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Abstract—In the current data-intensive era, big data has
become a significant asset for Artificial Intelligence (AI), serving
as a foundation for developing data-driven models and provid-
ing insight into various unknown fields. This study navigates
through the challenges of data uncertainties, storage limitations,
and predictive data-driven modeling using big data. We utilize
Robust Principal Component Analysis (RPCA) for effective noise
reduction and outlier elimination, and Optimal Sensor Placement
(OSP) for efficient data compression and storage. The proposed
OSP technique enables data compression without substantial
information loss while simultaneously reducing storage needs.
While RPCA offers an enhanced alternative to traditional
Principal Component Analysis (PCA) for high-dimensional data
management, the scope of this work extends its utilization,
focusing on robust, data-driven modeling applicable to huge data
sets in real-time. For that purpose, Long Short-Term Memory
(LSTM) networks, a type of recurrent neural network, are
applied to model and predict data based on a low-dimensional
subset obtained from OSP, leading to a crucial acceleration of
the training phase. LSTMs are feasible for capturing long-term
dependencies in time series data, making them particularly suited
for predicting the future states of physical systems on historical
data. All the presented algorithms are not only theorized but
also simulated and validated using real thermal imaging data
mapping a ship’s engine.

Index Terms—Big Data, Robust PCA, Optimal Sensor Place-
ment, LSTM, Thermal Imaging, Ship Engine

I. INTRODUCTION

In the context of Artificial Intelligence (AI), data have taken

center stage, influencing decision-making processes in many

domains, from healthcare [1] to econometrics [2], manufactur-

ing [3], and more. However, while big data offers incredible

potential, it is essential to understand its strengths and inherent

flaws, especially since data can be erroneous due to various

factors such as sensor uncertainties and transmission errors.

Therefore, data can sometimes be misinterpreted if not used

appropriately, particularly when the underlying data are flawed

or inaccurate [4]. The ability to effectively handle, analyze,

and interpret these growing volumes of data is essential.

This work is part of SFI AutoShip, an 8-year research-based innovation
center. In addition, this research project is integrated into the PERSEUS
doctoral program. We want to thank our partners, including the Research
Council of Norway, under project number 309230, and the European Union’s
Horizon 2020 research and innovation program under the Marie Skłodowska-
Curie grant agreement number 101034240. Furthermore, we thank Idletechs
AS for providing us with the thermal camera data.

Therefore, the development and deployment of robust data

analysis techniques is of critical importance.

Among various available data analysis tools, Principal Com-

ponent Analysis (PCA) [5] has gained significant attention due

to its ability to reduce the dimensionality of data sets while

retaining most of the underlying information [6]. However, tra-

ditional PCA is highly susceptible to outliers and corruptions

in the data, which can substantially impact its performance

and the accuracy of subsequent analyses. Consequently, there

is a need for more robust techniques that can handle such

irregularities. Robust Principal Component Analysis (RPCA),

an advanced variant of PCA, offers more reliable results by

robustly separating low-rank and sparse components in the

data, even in the presence of outliers and corruptions [7].

The concept of RPCA for decomposing a data matrix in

a low-rank and a sparse component is accurately described

in [8]. The decomposed components use a convex program

called Principal Component Pursuit. The method, which can

recover the principal components even when data entries are

corrupted or missing, has applications in video surveillance for

object detection, in cluttered backgrounds and face recognition

for removing shadows, in specularities, and more. A detailed

comparison of PCA and RPCA is given in [9], showcasing the

benefits and robustness of RPCA.

In parallel, considering the growing need for big data, one

of the key challenges that emerges is the efficient storage

and transmission of these enormous volumes of data. A novel

approach to this problem is the concept of Optimal Sensor

Placement (OSP) [10]. OSP involves strategic positioning

of sensors to capture the most relevant data, significantly

reducing redundancy and facilitating efficient data storage and

transmission. In essence, OSP aims to obtain a compressed

version of the data without a significant loss of information.

Through a comprehensive examination of RPCA and OSP,

this study aims to explore the synergies among these method-

ologies and their collective impact on improving the accuracy

and efficiency of big data modeling and analysis.

Furthermore, we extend this work by integrating a data-

driven modeling approach for real-time predictions using Long

Short-Term Memory (LSTM) networks, which was first pro-

posed by [11]. The specialized design of LSTMs, with its gate

mechanisms, allows them to learn long-term dependencies in
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the data [12]. Artificial Neural Networks (ANNs) have gained

considerable traction in various forecasting domains due to

their adaptability, nonlinearity, and the capability to map arbi-

trary functions. However, they require a lot of computational

time for training [13]. Therefore, we create LSTM models

based on the few selected data points obtained from the OSP

algorithm. This technique significantly accelerates the training

phase, making the proposed methodology adaptable to a wide

range of applications. Once these few data points (measure-

ments) are predicted using LSTMs, we reconstruct the full

data dimension via the concept of OSP, allowing predictions of

future states in full dimension with remarkable accuracy. The

integration of RPCA, OSP, and LSTM offers a novel approach

to big data modeling, promising both robustness and scalability

in various real-world scenarios.

In this study, we applied the algorithms on a dataset from a

thermal camera mapping a ship’s engine. The thermal images

provided insight into the temperature profiles and fluctuations,

offering a unique perspective on the engine’s operational

behavior and performance. Condition monitoring is crucial to

maintain safe maritime operations [14] and can provide insight

into the reliability of a vessel’s engine and its components.

By identifying anomalies early on, it is possible to predict the

lifespan of these components and prevent significant break-

downs. As pointed out in [15], the maritime sector rarely

employs predictive maintenance. Instead, most maintenance

activities on ships tend to be preventive. This frequently leads

to higher costs as replaced components might have had a

longer usable life endurance.

In summary, this study addresses three core challenges:

• The robust treatment of uncertainties such as outliers

and corruptions in data due to the use of affordable,

nonintrusive thermal camera measurements.

• The requirement for memory-efficient storage techniques

due to the vast data generated.

• The capability of proactive maintenance in real-time

through predictive data-driven modeling.

II. THEORY

This section provides a detailed overview of the statistical

techniques used in this study. We introduce the concept of

Principal Component Analysis (PCA) and its robust counter-

part, Robust Principal Component Analysis (RPCA), for data

cleaning. Furthermore, the section covers the idea of Optimal

Sensor Placement (OSP) used for effective data compression

and storage management.

A. Principal Component Analysis

Principal Component Analysis (PCA) is a statistical

procedure that uses an orthogonal transformation to convert

a set of observations of possibly correlated variables into

a set of linearly uncorrelated variables, termed principal

components. This procedure allows for identifying the

directions (principal components) where the data vary the

most. There are two main approaches to compute the

PCA. The eigenvector approach and the Singular Value

Decomposition (SVD) approach. The general concepts are

described in detail in [16]. The SVD approach is often chosen

since it is numerically more robust.

Singular Value Decomposition Approach: PCA is closely

related to SVD, a factorization of a real or complex matrix.

For any real matrix A ∈ R
m×n, with m ≥ n, there exists a

factorization of the form

A = UΣVT , (1)

where U ∈ R
m×m, Σ ∈ R

m×n, and V ∈ R
n×n. The columns

of U are orthonormal eigenvectors of AAT , and the columns

of V are orthonormal eigenvectors of ATA. The diagonal

elements of Σ are the square roots of the eigenvalues of ATA
(or equivalently, AAT ), and are called the singular values of

A. To see this, we first consider the matrix ATA, which is a

symmetric matrix. By the spectral theorem, we can factorize

it as

ATA = VΣ2VT . (2)

Similarly, we can factorize AAT as

AAT = UΣ2UT . (3)

Using these two identities, it can be shown that

A = UΣVT , (4)

which is the Singular Value Decomposition of A.

Consider a data matrix X ∈ R
m×n, where each row is an

observation and each column is a variable. We assume that

the data have been centered, i.e. the column means have been

subtracted off.

1) Perform a lower-ranked SVD: Compute the SVD of

X by X = UrΣrV
T
r + E. Here, Ur ∈ R

m×r and

V�
r ∈ R

r×n are orthogonal matrices containing left and

right singular vectors and r is the number of principal

components, respectively. The matrix Σr ∈ R
r×r con-

tains the r largest singular values in decreasing order on

the diagonal. Furthermore, the matrix E contains the un-

modeled residuals due to the dimensionality reduction.

2) Principal components: Finally, the principal components

of X are given by XVr ≈ UrΣr. The i-th column of

XVr is the projection of the data onto the i-th principal

direction (i.e., the i-th eigenvector).

This process shows how PCA can be derived from the SVD

of a data matrix. However, traditional PCA is highly sensitive

to outliers and data corruptions.

B. Robust Principal Component Analysis

The most significant advantage of RPCA over standard PCA

is its resilience to outliers. Traditional PCA is sensitive to

outliers because it tries to find a lower-dimensional represen-

tation that best explains the variance in the data. If outliers are

present, PCA may be heavily influenced by them, leading to

a representation that does not accurately capture most of the

underlying structure of the data. RPCA, on the other hand,
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explicitly models these outliers, resulting in a more accurate

and robust representation of the primary data structure.
In certain contexts, RPCA can better recover the true under-

lying low-rank structure of data compared to PCA, especially

when the data are grossly corrupted or when a significant

amount of data is missing.
RPCA works by decomposing the data matrix into a low-

rank matrix and a sparse matrix. The low-rank matrix captures

the principal components, and the sparse matrix captures

outliers or anomalies. This separation can be very useful in

many applications, such as image and video processing, where

the low-rank component can correspond to the background

and the sparse component can correspond to moving objects.

The general idea is to decompose the data matrix X into two

components expressed by

X = L+ S. (5)

Here, the matrix L describes the low-rank matrix that captures

the main structure of the data, while the matrix S is sparse

and captures outliers and corruptions. Therefore, the goal is

to find L and S which satisfy

minimize
L,S

rank(L) + ‖S‖0,
subject to L+ S = X,

(6)

where ‖S‖0 describes the zero norm of S, and rank(L)
specifies the rank of L. However, due to the nonconvex

nature of both the rank(L) and the ‖S‖0, this optimization

problem becomes intractable [9]. To overcome this issue,

convex relaxation [17] provides an approach to approximate

convexity for nonconvex problems. Convex relaxation allows

transforming (6) into

minimize
L,S

‖L‖∗ + λ‖S‖1,
subject to L+ S = X,

(7)

where ‖ · ‖1 is the L1 norm given by the sum of the absolute

values of the matrix entries, ‖ · ‖∗ is the nuclear norm given

by the sum of singular values, and λ is a hyperparameter.

While minimization of ‖S‖1 leads to an approximation of

minimizing ‖S‖0, minimization of ‖L‖∗ leads to an approxi-

mation of the lowest possible rank(L). The problem described

in (7) is convex and known as Principal Component Pursuit

(PCP). To solve this convex problem, the Augmented Lagrange

Multiplier (ALM) algorithm is suggested [18]. The augmented

lagrange multiplier can be formulated as

L(L,S,Λ) = ‖L‖∗ + λ‖S‖1 + 〈Λ,X− L− S〉+ μ
2 ‖X− L− S‖2F , (8)

where Λ is the matrix of Lagrange multipliers, μ is a hy-

perparameter, 〈·〉 denotes the inner product, and ‖ · ‖F is the

Frobenius norm, also known as the Euclidean norm, which is a

measure of the magnitude or length of a matrix. Subsequently,

we minimize L to solve for Lk and Sk at timestep k, where

the matrix of Lagrange multipliers is updated by

Λk+1 = Λk + μ(X− Lk − Sk). (9)

As a result, RPCA decomposes a data matrix X into a low-

rank component L and a sparse component S.

C. Optimal Sensor Placement

Optimal Sensor Placement (OSP) is a method to identify the

most insightful locations within a system for the positioning

of sensors. This approach can maximize the measurements’

entropy while minimizing the amount of sensors required.

Here, entropy describes the abundance of information within

a system.

Let x ∈ R
n be a single data point in time, which can be

approximated as

x ≈ Ψra, (10)

where a ∈ R
r contain the coefficients that vary over time

while the columns of Ψr are the modes of the lower-ranked

Proper Orthogonal Decomposition (POD). POD is very similar

to PCA. However, POD modes are not scaled by the singular

value matrix Σ, such as the principal components of PCA.

Therefore, Ψr = Ur. If we assume that the measurements

can be expressed by

y = Cx, (11)

with C ∈ R
s×n being a sparse measurement matrix and s the

number of sensors, the measurements can be approximated by

y ≈ CΨra. (12)

If we denote Θ = CΨr, the estimated coefficients can be

represented by

â = Θ†y. (13)

Hence, we can derive an estimate of x yielding

x̂ = Ψrâ = Ψr(CΨr)
†y. (14)

As Ψr can be determined using the lower-ranked SVD, the

only unknown entity is the sparse measurement matrix C. As

described by [10], optimal sensor placement can be achieved

by applying QR factorization with column pivoting to the POD

modes Ψr. In this relation, it is important to note that the

number of sensors s must satisfy s ≥ r.

III. METHODOLOGY

This section describes a potential big data workflow for data

cleaning, data compression, and computationally efficient data-

driven modeling. The core of the proposed framework is built

by RPCA, OSP, and LSTMs.

A. Data Cleaning

We use RPCA for data cleaning, introduced in Section II-B.

The tuning parameters described in (8) were chosen as λ =
0.006 and μ = 10−5. After obtaining the decomposition of the

data matrix X into L (low-rank matrix) and S (sparse matrix),

a cleaned version of the data can be reconstructed. The low-

rank matrix L represents the underlying physics, while the

sparse matrix S contains anomalies and perturbations. As a

result, the matrix L represents a cleaned version of the data

matrix X.
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B. Data Compression

To compress the data while simultaneously retaining the

essential information about the underlying system, we apply

OSP described in Section II-C to the cleaned data matrix

L obtained from RPCA. The fundamental principle behind

OSP is to maximize the fidelity of the data while minimizing

the number of sensors or data points. By placing sensors

in locations that capture the most variance or information

in the data, we can represent the original high-dimensional

data X with a significantly smaller set of measurements

Y, where Y contains y stacked over a specific historical

window. This smaller set of measurements is represented by

the sparse measurement matrix C. The selected measurements

or sensors produce a compressed version of the original data.

By reducing the number of required sensors, OSP can lead to

significant cost savings in scenarios where sensor deployment

is expensive.

C. LSTM-based Modeling of Sparse Measurements

In the field of data-driven modeling, the power of neural net-

works, particularly LSTM networks, has been proven in many

applications. LSTMs are designed to remember patterns over

long sequences, making them suitable for modeling time-series

data. However, LSTMs may not be computationally suitable

for large datasets. Therefore, we apply LSTM to the lower-

dimensional subset Y obtained from OSP. The combination

of LSTMs and OSP can drastically reduce the computational

costs required to train LSTM networks. When we use LSTMs

to model these sparse measurements selected by OSP, we aim

to capture the underlying temporal dynamics. Once trained,

these networks can be used to predict the sparse data points.

By subsequently applying the reconstruction algorithm given

by (14), we can transform these sparse predictions into full-

sized sensor space, mapping the original data dimensions. Note

that if the data is sampled with an inconsistent frequency,

an initial interpolation of the data can lead to more accurate

models.

D. Big Data Workflow

The previously described approaches can interact to com-

bine their strengths into an optimized big data workflow. In

Fig. 1, we demonstrate a potential framework, employable to

various applications for data preprocessing, compression, and

modeling. The workflow has the following structure:

1) Data Cleaning: RPCA generates a cleaned version L of

the data matrix X. Since L contains the information of

interest (e.g., the underlying dynamics of the system), L
can be propagated to subsequent processing and analysis

methods.

2) Data Compression: The OSP algorithm enables drastic

compression of the cleaned data matrix L. Computing

the POD modes Ψr of L and finding the sparse mea-

surement matrix C, a small subset Y can be sufficient

for data storage. The subset Y can be forwarded for

continuative analysis and modeling. Note that Ψr and

Data Cleaning

RPCA

Data Compression

OSP

Data-Driven Modeling

LSTM + OSP
3

2

1

L

Fig. 1. Concept of cleaning, compressing, and modeling the data.

C must also be stored to extend the subset y to its

original dimension x̂ (see (14)).

3) Data-Driven Modeling: In this step, data-driven models

of the propagated subset Y are built using an LSTM-

based neural network. The built data-driven models of

the subset can thus be used to predict future states. After

predicting the future subset, predictions of the original

data dimension X̂pred can be computed using Ψr and

C from the OSP algorithm.

IV. SIMULATION SETUP

This study uses data acquired from a thermal camera

mapping a ship’s engine. The data were provided by Idletechs

AS. Since the data were uncorrupted and free from outliers, we

simulated synthetic perturbations affecting the data specified

below. In addition, we describe the LSTM neural network

setup that we chose for this study.

A. Data

The dataset under examination is derived from thermal cam-

era imagery, which captures the engine of a ship, specifically
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that of a ferry. The primary intent behind acquiring these

images was to observe the thermal behavior of the engine

during various operational states, including taking off, steady-

state driving, and docking.

The data acquisition spanned a total of four consecutive

days. On each day, the engine was continuously monitored

for a duration of approximately six hours, resulting in a

cumulative observation period of 24 hours over the four days.

However, the sampling frequency of the recordings was not

consistent. The average time between consecutive samples is

approximately 0.5 seconds. A snapshot of a thermal image

mapping the ship’s engine is depicted in Fig. 2.

Each image sourced from the thermal camera comprises

19,200 pixels, with dimensions set at 120x160 pixels. Each

pixel captures the thermal radiations from the engine, which

can potentially offer insights into the ship’s engine’s thermal

performance and any anomalous patterns or hotspots that may

arise during its operation.

B. Perturbations

To evaluate the methods under various conditions, we per-

formed four simulation scenarios comprising outliers, corrup-

tions, noise, and a combination of them.

Scenario 1: The data is perturbed by Gaussian noise, where

the noise was generated with a mean of 0 and a standard

deviation of 4, ensuring that the noise values are concentrated

mainly within the range of [-4, 4]. These parameters were

chosen to mimic the range of intense noise present in the

measurement processes.

Scenario 2: The data is perturbed by outliers. These outliers

were introduced by randomly selecting 100 data points (pixels)

and replacing their original values with randomly generated

values in the range of [30, 40] and [-40, -30]. This range

was chosen to ensure that the magnitude of the outliers was

significantly different from that of the actual variables to

simulate severe measurement anomalies.

Scenario 3: The data is perturbed by corruptions. These

corruptions were simulated by adding uniformly distributed

random noise to 10% of the dataset over the interval [-15, 30].

Fig. 2. Unperturbed thermal camera image mapping a ship’s engine.

This interval was selected to ensure a substantial magnitude

for the corruptions, to pretend a distortion, and to provide a

stringent test for the robustness of the PCA, RPCA, and OSP

algorithms.

Scenario 4: The data is perturbed by a combination of

the previously mentioned scenarios 1, 2, and 3, leading to

a superposition of all scenarios.

C. LSTM network architecture

To train the LSTM network, various parameterizations were

tested. Finally, the parameters shown in Table I were chosen.

The network was trained using the Adam optimizer, where

the Root-Mean-Squared Error (RMSE) was set as a metric

to evaluate the model’s performance during training. For the

predictions, we trained the network with a window size of

50 historical samples, and the considered forecast time was

chosen to be 100 time steps. The network structure consists

of an input layer, an LSTM layer, a dense feedforward layer,

and an output layer. Since deep neural networks with numerous

parameters often overfit, we inserted a dropout layer. Dropout

is a technique to address overfitting in which, during training,

random units and their connections are omitted [19].

TABLE I
LSTM NEURAL NETWORK TRAINING PARAMETERS

Parameter Value

Input layer shape 50× 10

LSTM layer size (neurons) 128

Dropout ratio 0.2

Feedforward layer size (neurons) 128

Output layer size (neurons) 10

Learning rate 10−4

Epochs 100

V. RESULTS AND DISCUSSION

In the following, the results of the individual approaches

regarding data cleaning, data compression, and data-driven

modeling are discussed.

A. Data Cleaning

The data cleaning phase is demonstrated in Fig. 3. Presented

are the four various scenarios described in Section IV-B. Note

that the unperturbed image of Fig. 2 reflects the ground truth.

The results of RPCA are compared with those of PCA. It is

shown how RPCA decomposes the thermal image data into the

matrices L and S. The matrix L clearly depicts the unperturbed

image, while the matrix S captures the sparse components of

the data, which mainly contain all unwanted fragments and

anomalies. In contrast, the image reconstructions of traditional

PCA are especially susceptible to intensive corruptions and

outliers. Therefore, the capability of RPCA to decompose data

into a low-rank matrix L and a sparse matrix S can improve

the accuracy of many AI applications utilizing big data.

344



Scenario 1 (noise) Scenario 2 (outliers) Scenario 3 (corruptions) Scenario 4 (superposition of 1, 2, 3)

Reconstructed image from PCA Reconstructed image from PCA Reconstructed image from PCA Reconstructed image from PCA

Matrix L from RPCA Matrix L from RPCA Matrix L from RPCA Matrix L from RPCA

Matrix S from RPCA Matrix S from RPCA Matrix S from RPCA Matrix S from RPCA

Fig. 3. Results of RPCA and PCA applied on thermal camera data under various conditions. The different scenarios are described in Section IV-B.

B. Data Compression

OSP applied to the thermal image data can drastically

reduce the data dimension. In this study, we used only 10

of the original 19,200 pixel measurements. As illustrated in

Fig. 4, it is evident that the original thermal images could be

accurately reconstructed using a substantially reduced set of

pixel measurements.

From a data compression standpoint, the ability to re-

construct comprehensive thermal images using limited pixel

measurements underscores the energy and memory efficiency

of OSP. This reduced representation not only implies a signif-

icant reduction in data size but also means that the essential

features and characteristics of the thermal images are captured

with minimal loss of information. Consequently, this data

compression approach enables faster processing times, reduced

memory requirements, and lower energy usage in real-time

applications or scenarios with bandwidth constraints.

Memory savings can be considered as follows. Assuming a

data matrix X ∈ R
m×n, where m is the spatial dimension and
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Original image Measurements Reconstructed image

Fig. 4. Optimal sensor positions and their capability to reconstruct the original images.

n expresses the time dimension, while the lower-dimensional

measurement matrix Y ∈ R
r×n is spanned by a low dimen-

sion r, then the ratio of saving memory is given by

α =
m

r
. (15)

In this case study, the ratio of saving memory yields

α =
19200

10
= 1920. (16)

This implies that, under the consideration of equal memory,

we can store 1920 times more thermal images.

C. Predictive Data-Driven Modeling

The LSTM network was trained using a sparse subspace Y,

obtained by OSP. Since this study dealt with data containing

inconsistent time samples, we interpolated the data before

building data-driven models via LSTM networks. To show the

influence of previously interpolating the data, we depict the

RMSE of the model predictions concerning the data-driven

model with and without an initial interpolation in Fig. 5.

The RMSE is related to the reconstructed images of the

original image size (19,200 pixels) using the model predictions

from the few OSP measurements (10 pixels). Furthermore, a

comparison of the computational time for a training phase

is demonstrated in Fig. 6, showing the tremendous efficiency

0 1 2 3 4 5 6
Time [h]

0

2

4

6

8

R
M
S
E

Fig. 5. RMSE of the LSTM predictions after reconstructing the entire images
with the few pixel measurements from OSP. Compared are the predictions for
100 timesteps, where the LSTM model is trained on the original OSP pixel
data ( ) and the interpolated OSP pixel data ( ).

improvement of the proposed approach. For comparison, the

network structure and training parameters of Table I were used.

The computational efficiency underscores the practicality of

the method, especially when considering real-time applica-

tions. Once trained, the model’s ability to make predictions

is instantaneous, allowing real-time forecasts to be made in

milliseconds. In addition, depending on the application and

the parameters chosen for training (e.g., number of epochs),

the proposed approach can enable online training in real-time.

VI. CONCLUSION

In conclusion, the application of Robust Principal Com-

ponent Analysis (RPCA) on thermal image data significantly

enhances the quality of the data, allowing for more insightful

subsequent analyses. Given its robustness and versatility, this

method can be extended to various data applications, broaden-

ing its relevance and potential impact across diverse domains.

Furthermore, the use of Optimal Sensor Placement (OSP)

offers a promising approach for those looking to maximize

the efficiency of their data storage and compression strategies,

especially in environments where storage space and data

10 samples 100 samples 1000 samples 10000 samples

101

102

103

104

t
[s
]

X

Y

Fig. 6. Comparison of the computational time for a training phase of the
LSTM network regarding full image data X and the compressed image data
Y. The training time is compared to various data sizes. Note that the time is
scaled logarithmically. The number of epochs was set relatively high (100).
Therefore, changing training parameters can allow online training with a
duration of less than a second.
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Fig. 7. Pixel predictions of the 10 optimal sensor positions ( ) compared to the ground truth ( ).

transmission capabilities are limited. Applying LSTMs to a

lower-dimensional space obtained by OSP can improve com-

putational efficiency and can enhance the accuracy of time-

series predictions. The interaction of the presented approaches

optimizes both data processing and subsequent analyses, which

can improve data quality, computational efficiency, and mem-

ory efficiency while enabling real-time predictive capabilities.
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