to perform multiple

optimization steps before sending updates to their neighbors,

massively reducing the communication cost. Numerical results

focus on an IIoT learning problem where devices aim at
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Fig. 1. Bayesian FL setup: collaborating nodes (N = 5) iteratively exchange
compressed samples via D2D communications and perform local computa-
tions to obtain a close approximation of the global posterior distribution.

collaboratively localizing human operators inside a human-

robot shared workspace. They show that CD-BFL substan-

tially reduces the communication overhead (i.e., roughly by

99%) compared to a conventional uncompressed decentral-

ized Bayesian FL strategy without impacting final learning

performances or calibration. The proposed strategy is also

advantageous at reliably quantifying the uncertainty when the

statistical distribution of the testing data changes, while a state-

of-the-art (compressed) frequentist FL policy fails at producing

well-calibrated models.

The paper is organized as follows. Sec. II introduces the

system model and reviews Langevin-based sampling algo-

rithms and their federated variants, while Sec. III presents

the developed decentralized Bayesian FL policy. Sec. IV

introduces the industrial case study used for evaluating the

performances of CD-BFL (Sec. V). Finally, Sec. VI draws

some conclusions.

II. SYSTEM MODEL AND BAYESIAN LEARNING

PRELIMINARIES

We focus on the decentralized FL setup sketched in Fig. 1

where a set of devices K = {1, . . . ,K} collaborate for

solving a supervised learning problem. Devices are connected

according to the undirected graph G = (K, E), with E being

the set of directed edges. The set of neighbors of device

k including k is denoted with Nk, while the same set that

excludes k is indicated with Nk. Each device k ∈ K is able to

share information with its neighbors via D2D communications

and holds a local dataset Dk = {(xh, yh)}Ek

h=1 of Ek examples

pairs (xh, yh), with xh and yh being the input data and

desired prediction, respectively. The global dataset is denoted

with D = {Dk}Nk=1 and comprises E =
∑K

k=1 Ek training

examples. As commonly observed in FL setups, the local

datasets may vary in size across different learners or under-

represent the global dataset as only a limited number of classes

is available at each device. The devices’ goal is to obtain a set

of global model parameters θ ∈ R
p approximately sampled

from the true global posterior p(θ|D) of the model θ which

takes into account all the data available at the learners. In what

follows, the proposed Bayesian learning tools rely on gradient-

based MCMC approaches. Specifically, we review Stochastic

Gradient Langevin Dynamics (SGLD), and then discuss its

extension to fully decentralized networks.

A. Centralized Stochastic Gradient Langevin Dynamics
SGLD [24] aims at learning the posterior distribution in

the model parameter space. To do so, each device shares its

local dataset with a centralized unit in charge of carrying out

the learning process. Specifically, the goal is to obtain a close

approximation of the global posterior distribution

p(θ|D) ∝ p(θ)

K∏
k=1

p(Dk|θ) , (1)

where p(Dk|θ) =
∏Ek

h=1 p(yh|xh,θ) denotes the likelihood

function describing the shared ML model adopted by the

learners, while p(θ) is the prior distribution. Starting from

the initial samples θ0 ∈ R
p at t = 0, SGLD produces new

samples iteratively by adding Gaussian noise ξt to standard

gradient descent updates as [24]

θt+1 = θt − η∇f(θt) +
√
2ηξt+1 , (2)

where t = 0, . . . , T denotes the iteration number, ξt+1 is

a random vector drawn from an independent and identically

(i.i.d.) Gaussian distribution N (0p, Ip), η is the learning rate,

while f(θt) =
∑N

k=1 fk(θt,Mk) with

fk(θt,Mk) = − log p(Mk|θt)− 1

N
log p(θt) , (3)

where p(Mk|θt) is the likelihood evaluated over a mini-batch

Mk = {(xb, yb)}Mm=1 comprising M training examples. In

practice, a burn-in phase is typically utilized in gradient-based

MCMC methods where the first Tb samples are discarded

while the remaining T − Tb ones are used for uncertainty

quantification.

B. Decentralized Stochastic Gradient Langevin Dynamics
SGLD is not directly applicable to FL setups as all the

data collected by the learners need to be sent to a centralized

location, thereby raising privacy concerns. To overcome this

limitation, Decentralized Stochastic Gradient Langevin Dy-

namics (DSGLD) [16] has been introduced, which enables

to implement SGLD over decentralized wireless networks

without sharing any privacy-sensitive data. Under DSGLD,

each device k ∈ K updates its local samples as [16]

θk.t+1 =
∑
j∈Nk

ωkjθj,t − η∇fk(θk,t,Mk) +
√

2ηξk,t , (4)

where ωk,j is the (k, j)-th entry of a symmetric, doubly

stochastic K × K matrix Ω which can be chosen accord-

ing to the choices presented in [25]. Still, DSGLD entails

excessive communication overhead to exchange the samples

among neighboring devices. To address this shortcoming, we

propose a communication-efficient DSGLD implementation,

as detailed in the next section.
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Algorithm 1 CD-BFL

Input: initial samples θk,0 ∀ k ∈ N , graph G, matrix Ω,

mixing weight ζ, initialize vk,0 = 0p and v̄j,0 = 0p ∀ j ∈ N
1: for each round t = 0, 1, . . . T do
2: for each learner k ∈ N do
3: θ

(0)
k,t ← θk,t

4: for each � = 1, . . . , L do
5: θ

(�)
k,t = θ

(�−1)
k,t − η∇fk

(
θ
(�−1)
k,t ,M(�)

k

)

6: end for
7: Δθk,t = Q

(
θ
(L)
k,t − vk,t

)

8: send (Δθk,t) and receive {Δθj,t}j∈Nk

9: vk,t+1 = vk,t +Δθk,t

10: v̄k,t+1 = v̄k,t +
∑

j∈Ni
ωkj Δθj,t

11: θk,t+1 = θ
(L)
k,t + ζ(v̄k,t+1 − vk,t+1) +

√
2ηξk,t+1

12: end for
13: end for

III. COMPRESSED BAYESIAN FL STRATEGY

This section presents the proposed communication-efficient

decentralized Bayesian FL strategy, namely CD-BFL, which

is summarized in Algorithm 1. CD-BFL draws inspiration

from [24] and introduces compression strategies to reduce

the communication overhead required to implement DSGLD

over wireless networks. Besides, it allows devices to perform

multiple gradient descent steps before each communication

phase, improving reliability as shown in Sec. V. The pro-

posed scenario is critical in industrial setups, such as the one

discussed in Sec. IV, where networked devices have limited

resources.

Let us denote the current model iterate θk,t available at

device k at iteration t, each device updates it recursively

using stochastic gradient descent for L local steps. Specifically,

starting from θ
(�)
k,t = θk,t when � = 0, each step � ≥ 1 with

� = 1, . . . , L is evaluated as

θ
(�)
k,t = θ

(�−1)
k,t − η∇fk

(
θ
(�−1)
k,t ,Mk

)
(5)

where Mk is a mini-batch containing M training examples

(drawn randomly from the local dataset Dk) while η is the

same learning rate defined in (2). Then, instead of exchanging

θk,t as it is, the devices use an additional control sequence

vk,t, with vk,0 = 0p for t = 0, to preserve the average of the

local iterates over consecutive iterations while also enforcing

the noise introduced by the compression stage to vanish for a

sufficiently high number of iterations t [23]. Given the current

control sequence vk,t, each device computes the following

(compressed) quantity

Δθk,t = Q
(
θ
(L)
k,t − vk,t

)
(6)

where Q(.) denotes a compression operator (see e.g., [26] or

[27] for widely-used compression policies). The compressed

representation Δθk,t is then exchanged over the D2D links.

FL
 (B

ay
es

ia
n)

MIMO 
radar

Raw data 
(range-azimuth map)

RX (4)

B

TX

Raw data

ROI (region of interest )

a
FL

 (B
a

Fig. 2. Human-Robot-Cooperative workspace scenario and FL setup.

Devices receiving the compressed samples from their neigh-

bors first update their control sequences as

vk,t+1 = vk,t +Δθk,t. (7)

Next, they update an additional variable v̄k,t, with v̄k,0 = 0p

for t = 0, that stores the compressed representation of the

control sequences received from their neighbors as

v̄k,t+1 = v̄k,t +
∑
j∈Nk

ωkjΔθj,t (8)

where ωkj is again the (k, j)-th entry of a symmetric, doubly

stochastic matrix Ω. Finally, devices update their local model

iterates via a consensus-based aggregation strategy while also

adding the Gaussian noise as in standard DSGLD

θk,t+1 = θ
(L)
k,t + ζ(v̄k,t+1 − vk,t+1) +

√
2ηξk,t+1 (9)

where 0 < ζ ≤ 1 is a mixing parameter that can be optimized

to improve learning performance or calibration. As in gradient-

based MCMC methods, the first Tb samples {θk,t}Tb
t=0 are dis-

carded while the remaining T−Tb ones, namely {θk,t}Tt=Tb+1,

are used for evaluating the performances.

IV. CASE STUDY: HRC WORKSPACE

This section discusses the proposed Bayesian federation

model CD-BFL based on experimental data. As depicted

in Fig. 2, the proposed FL scenario resorts to a network

of radar devices [28] each equipped with a Time-Division

Multiple-Input-Multiple-Output (TD-MIMO) Frequency Mod-

ulated Continuous Wave (FMCW) radar working in the 77−81

GHz band [29]. The above-cited devices are employed to
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TABLE I
LABELS (HR COLLABORATIVE SITUATIONS) FOR R = 10 ROIS.

Labels ROI: range d ROI: DOA α
yh = 0 d ≥ 2m −60 ≤ α ≤ 60 deg
yh = 1 0.5m ≤ d ≤ 0.7m 40 ≤ α ≤ 60 deg
yh = 2 0.3m ≤ d ≤ 0.5m −10 ≤ α ≤ 10 deg
yh = 3 0.5m ≤ d ≤ 0.7m −60 ≤ α ≤ −40 deg
yh = 4 1m ≤ d ≤ 1.2m 20 ≤ α ≤ 40 deg
yh = 5 0.9m ≤ d ≤ 1.1m −10 ≤ α ≤ 10 deg
yh = 6 1m ≤ d ≤ 1.2m −40 ≤ α ≤ −20 deg
yh = 7 1.2m ≤ d ≤ 1.6m 10 ≤ α ≤ 20 deg
yh = 8 1.1m ≤ d ≤ 1.5m −5 ≤ α ≤ 5 deg
yh = 9 1.2m ≤ d ≤ 1.6m −20 ≤ α ≤ −10 deg

monitor a shared industrial workspace during Human-Robot

Collaboration (HRC) tasks to detect and track the position of

the human operators (the range distance d and the Direction

Of Arrival (DOA) α) relative to a robotic manipulator inside a

fenceless space [30]. In industrial shared workplaces, measur-

ing positions and distance is mandatory to enforce a worker

protection policy and to implement collision avoidance [31].

Each radar features an array of 3 TX and 4 uniformly spaced

RX antennas, with an azimuth Field Of View (FOV) of -/+ 60°,

with angle and range resolution of 25° and 4.2cm, and 3.9

GHz band (sweep time 36μs). Radars autonomously compute

the beat signals on each receiving antenna as the result of

the radar echoes reflected by moving objects. Beat signals are

then converted in frequency domain via Fast Fourier Transform

(FFT) to obtain range-azimuth map measurements xh. Maps

xh serve as training data and have size 256 x 63 samples.

Radars use a trained ML model to obtain the relative position

(d, α) information. In addition, the subject position can be sent

to a programmable logic controller for robot safety control, for

emergency stop or replanning tasks.

The ML model is here trained to detect the human subject

in R = 10 Region Of Interests (ROIs), namely potential

collaborative situations characterized by different human-robot

(HR) distances or DOAs. In particular, the ROI with label

yh = 0 corresponds to the robot and the corresponding human

worker cooperating at a safe distance (distance ≥ 2 m), the

remaining 9 labels (yh > 0) identify the human operator as

working close by the robot, at variable distances and DOAs

as depicted in Table I. The range-azimuth measurements xh

are collected independently by the individual devices using a

dedicated radar DSP (C674x). The corresponding labels yh are

associated manually during training stages and stored locally.

Federated model training is then implemented to replace data

fusion and using an ARM-Cortex-A57 SoC (Jetson Nano

device model). Notice that the radars collect a large amount

of data, that cannot be shipped back to the server for training

and inference, due to the latency constraints imposed by the

localization service and safety policies [30].

The CD-BFL tool has been simulated on a virtual envi-

ronment which creates an arbitrary number of virtual radar

devices configured to process an assigned batch of range-

azimuth data xh and exchanging compressed samples as

detailed in Sec. III. The model adopted for localization is

based on a Lenet architecture [32] with p = 2.7 million

trainable parameters and is also trained continuously to track

the variations of data dynamics caused by changes in the

workflow processes (typically, on a daily basis). The initial

training of the ML model is obtained at day i = 1 using a

large dataset D(1) = {(xh, yh)}E(1)

h=1 of raw range-azimuth data

manually labeled. Possible re-training stages occur daily, i > 1
and are based on new data. Datasets for initial model training

and two subsequent re-training stages, D(i) with i = 2, 3, i.e.,

two consecutive days, are available online in [33].

V. NUMERICAL RESULTS

In this section, we evaluate CD-BFL over a network of

K = 10 radars each having 50 independently and identically

distributed (iid) range-azimuth maps taken from the dataset

D(1) [33]. Connectivity among radars is simulated and as-

sumes that each radar communicates with all K−1 neighbors.

As performance metrics, we utilize the standard measure

of validation accuracy and the Expected Calibration Error

(ECE) [34], which quantifies the ML model’s reliability.

Specifically, the ECE measures the disagreement between the

accuracy and the confidence scores provided by the NNs and is

computed as follows. Given the predictions of the ML model

over the validation dataset, they are divided into a set of O
non-overlapping bins {Bo}Oo=1 according to their associated

confidence scores. These scores are computed by taking the

maximum probability assigned by the softmax operation at

the last layer of the NN. Then, we compute the average

accuracy acc(Bo) and average confidence conf(Bo) for each

bin separately. Finally, the ECE is evaluated by taking into

account all bins as [34]

ECE =

O∑
o=1

|Bo|∑O
o′=1 |Bo′ |

|acc(Bo)− conf(Bo)| , (10)

where |Bo| denotes the number of validation samples falling

inside the o-th bin.

The experiments compare the performances of CD-BFL

with the ones attained by an uncompressed Bayesian FL

method, namely DSGLD, as well as the state-of-the-art fre-

quentist FL approach developed in [23], which we refer to

as Compressed Frequentist Federated Learning (CF-FL). All

methods use a learning rate of η = 10−4 and are trained for

T = 800 iterations. For the Bayesian FL setups, we consider

a standard Gaussian as prior, i.e., p(θ) = N (0p, Ip) and a

burn-in phase comprising the first Tb = 700 iterations. Top-k
sparsification [27] is used as compression operator by CF-FL

and CD-BFL and is configured such that only 1% of the model

parameters is exchanged by the devices, allowing to reduce the

communication overhead by 99%. Finally, all methods set the

entries of Ω as in [35] and we select ζ = 0.03.

A. Results

The first set of results evaluates the performances of

CD-BFL for varying number of local optimization steps L,

ranging from 1 up to 12, and compares it with the ones attained

by DSGLD. Fig. 3 reports the validation accuracy (Fig. 3a)
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(a)

(b)
Fig. 3. Comparison between DSGLD and CD-BFL for varying values of L
in terms of validation accuracy (a) and ECE (b).

and the ECE (Fig. 3b) achieved by CD-BFL and DSGLD.

Results show a trade-off between the number of local gradient

descent updates L and the final learning performances. Indeed,

increasing L generally leads to better accuracy and ECE

provided L ≤ 8, while for L > 8 the models produced by

the proposed strategy tend to be poorly calibrated and with

limited generalization ability. This should be expected as too

many local optimization steps may introduce overfitting with

a consequent reduction of the final accuracy and an increase in

the ECE. Therefore, in the considered setting, L = 8 should be

chosen to maximize the prediction abilities and the reliability

of the NNs. By doing so, CD-BFL attains nearly the same

accuracy as DSGLD at the cost of a slightly higher ECE.

The second set of results aims at characterizing the ability

of CD-BFL to provide reliable models when the data collected

by the radar devices have different statistical distributions (e.g.,

due to different radar configurations and/or slight changes in

the HRC workspace). To do so, we resort to the same dataset

D(1) in [33] where we train CD-BFL with L = 8, as suggested

by the previous analysis, DSGLD, and CF-FL and we evaluate

the learned models on the testing datasets of all other days. In

particular, the testing datasets are manipulated to contain only

samples with labels 1 ≤ yh ≤ 6 as considered highly critical

due to the short distance (i.e., d < 1.5 m) between the robot

and the human operator. Indeed, in those positions, reliable

ML models must be obtained so that robot control strategies

can confidently use the NN predictions to avoid injuries. In

what follows, the results shown are averaged over the testing

datasets of days i = 2, 3.

(a)

(b)

(c)

Fig. 4. Reliability plots attained by (a) DSGLD, (b) CD-BFL and (c) CF-FL.

Fig. 4 reports the reliability diagrams [34] which provide

a visual representation of the reliability of the ML models

trained under DSGLD (Fig. 4a), CD-BFL (Fig. 4b) and

CF-FL (Fig. 4c) strategies. Comparing the results, even though

CF-FL and CD-BFL provide the same savings in terms of

communication overhead, they attain rather different reliability

diagrams. Indeed, CF-FL provides overconfident models since

the confidence scores shown in Fig. 4c are much higher

than the accuracy for most bins. This poses major safety

concerns as downstream tasks, e.g., robot control strategies,

may rely on the (overconfident) predictions of the NN, likely

giving rise to injuries. Besides, CF-FL is shown to be the

least accurate when compared with DSGLD or CD-BFL. On

the other hand, the reliability diagram of CD-BFL shows

that the confidence scores closely follow the actual accuracy.

Therefore, the proposed strategy can be confidently used

under safety-critical conditions as it provides well-calibrated

ML models able to reliably quantify the uncertainty of their

predictions. Still, some performance loss in terms of ECE
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and accuracy are exhibited by CD-BFL compared to DSGLD,

albeit this difference is very limited.

VI. CONCLUSIONS

This paper proposed a communication-efficient decentral-

ized Bayesian FL policy, referred to as CD-BFL, for reliable

passive localization in IIoT setups. The developed method

introduces compression operators while allowing devices par-

ticipating in the learning process to perform multiple local

optimization steps. The goal is to reduce communication

overhead while maximizing the reliability of the ML models.

The proposed tool is integrated within a cooperative passive

localization task where networked radars aim to accurately

detect and classify human motions inside an industrial human-

robot collaborative workplace. Numerical results show that

CD-BFL can be confidently utilized under safety-critical in-

dustrial operations as its ML models reliably quantify the

uncertainty of their predictions. Specifically, CD-BFL provides

accurate prediction capabilities as well as reliable uncertainty

quantification that are in line with conventional uncompressed

decentralized Bayesian FL setups but at a much lower (i.e.,

99%) communication overhead. Moreover, the models pro-

duced by CD-BFL are well-calibrated even when they are

used under different testing conditions, while state-of-the-

art compressed decentralized FL strategies fail at producing

reliable ML models.

Future research works will target the theoretical character-

ization of the developed CD-BFL tool and the development

of strategies that jointly optimize the communication and the

computational phases of the cooperative Bayesian FL strategy.
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