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Abstract—With the rapid surge in the prevalence of Large
Language Models (LLMs), individuals are increasingly turning
to conversational AI for initial insights across various domains,
including health-related inquiries such as disease diagnosis.
Many users seek potential causes on platforms like ChatGPT
or Bard before consulting a medical professional for their
ailment. These platforms offer valuable benefits by streamlin-
ing the diagnosis process, alleviating the significant workload
of healthcare practitioners, and saving users both time and
money by avoiding unnecessary doctor visits. However, Despite
the convenience of such platforms, sharing personal medical
data online poses risks, including the presence of malicious
platforms or potential eavesdropping by attackers. To address
privacy concerns, we propose a novel framework combining FHE
and Deep Learning for a secure and private diagnosis system.
Operating on a question-and-answer-based model akin to an
interaction with a medical practitioner, this end-to-end secure
system employs Fully Homomorphic Encryption (FHE) to handle
encrypted input data. Given FHE’s computational constraints,
we adapt deep neural networks and activation functions to the
encryted domain. Further, we also propose a faster algorithm
to compute summation of ciphertext elements. Through rigorous
experiments, we demonstrate the efficacy of our approach. The
proposed framework achieves strict security and privacy with
minimal loss in performance.

Index Terms—Disease classifier, Fully Homomorphic Encryp-
tion, Deep Learning, Privacy

I. INTRODUCTION

The landscape of healthcare diagnosis has undergone a

profound transformation with the integration of advanced tech-

nology and data-driven approaches. Traditionally, diagnosis

relied on symptom assessment, medical history, and tests,

but the advent of intelligent diagnosis systems, powered by

Deep Learning, has revolutionized the process. Many indi-

viduals resort to seek potential causes using Large Language

Models (LLMs) like ChatGPT or Bard before consulting a

medical professional for their ailment. Rather than replacing

healthcare professionals, these systems serve as invaluable

tools, augmenting their expertise and enabling more accurate

and efficient identification of medical conditions. This col-

laborative approach is particularly crucial during challenging

circumstances such as pandemics [1], where resources may

be limited, as it empowers healthcare professionals to deliver

timely and effective care to patients by enhancing diagnostic

accuracy and efficiency.

Telehealth [1] is an intelligent diagnostic system aimed at

reducing a doctor’s workload, and helping patients find the

Fig. 1. (a) Threat in the current system; (b) Proposed Fully Homomorphic
Enryption-enabled Secure Disease Predictor.

most suitable healthcare provider. Telehealth circumvents the

need to consult a general physicians in person by providing

patients with a system that suggests potential illness based on

symptoms. This empowers patients to make informed appoint-

ments and navigate their healthcare journey more effectively.

But, Telehealth fails to provide a secure system.

As this exchange of information involves user-specific sen-

sitive healthcare data, any diagnosis system must prioritize

patient privacy. To this end, various architectures have been

developed using encryption to enhance privacy. One such

example is the Intel Device Attestation [2]. But, these systems

are not end-to-end secure and are susceptible to attacks such

as eavesdropping / man-in-the-middle. HTTPS offers a small

degree of security when these systems are deployed as cloud

servers. But, these cloud-deployed systems are still susceptible

to man-in-the-middle attacks or use of outdated TLS / SSL or

compromised certificates as shown in Fig. 1(a).

An effective approach to mitigate these risks is to perform

computations on encrypted inputs as shown in Fig. 1(b).

Fully Homomorphic Encryption (FHE) enables us to perform

computations on encrypted inputs and derive results without

decryption. FHE ensures that the encryption key remains

solely in the hands of the user, guaranteeing exclusive access

to the results of the system. This enhances privacy and security,
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and thereby, maintains the confidentiality of sensitive medical

information throughout the diagnostic process.

Contributions. In this paper, we present the development

of a secure disease classifier designed to process encrypted

patient data and deliver a diagnosis to the patient. While

FHE allows computations on encrypted data, certain compu-

tational operators are yet to be implemented. We adapt the

full connected neural network to the encrypted domain as

matrix multiplication. Additionally, we present a more effi-

cient technique for summing ciphertext elements. Further, we

approximate activation functions as comparators or polynomial

approximations.

The rest of the paper is organized as follows - Section

II touches upon the FHE basics and Section III dives into

the related works. Section IV provides a quick overview of

our dataset. Section V highlights how each component of

the Deep Learning model is uniquely adapted for encrypted

data handling. In sections VI and VII, we provide a detailed

analysis of our experiments and draw conclusions based on

our findings.

II. FHE BASICS

Homomorphic Encryption is a cryptographic technique that

allows computations to be performed on encrypted data with-

out decrypting it first. In other words, it enables computations

on data while it remains in its encrypted form, maintaining

privacy and confidentiality. There are various types of Homo-

morphic Encryption schemes, each with its own properties and

use cases. Operations supported in Homomorphic Encryption

are (Note - E(x) corresponds to encryption of x):

E(a) + E(b) = E(a+ b) (1)

E(a) ∗ E(b) = E(a ∗ b) (2)

The most common types include Partially Homomorphic

Encryption (PHE) which supports the computation of only

one type of operation on encrypted data, either addition or

multiplication, Somewhat Homomorphic Encryption (SHE)

extends the capabilities of PHE by allowing both addition and

multiplication operations on encrypted data. However, there

is a limit to the number of operations that can be performed

before decryption is required, and Fully Homomorphic En-

cryption (FHE) allows arbitrary computations to be performed

on encrypted data without the need for decryption at any

stage. While FHE is highly versatile, it comes with greater

computational overhead and complexity.

Fully Homomorphic Encryption (FHE) schemes differ

in how they handle computations, and these distinctions

often arise from the underlying mathematical structures

and optimizations employed. The Brakerski-Vaikuntanathan-

Vaikuntanathan (BFV) [3] supports integers, while the Cheon-

Kim-Kim-Song (CKKS) [4] scheme extends its support to

floating-point decimals. The choice of an FHE scheme often

depends on the nature of computations required by the ap-

plication and the balance between security and computational

performance sought by the user.

Single Instruction Multiple Data (SIMD) architectures can

be leveraged to enhance the efficiency of FHE operations

by concurrently processing multiple encrypted data elements.

This combination is particularly relevant in scenarios where

privacy is a paramount concern, and computations on en-

crypted data need to be performed with optimal throughput and

efficiency. The collaboration of FHE and SIMD contributes

to the advancement of secure and efficient computations in

privacy-preserving applications.

Our work utilizes HEAAN [5], based on the CKKS scheme,

to enable secure computation on encrypted data. In HEAAN,

log2p and log2q are parameters defining the bit length of the

plaintext modulus p and the ciphertext modulus q respectively.

The log2p value determines the precision of computations,

with a larger log2p providing higher precision. On the other

hand, the log2q value influences the security level, whereas a

larger log2q enhances security. Balancing these parameters is

crucial, as it involves optimizing precision and security to meet

the specific requirements of the application while managing

computational efficiency.

Although FHE allows computations on encrypted data,

several trivial computational operators are yet to be imple-

mented. In this paper, we address this gap by developing

FHE-compatible operators, using HEAAN for implementation,

specifically for the task of disease diagnosis.

III. RELATED WORK

A. Healthcare

The challenge of disease diagnosis is critical for healthcare

professionals, as inaccuracies could lead to significant compli-

cations. Various studies have proposed applications centered

around rule-based systems in the clinical domain. For instance,

in [6], the authors introduce a system that diagnoses diabetes

using fuzzy logic and a set of expert-defined rules known

as VP-Expert. This system aims to enhance accessibility to

diabetes diagnosis, particularly in resource-limited settings,

facilitating streamlined diagnosis and efficient healthcare de-

livery [7].

In a different study [8], the authors employ a fuzzy rule-

based system to evaluate the risk of respiratory diseases among

waste workers. The validation of this system involves the

use of Pulmonary Function Tests (PFT) [9], and the results

demonstrate the system’s effectiveness in predicting levels of

respiratory risk. These rule-based approaches contribute to

more accessible and streamlined disease diagnosis in specific

healthcare contexts.

Beyond the aforementioned approaches, numerous studies

delve into disease prediction by employing not only Neural

Networks but also various other techniques. The ”Intelligent

Heart Disease Prediction System” [10] investigates the ap-

plication of data mining techniques for disease diagnosis.

Another study [11] explores the use of a Clinical Decision

Support System (CDSS) to automate COVID-19 diagnosis.

Additionally, there are research efforts leveraging model en-

semble and reinforcement learning, as exemplified by works

such as [12] [13] [14]. These diverse methodologies contribute
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Fig. 2. An illustration of the summation of ciphertext elements using Rotate and Add algorithm.

to the exploration and advancement of disease prediction

models.

Nevertheless, the stringent security guidelines mandated

by the Health Insurance Portability and Accountability Act

(HIPAA) [15] and the Health Information Technology for

Economic and Clinical Health (HITECH) Act [16] impose

rigorous standards for the protection and security of health-

care data. To enhance security measures, we investigated the

application of Fully Homomorphic Encryption.

B. Fully Homomorphic Encryption in Healthcare

Homomorphic Encryption for medical diagnosis: secure

and privacy-preserving Homomorphic Encryption (HE) has

emerged as a promising tool for revolutionizing medical

diagnosis by enabling secure and privacy-preserving analysis

of sensitive patient data.

A noteworthy example of Homomorphic Encryption (HE)-

based disease classifiers is highlighted in a paper [17], which

delves into the use of HE for secure analysis of electrocardio-

gram (ECG) data, paving the way for privacy-preserving heart

disease diagnosis. Another area of significant research focuses

on secure cancer prediction [18], potentially expanding into

specific use cases targeting particular body parts. An exemplar

of such a specialized classifier is presented in the work by

Son et al. (2021) [19], where they devised a system for the

encrypted classification of breast cancer. Similarly, another

instance is found in the work by the authors of a paper [20], in-

troducing an innovative HE-based Lung Cancer Diagnosis and

classifier. This system initially performs textual extraction of

CT scans, subsequently employing Deep Learning techniques

for classification.

As the generation of Electronic Health Records (EHRs)

continues to rise, extensive research is underway to leverage

them securely for disease diagnosis. An intriguing illustration

involves encrypting EHRs and uploading them to the cloud,

where encrypted records are employed to inform users of their

likelihood of experiencing cardiovascular disease [21] [22].

Similarly, Tuong et al. (2022) [23] introduced a Homomor-

phic Encryption-powered classifier designed to identify mental

health conditions based on encrypted phone usage patterns,

showcasing the considerable potential for secure mental health

analysis. Enhancing the security and accessibility of EHRs in-

volves utilizing blockchain to make the data readily available,

coupled with Homomorphic Encryption to ensure the security

and privacy of the data [24].

IV. DATASET

”Hierarchical Reinforcement Learning for Automatic Dis-

ease Diagnosis” [13] employs a dataset sourced from the Sym-

Cat symptom-disease database. Organized into 9 departmental

groups, each containing 10 diseases based on the International

Classification of Diseases, the dataset encompasses a total of

90 diseases for the classifier to operate on.

Following the CDC database [13], each disease is linked to

a distinct set of symptoms. The disease classifier processes a

set of explicit and implicit symptoms encrypted as a ciphertext.

Upon computation, the user decrypts the received ciphertext to

identify the associated disease. In our experiments, participants

respond to a survey featuring 266 symptoms. The system

predicts one of the 90 possible diseases based on their input.

A subset of user symptoms is detailed in Table I.

V. PROPOSED APPROACH

FHE ensures the security and privacy of patient data by

entrusting the secret key exclusively to the encrypting party,

in this case, the patient. Subsequent operations are conducted

on the encrypted data until the results are provided back to the

patient for decryption, maintaining confidentiality throughout
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Fig. 3. High-level architecture diagram of Fully Homomorphic Encryption-
enabled Secure Disease Predictor containing fully connected layer and acti-
vation functions.

TABLE I
SYMPTOM TABLE (INPUT).

Symptom User response
... ...

Skin Rash No
Neck Pain No

Anxiety and Nervousness Yes
Depression or Psychotic Symptoms No
Abnormal Involuntary Movements No

Eye Redness No
... ...

the process. HEAAN [5] only allows encryption of data in

sizes of powers of 2. We apply zero-padding to both the input

and weight matrices, extending them to the size of 512 (a

power slightly greater than the input size of 266). To achieve

secure disease classification, the following components have

been adapted to FHE - (i) Fully connected layer; (ii) ReLU.

A. Fully connected layer

In the plaintext domain, deep neural networks are seam-

lessly imported, and third-party libraries manage underlying

processes. On the other hand, FHE requires manual handling.

Fully connected layer is adapted as matrix multiplication to

the encrypted domain.

Matrix multiplication involves multiplication and summa-

tion. But, summation of ciphertext elements is not straightfor-

ward as FHE does not allow access to individual elements.

To address this, we implemented algorithm 1, closely similar

to [25], streamlining the summation within a node of a fully

connected layer through rotation and addition, leveraging the

principles of CKKS scheme [4].

To execute the addition after matrix multiplication with the

weights, we start by duplicating our original ciphertext of size

n. Then, we rotate the duplicate by n
2 before adding it to

the original ciphertext. This results in the first n
2 and last n

2
being symmetrical, as depicted in Fig. 2, with i equal to 1.

However, achieving the sum of all elements entails repeating

this process log2n times, as outlined in algorithm 1. Following

the iterative rotation and addition of the ciphertext, the total

sum is computed across all positions in the ciphertext.

Algorithm 1 Rotate and Add

1: function ROTADD(c,size)

2: k ← log2 size
3: for i ← k − 1 to 0 do
4: crot ← Rot(c, 2i)
5: c ← Add(c, crot) � Ciphertext rotation and

addition supported by FHE

6: end for
7: return c
8: end function

The multiplication of ciphertext and the rotation and addi-

tion method suggested in algorithm 1

Given that the single output from each node in the linear

layer is employed to construct the ciphertext for the subsequent

layers, a node positional multiplication is indispensable (i.e.,

multiplying with a zero vector where the value is 1 only at

the node index) for the output. This computation is performed

for each node, and the outcomes are summed up using the

addition property available in the CKKS scheme [4].

B. LeakyReLU

Activation functions are essential in deep neural networks

to introduce non-linearity. In the encrypted domain, non-

linear functions cannot be adapted directly and have to be

approximated. We train a polynomial regression model to

derive a 8-degree polynomial approximation of LeakyReLU

as shown in algorithm 2. However, the model performance

dropped significantly, forcing us to turn to ReLU. We retrain

our disease classifier model in the plaintext domain with an

approximation of ReLU [26] and adopt the approximate ReLU

function. The ReLU approximation is implemented through

algorithm 3, wherein the comparison between variables ’a’

and ’b’ results in 0 if ’a’ is greater, 1 if ’b’ is greater, and 0.5

otherwise.

Algorithm 2 LeakyReLU Approximation

1: function LEAKYRELU APPROXIMATION(a)

2: value ← -2.42x8 +0.28x7 +5.32x6 -0.51x5 -4.10x4

+0.28x3 +1.60x2 +0.51x +0.02
3: return value
4: end function

VI. RESULTS

A. Fully connected layer

We compare algorithm 1 with the existing method for

computing the summation of ciphertext elements, using Dis-

crete Fourier Transform (DFT) [27]. This approach involves

extracting the value at the 0th index, representing the sum

of all frequencies (i.e., the total sum), and then adjusting the

value to its appropriate position.

Based on our experiments as shown in Fig. 5, algorithm

1 consistently demonstrates lower errors compared to DFT.

It also showcases an average decrease in relative error of
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TABLE II
MODEL ACCURACY IN DIFFERENT DOMAINS WHEN SUBJECTED TO DIFFERENT ACTIVATION FUNCTIONS.

Activation Function Domain Compared Against Accuracy
Leaky ReLU Plaintext Test data 50.40%

Leaky ReLU approximation Plaintext Test data 39.32%
ReLU approximation Plaintext Test data 45.02%
ReLU approximation Encrypted Test data 45.02%
ReLU approximation Encrypted Plaintext network output on test data 95.00%

TABLE III
MEAN ABSOLUTE ERROR (MAE) OF DATA WHEN SUBJECTED TO DIFFERENT ACTIVATION FUNCTIONS DURING TRAINING AND INFERENCING (IN THE

ENCRYPTED DOMAIN).

Train activation function Inference activation function MAE
Leaky ReLU Leaky ReLU approximation 0.110

Leaky ReLU approximation Leaky ReLU approximation 0.090
ReLU ReLU approximation 0.080

ReLU approximation ReLU approximation 0.017

Algorithm 3 ReluComp [26]

1: function COMPB(a,b,n,dg ,df )

2: x ← a - b
3: for i ← 1 to dg do
4: x ← g(n, x)
5: end for
6: for i ← 1 to df do
7: x ← f(n, x)
8: end for
9: return x+1

2
10: end function
11: g1(x) = - 1359210 x3 + 2126

210 x

12: g2(x) = 3796
210 x5 - 6108

210 x3 + 3334
210 x

13: g3(x) = - 12860210 x7 + 25614
210 x5 - 16577

210 x3 + 4589
210 x

14: g4(x) = 46623
210 x9 - 113492

210 x7 + 97015
210 x5 - 34974

210 x3 + 5850
210 x

15: f1(x) = - 12x
3 + 3

2x

16: f2(x) = 3
8x

5 - 10
8 x3 + 15

8 x

17: f3(x) = - 5
16x

7 + 21
16x

5 - 35
16x

3 + 35
16x

18: f4(x) = 35
128x

9 - 180
128x

7 + 378
128x

5 - 420
128x

3 + 315
128x

543.67%. Importantly, the observed errors consistently remain

within the range of ε−07.

Both algorithms are further evaluated on their execution

times. In the DFT algorithm, the execution time depends on

r log2 n, where the optimal value for r is experimentally deter-

mined. From Fig. 5, we can say that algorithm 1 outperforms

the DFT algorithm across all ciphertext sizes, achieving an

impressive average relative speedup of 134.03%.

B. Leaky ReLU Approximation

As illustrated in Fig. 4, our approximation closely follows

the curve of Leaky ReLU. However, in the vicinity of zero

(where a significant portion of the input to the activation

Fig. 4. A graph of exact Leaky ReLU (Original Data) and 8-degree
polynomial approximation of Leaky ReLU.

function is concentrated), the approximation deviates from the

curve, leading to increased errors by inverting the signs of neg-

atives to positives, consequently yielding incorrect predictions.

Table III shows a comparative analysis of different activation

functions and errors in FHE.

C. Disease Classifier

Table II provides an overview of our experiments and

results. We observe a significant drop in model accuracy

with approximated Leaky ReLU activation function. ReLU

approximation works equally well in both plaintext domain

and encrypted domain as evidenced in Table II.

VII. CONCLUSION

In this paper, we propose to use a combination of Fully

Homomorphic Encryption (FHE) and Deep Learning to de-

velop a private and secure diagnosis system. We show that

the introduction of FHE does not harm the model’s accuracy.

Furthermore, the classification performance in the encrypted
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Fig. 5. Summation of ciphertext elements can be performed using two
methods - (i) Discrete Fourier Transform (DFT); (ii) Rotate and Add (RA).
This plot depicts relative error percentage and relative speedup percentage of
these methods for various ciphertext lengths in summing ciphertext elements.
Relative error percentage = DFT−RA

RA
∗ 100. Relative speedup percentage =

TDFT−TRA
TRA

∗100, where T denotes time taken using the respective method.

domain aligns closely with the performance in the unencrypted

domain, achieving an accuracy of 95%. Since FHE cannot

execute all computational operators, we detail the adaptation

of each component to the encrypted domain. Additionally,

we show that our proposed algorithm 1 excels in precision

and speed. It also requires a lower log2 q value (with respect

to log2 p), facilitating efficient computations, and accelerating

the entire process. We believe our work can be improved by

employing parallelization techniques. There is also tremendous

potential to enhance this framework by expanding the scope

of diseases and transforming it into more of a dialogue-based

system rather than a questionnaire-based one, as it currently

stands.
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