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Abstract—Atherosclerosis is a leading, yet preventable cause of
death worldwide. To diagnose and assess plaque deposits within
the arterial walls, experts employ intravascular optical coherence
tomography (IVOCT) for the detection and characterization
of lesions. Clinical routines acquire a high number of images,
necessitating automatic plaque detection for fast and accurate
decision support. Deep learning-based plaque detection meth-
ods demonstrated remarkable success, but come with frequent
prediction inaccuracies. Therefore, a thorough understanding
and assessment of predictive reliability is required for future
clinical decision support systems. We address this issue by
employing a novel uncertainty estimation method, extending deep
learning (DL) models that directly learn plaque classification
from an IVOCT dataset and form the basis of state-of-the-art
architectures, through a confidence estimation branch (CEB).
Our models allow for optimized treatment execution by providing
physicians with confidence scores, along with disease predictions
from DL models. Experiments demonstrate that the estimated
confidence correlates to prediction accuracy with the proposed
method. We show that generating uncertainty scores with a CEB
is feasible, paving the way for more qualitative and effective
decision-making in future medical predictive analysis.

Index Terms—Confidence Estimation, Uncertainty Measure,
Deep Learning, Medical Predictive Analysis, IVOCT

I. INTRODUCTION

The interpretation of medical images for effective treatment

often constitutes a critical challenge for experts [1]. Since

atherosclerosis is a leading, yet preventable, cause of death

worldwide , visualizing lesions and arterial walls with intravas-

cular optical coherence tomography (IVOCT) is crucial for

effective treatment [2]. Analyzing the high number of images

captured during clinical routines involves significant time and

monetary investments by experts. Thus, tremendous research

efforts are dedicated to automatic plaque detection with deep

learning (DL) for fast and accurate decision support in auto-

mated computer-aided diagnosis (CAD) systems. Automatic

IVOCT data analysis methods, including lumen segmentation,

stent detection, and plaque identification, have been success-

fully developed with a high predictive ability [3], [4]. These

methods correlate IVOCT images with histology data and use

various techniques based on DL with convolutional neural

networks (CNNs) to improve accuracy in tasks like tissue layer

segmentation and plaque detection [4], [5].
However, these methods are often limited in their ability

to accurately capture model uncertainty, or do not capture it

at all, which is crucial for deriving well-informed decisions

based on AI predictions. Although Bayesian principles have

been proposed in ML decades ago [6], only recently computa-

tionally feasible methods boosted Bayesian approaches in ML

[7]. Consequently, these methods have gained considerable

interest as opposed to traditional methods that tend to overfit,

dimming their generalization capabilities and performance

on unseen data. They are generally incapable of addressing

uncertainties. Whereas some uncertainty estimating models

have been developed, it has been observed that such models

are generally overconfident [8]. To estimate uncertainties,

Bayesian inference such as MC dropout via posterior distri-

bution stands out as the main approach [9]. More recently,

uncertainty estimations directly from models were explored,

i.e., [10] presents an anomaly detection module to estimate

prediction uncertainty.

This aspect gains even more importance in the medical

sector, where decisions can profoundly affect end-users. In

medical predictive analysis, uncertainty estimation enables

decision-making based on confidence levels [9], enhancing

treatment and risk mitigation. If the predictive model exhibits

high confidence in a specific diagnosis, it may suggest allo-

cating more resources or attention to that area to optimize

patient treatment. Conversely, low confidence advises caution

or alternative strategies to minimize health risks. Uncertainty

estimation in plaque prediction using IVOCT plays a crucial

role in more accurate diagnosis and treatment planning.

In our study, we advance the framework of deep neural

networks, a state-of-the-art classification architecture for med-

ical image classification [1], [5], without compromise to the

network’s prediction efficacy. We introduce an auto-encoder-

based uncertainty estimation method focusing on scope com-

pliance related aleatoric uncertainty by demonstrating its per-

formance in predicting plaque on IVOCT images. Comparing

with MC dropout, the proposed method does not require

running the inference task multiple times, hence eliminating

associated running cost.

This paper is organized as follows: Section II provides

an overview of IVOCT image classification and confidence

estimation. Section III details our model’s architecture and

functionality. Finally, in section IV we discuss test results by

evaluating confidence estimation together with classification
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performance and conclude in section V.

II. BACKGROUND

A. IVOCT Image Classification

IVOCT is a key imaging tool in coronary angiography, of-

fering higher axial and lateral resolution of microstructures in

arterial walls, although with a smaller field of view compared

to intravascular ultrasound (IVUS) [11], [12]. Automated

analysis methods for IVOCT data include lumen segmentation

[13], stent detection [3], [14], and plaque deposit detection,

addressing the challenge of manual image review. Studies have

shown that IVOCT images can be correlated with histology

data, affirming the feasibility of inferring plaque characteristics

from IVOCT data [12]. IVOCT is also utilized in measuring

fibrous cap thickness in arterial walls, assessing rupture risks

and potential myocardial infarction occurrences [11]. Calcified

plaque regions, indicative of increased stenosis risk, have been

quantified using IVOCT [15]. The optical backscattering and

attenuation coefficient of tissue has been identified as a useful

marker for characterizing coronary plaques [16], [17]. Fully-

automated plaque characterization methods using texture and

optical properties as features have been proposed for plaque

detection, achieving classification accuracies between 72.1%

and 89.5% for different tissue types [16], and segmentation

[18]. K-means clustering and random forests have been used

for segmenting calcified plaque regions, achieving sensitivities

between 71% and 81% for various tissues. [19].

Deep learning, especially convolutional neural networks

(CNNs), has significantly advanced IVOCT image processing

for tissue layer and plaque segmentation [1], [20], [21]. An

automated plaque segmentation method has been developed

using CNN and an improved random walk algorithm, achiev-

ing a Jaccard coefficient of 0.864 [22]. Preliminary studies

using CNNs have focused on patch-wise approaches for plaque

segmentation [23]. Effective preprocessing, like lumen seg-

mentation, is crucial but challenging due to artifacts [13].

While segmentation is vital in many medical applications [1],

in IVOCT, the focus is shifting towards identifying plaque

deposits in pullbacks, which is crucial for clinical decision

support systems. The field has progressed from models like

AlexNet [24] to more advanced architectures like ResNet [25],

enhancing medical image analysis. The impact and optimal use

of transfer learning from datasets like ImageNet in IVOCT are

still under investigation [26]. Multi-path structures [5] may

resolve the choice between traditional polar and cartesian rep-

resentations [23], intuitively resembling the artery’s anatomical

structure. More recent advancements combine DL with hand

crafted approaches [27] and trained a Random Forest using

CNN features [28].

Most approaches for feature extraction in plaque detection

within Intravascular Optical Coherence Tomography (IVOCT)

images predominantly rely on DL models as their fundamental

component [12], incorporating various architectures, including

those with and without skip connections or residual elements

[5], [24], [25]. Frequently utilized variants of CNNs are

AlexNet, DenseNet, ResNet or VGGNet [29].

B. Uncertainty Estimation

Our uncertainty estimation architecture is inspired by auto-

encoder designs, notably those detailed in [30]. A multi-layer

perception (MLP) model fφ,ψ : Ri �→ R
o featuring N layers

of hidden nodes mapping from R
i to R

o, is trained with input

image set X and their labels Y 1. This function fφ,ψ combines

two mappings. In this model, φ and ψ represent the parameters

for the first M layers and the final N −M layers of nodes,

respectively. If the M th layer has k nodes, then the function

fφ maps from R
i to R

k, and the function fψ maps from R
k

to R
o.

fφ,ψ = argmin
φ,ψ

‖Y − (fψ ◦ fφ) (X)‖2 (1)

Furthermore, an additional MLP branch fω to fφ with the

same output cardinality i as the input set is appended. This

forms the auto-encoder g : Ri �→ R
o (2) for set X .

g = argmin
g

‖X − (fω ◦ fφ) (X)‖2 (2)

The hypothesis posits that for any given instance x in the

input space Ri and its associated label y in the output space

Ro it holds that

|y − fφ,ψ(x)| ↔ |x− (g ◦ fφ)(x)|. (3)

We therefore define the uncertainty score σ for the prediction

fφ,ψ as

σ = |x− (g ◦ fφ)(x)|. (4)

The illustrated model architecture (Figure 1) offers an un-

certainty measure as the reconstruction error σ, which is the

absolute difference between the original and rebuilt inputs. In

theory σ has a direct relationship with the error in prediction

(3). This offers a way to gauge the model’s effectiveness prior

to seeing the actual results.

The following work is based on two assumptions. First,

the prediction model exhibits higher performance on inputs

that resemble those in the training set, while effectiveness

diminishes on unfamiliar inputs. Secondly, the decoder, trained

on the same dataset, accurately reconstructs familiar inputs,

resulting in low reconstruction errors (small σ). Conversely, it

struggles to reconstruct unfamiliar inputs, resulting in signifi-

cant reconstruction errors (large σ).

III. METHODOLOGY

A. Model Architecture

We employ the ResNet18 [25] (Figure 2) deep neural

network as the core of our prediction model as it represents

classes of commonly used CNNs that proved their effec-

tiveness in IVOCT image analysis even with small datasets

[29]. ResNet18 processes images x of 224x224 pixels with

three RGB channels, using an architecture divided into five

distinct building blocks fφ (orange). The first building block

consists of a 7x7 convolution with stride two and 64 channels.

The following 3x3 max-pooling layer likewise has a stride

of two. The following four building blocks follow a similar

structure. They consisting of two residual blocks with two

349



Fig. 1. MLP model architecture with decoder as uncertainty score branch.

Fig. 2. Model architecture with ResNet18 classifier, consisting of encoder fφ (orange), including max-pooling layers (mp, dark orange), and final layers fψ
(purple) with input x and prediction ŷ returned by loss function l (dark purple). Attached is the confidence estimation branch g (blue), including convolutional
transpose layers (ct) and sigmoid layer (green), with loss function d returning reconstruction error σ.

3x3 convolutions each. Both residual blocks come with a

skip connection, that feeds the input next residual block as

well. Notable the first two blocks maintain an output depth of

64 channels. The first convolution of the later three layers

comes with stride 2 that halves the feature resolution and

double the output depth of the building block. Following

each convolutional layer, batch normalization and a ReLU

activation function are employed to stabilize and optimize

the network’s learning process. This graduated arrangement

allows for a progressive refinement of features extracted from

IVOCT images, resulting in a total number of M = 17
layers. They reduce the computational load and enhancing the

extraction of dominant features. The classifier culminates in

the final N −M = 1 layers fψ (purple), consisting of a fully

connected (fc) layer, with 512 neurons, followed by a final

fully-connected layer tailored to the number of classes (|C|)
in the dataset, and loss function l for output ŷ (dark purple).

Our novel contribution is the augmentation of the CNN with

an additional CEB g (see Figure 2) that enables measuring the

reconstruction error. Integrated with the last average-pooling

layer of ResNet18, the CEB functions as a decoder, attempting

to reconstruct the input image and thereby forming an auto-

encoder in conjunction with the encoder. The architecture of

the decoder mirrors that of encoder. Each block begins with a

2D convolutional transpose (ct) layer for upscaling (dark blue),

followed by convolutional layers that directly reflect the design

of the corresponding encoder block. Batch normalization and

ReLU activation are applied before each convolution in the

decoder to enhance performance. The final layer of each block

reduces the depth of the feature maps by half, pivotal in

reconstructing output images X̂ with the original dimensions

and number of channels. The loss function d, applied to the

reconstruction output x̂ of the final sigmoid layer (green) and

the ground truth, returns the reconstruction error σ.

B. Dataset

The data set we utilize for our experiments has a total of

3951 individual 16 bit greyscale IVOCT images. To prevent

distorted results, none of the images contains a stent. All 347

A-scans from each 360◦ turn are assembled to a B-scan with

a depth of 683 pixels. Three experienced physicians labeled

each frame in partially overlapping subsets to mitigate intra-

observer variability [14], indicating no plaque or one of six

different plaque types. Distinguishing labels were classified

repeatedly to ensure label quality by labeling with consensus.
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Fig. 3. Two IVOCT image samples (left), respective model outputs (center)
and their absolute differences (right).

The IVOCT dataset consist of multiple intravascular serial

scans (pullbacks) obtained by 49 different patients. Frames that

originate from a single pullback are considered as a group due

to their high similarities and strong relation. We adopt four fold

cross-validation (CV), to find appropriate hyperparameters and

avoid overfitting. The test set contains nine pullbacks. Each

validation set contain 10 pullbacks of similar size in total.

Because the pullback cardinalities are highly divergent and

their label distributions within them are highly imbalanced,

we randomly select a maximum of 50 samples of each class

in every pullback.

C. Preprocessing and Data Augmentation

For simplicity, we restrict ourselves to a binary classifi-

cation, distinguishing whether the image represents disease-

affected (plaque) or healthy anatomy (no plaque). A one

indicates plaque presence, while a zero indicates its absence.

Thus, we obtain 2142 positive and 1808 negative image labels.

The polar image Ip(d, δ) is transformed into cartesian space

with the transformations x = d cos(δ) and y = d sin(δ).
We apply bilinear interpolation to each scan, converting it to

a more human interpretable cartesian representation Ic(x, y)
that fits the models input resolution of 224x224 pixels 3.

It is normalized and replicated to fit the three model input

channels. We apply CLAHE filter [31] with tile size 5 on the

padded image for contrast enhancement to help generalizing

and prevent overfitting. Afterwards, the image is cut back to

the original size. We apply an inverted circular mask with

the diameter equal to the image size to remove the created

artefacts. In addition, the catheter is removed with a circular

mask x0.17 of the image diameter.

For data augmentation we apply random rotation with a ∈
[0◦, 360◦] and random flipping along the x and y direction. The

images are partially masked by a random square dimension of

x, y ∈ [0, 0.2], where d is the proportion of the images size.

to 80% of the training images.

D. Training

As with [30], it is crucial that, in contrast to a typical auto-

encoder model in which the encoder and decoder are trained

simultaneously, in our approach the encoder fφ is initially

trained as component of the prediction model (see figure 1).

Once training is completed, we proceed to train the decoder g
independently (2). This method guarantees that the prediction

accuracy of fφ,ψ is not impaired.

In our experiment, the classifier as well as the decoder are

trained in batches of size 8 and a weight decay of 0.01 to

allow learning essential features, while minimizing overfitting.

We use an initial learning rate of 5e-5. It rate undergoes an

exponential decrease, being scaled down by 0.9 after each

epoch. Each of the four models in its CV is trained for

10 epochs. Hyperparameters are found with a grid search

observing BACC using the validation holdout. After disabling

the gradients and backpropagation in the encoder, we train

the decoder with the same training set with initial learning

rate of 2e-5 for 20 epochs and likewise optimize it with the

respective validation holdout for all CVs. As our dataset is

small compared to, e.g., ImageNet [24], we make use of

transfer learning which has been used successfully in the

medical image domain [26].

ln = −
C∑

c=1

wc log
exp (ŷn,c)∑C
i=1 exp (ŷn,i)

yn,c (5)

For training the classifier, we minimize the batch wise cross-

entropy loss L as the mean over all losses ln (5) in the batch

dimension N as: L = 1
N

∑N
n=1 ln, commonly used for clas-

sification tasks. The target ground truth variable is indicated

by y, while ŷ signifies the model output. We determine the

training set imbalance for the binary labels “plaque” and “no

plaque” in each CV. Imbalance in each CV is handled by

weighting the loss of each sample with weight w according

to their class c ∈ C, where C is the set of all classes. This

approach mitigates the risk of overfitting while concurrently

minimizing information loss, a common issue encountered

when balancing datasets through the exclusion of samples.

The set of all sample losses is defined by mapping the cross-

entropy loss to all pairs of y and ŷ as: l(y, ŷ) = {l1, . . . , lN}.

dn(x, x̂) =
1

|x|
n∑

j=1

(xj − x̂j)
2 (6)

In the training of the decoder, mean squared error (MSE) loss

is employed (6), which is characterized as the mean of the

squared deviations for each pixel, where |n| denotes the total

number of pixels. Within the context of our model, the variable

x denotes the actual values, corresponding to the training

samples fed into the encoder. The variable x̂ signifies the

predicted values, which in our scenario are the output images

generated by the decoder. Additionally, |n| represents the total

count of samples within the dataset. We likewise define the set

of sample losses by mapping the MSE to all pairs of x and

x̂ as: d(x, x̂) = {d1, . . . , dN}. Just like with the classifier,

batchwise loss d is the mean over all sample losses.
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TABLE I
PERFORMANCE SCORES FOR CLASSIFIERS ON THEIR RESPECTIVE

VALIDATION SET IN EACH CV.

CV BACC F1 MCC

1 0.71 0.78 0.42
2 0.73 0.74 0.45
3 0.70 0.68 0.41
4 0.66 0.61 0.30

IV. RESULTS

A. Performance Evaluation

Similar to [30], we compare three metrics between the base

classifier and our extended model:

1) Model classification: plaque detection performance un-

der ideal parameters,

2) Uncertainty estimation performance: MAE between

ground truth and predicted image,

3) Uncertainty reliability: correlation between prediction

error and uncertainty.

In the process of correlating classifier loss with decoder loss,

the logarithmic and weights are eliminated when computing

the classifier loss. Following the implementation of the soft-

max function (5), the outcome are the reciprocal probabilities

ŷn associated with the positive class. These probabilities,

when multiplied by the negative target variable yn, result in a

simplified, linear, and non-weighted form of the cross-entropy

loss ln ranging from −1 to 0 (7).

ln = −softmax(ŷn)
ᵀyn (7)

To ensure linearity in the decoder loss and limit its range

between 0 and 1, we compute the mean absolute error (MAE)

or F1 loss, instead of the MSE in the calculation of the decoder

loss dn, when correlating the two losses.

B. Model Classification

We report three main evaluation scores [32] that describe the

correlation between the observed and predicted classifications

and can be calculated from the confusion matrix only. First,

the balanced accuracy (BACC) is retrieved by computing

the arithmetic mean of the true positive rate (sensitivity)

and true negative rate (specificity). Additionally, we evaluate

the classification performance with the Mathews correlation

coefficient (MCC or φ coefficient) [32]. Lastly, F1 score is the

harmonic mean of the precision and recall. It symmetrically

represents both precision and recall in one metric.

In the evaluation conducted on the test set, the mean

performance scores of the four classifiers yield a BACC of

0.70, complemented by an F1 score of 0.71 and an MCC of

0.40. In addition, we report the performance scores for the

metrics BACC, F1 and MCC of the four classifiers on their

respective validation set I.

C. Uncertainty Estimation Performance

1) Mean Uncertainty Scores: Considering the test set we

see a higher mean decoder loss of 0.68 for false classifications

TABLE II
MEAN LOSS FOR DECODERS ON THEIR RESPECTIVE VALIDATION SET IN

EACH CV ACROSS THE CONFUSION MATRIX.

CV TP 1 TN 2 FP 3 FN

1 0.065 0.068 0.068 0.067
2 0.063 0.066 0.065 0.068
3 0.064 0.066 0.066 0.070
4 0.065 0.068 0.067 0.070

Fig. 4. Loss pair distribution of auto-encoder (x-axis) against classifier loss
(y-axis) on test set. We mark positive predictions green and negative ones red.

than for true classifications 0.65 II. This holds true for positive

as well as negative classifications on every validation set. It can

also be observed when applying the different models to their

validation sets. When comparing the decoder performance on

their respective validation set in each CV, we see an increased

difference between mean decoder losses for true and false

predictions, if images in the validation set entails a rather

high domain shift. More specifically, the overall loss increases

for the respective validation set, even more the mean loss for

falsely classified samples in the validation set. This is also

evident when we examine the classifier loss on the respective

validation sets I. Accuracy decreases for sets, where the mean

decoder loss for false classifications is higher.

2) Single Uncertainty Scores: In the loss pair distribution

graph 4, we consider single loss pairs. We observe an in-

creasing mean classifier loss on the test set, when considering

an increasing proportion of the smallest encoder loss sample.

This proves the existence of a relation between decoder loss

and classifier loss. It supports the observation from above that

a higher mean decoder loss in false predictions corresponds

to rather poor classifier performance. When the set does not

contain samples from either known or an unknown data, the

loss distribution graph does not directly reflect any relationship

between the two losses.

Similar as above, we compare the performance of the

validation sets on the respective model in the CV. In an optimal

scenario, the RCC 5 represents a continuously escalating

trend, illustrating the dynamic interplay between encoder and

decoder losses. When the classifier performs relatively poor on

a validation set, the risk-coverage curve (RCC) increases rather

gradually. The rapid ascent at the beginning diminishes and the
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Fig. 5. The risk-coverage curve illustrates the relationship between classifier
and decoder loss. The x-axis represents the the sample set size in percent,
while the y-axis shows the mean of the computed values. Each data point
is derived by initially selecting a set proportion of samples that exhibit the
smallest MAE in the decoder evaluation. The mean classifier loss is calculated
for these selected samples (7). This process is repeated iteratively 100 times,
with each iteration involving an incremental increase in the proportion x.

curve converges more and more towards a straight line. The

upper part of the loss pair distribution with a higher classifier

loss moves to the right towards a higher decoder loss further

away from the lower part of the distribution. This variability

cannot be observed as strong when inspecting the performance

of the models for different validations on the same test set.

This is because the test set always stays the same and the

training samples for the models mostly overlap.

D. Uncertainty Reliability

In assessing the classifier’s familiarity with a newly intro-

duced sample set, or inversely, the magnitude of the domain

shift, two principal methods can be used as uncertainty mea-

sure. Both analyse the correlation between the decoder’s re-

sponses to a known sample set, which bears close resemblance

to the training data, and those to a new, unknown sample set.

It is assumed that both sets are given nearly equal weight.

The first method involves contrasting the mean disparity in

outcomes for correct and incorrect classifications between both

the known and unknown sample sets, as described above.

The second method involves fitting a linear regression to

the loss pair distribution. A steep gradient indicates a high

degree of similarity between known and unknown dataset, with

a higher prediction confidence and vice versa. The inverse

provides a metric for quantifying the uncertainty or domain

shift. However, simply applying linear regression does not

automatically yield meaningful insights. The effectiveness of

this method is contingent upon the presence of a ”diagonal”

correlation between classifier and auto-encoder, with a decoder

learning effectively. This may be substantiated by taking

Pearson’s correlation coefficient (PCC) r [33] into account.

For the third CV we report a gradient of 12.36 with a Pearson

coefficient of 0.22. The model performs worse in the forth

cross-validation, reflected by a stronger slope of 19.65 with a

significantly larger Pearson coefficient 0.37.

Furthermore, we utilize the relationship between the two

losses and define a threshold for decoder loss to be centered

between the minimum and maximum decoder error. It serves to

optimize the certainty when relying on the classifier prediction.

By adopting this approach, we aim to enhance the overall

expected prediction certainty, while selectively disregarding

certain samples. This threshold may be varied by practitioners

according to their needs. I.e. a high decoder threshold might

be applied when analysing a cascade of images. On the other

hand a lower threshold may be used to correct human analysis.

When applying the model to the testset, we observe a BACC

of 0.73, an F1 score of 0.74 and an MCC of 0.44.

E. MC Dropout

We employ MC Dropout during inference in DL models

to estimate uncertainty. We do this by randomly deactivating

neurons in the fully connected layer of the network. During

multiple forward passes, we generate distributions of outputs

instead of a single prediction. This way we introduce vari-

ability in the high-level features the network has learned. The

variance across these multiple predictions serves as a measure

of uncertainty. A high variance indicates low confidence in

the prediction, and vice versa. This variance can be quantified

for each image to provide an uncertainty score, reflecting the

model’s confidence in its prediction for that specific instance.

Similar to the confidence estimation above, we derive the

variance with MC Dropout across 50 predictions and define the

threshold to be centered between its maximum and minimum.

We observe a BACC of 0.73, an F1 score of 0.75 and an MCC

of 0.44.

V. CONCLUSION

Interpreting medical images correctly is crucial for effective

treatment. Experts utilize IVOCT with integrated automated

plaque detection methods to analyze critical intravascular

structures. However, current deep learning based methods in

IVOCT lack precise uncertainty estimation, vital for accurate

decision-making in medical diagnostics. Our study addresses

this by presenting an analysis of confidence estimation in

the context of IVOCT plaque detection using deep neural

networks. We employ ResNet18 for classification tasks on

cartesian images and employ data augmentation techniques

tailored to this specific image representation. Additionally, we

use transfer learning and tune the model on four folds to obtain

a representative classifier performance. Moreover, we integrate

an innovative uncertainty estimation method by extending the

classifier with a Confidence Estimation Branch (CEB), mea-

suring the models reconstruction error. This involves adapting

and analyzing both loss functions to understand their interre-

lation and using the confidence score to assess uncertainty in

individual samples and sample sets. Finally, we compare our

performance with the Bayesian approach, MC Dropout. Our

results demonstrate that incorporating a CEB into DL models

improves their interpretability and robustness in analyzing

IVOCT images and other medical imaging contexts. It paves

the way more informed decision-making, particularly crucial
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where accurate image predictions directly impact patient treat-

ment and health. Based on this, additional analysis with on

CEB training behaviour and filters to reduce noise may be

performed. Furthermore, extensions on different models and

medical image datasets may be considered.
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