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Abstract— Large Language Models (LLM), aided by the
popularity of ChatGPT, have provided a paradigm shift to
engineering Al Chatbots. LLMs offer many conveniences to the
Al engineer, and the most important benefit is their robustness
in handling semantic matches of user queries. In other words,
an engineer building an Al conversational assistant does not
need to train the agent for semantic user query matches
explicitly. This benefit comes with a cost, which is felt in two
ways. Firstly, LLMs need an expensive infrastructure like
GPUs, large RAMs, etc. Secondly, even with all the cutting-edge
infrastructure, their response time will not be sub-second
anytime soon. So, Al applications that use LLMs are likely to be
expensive and suffer from high latency. One way to reduce cost
and response time is by introducing a caching solution between
the LLMs and the UX layer. Such a caching layer can help
minimize calls to LLMs when the queries are similar and
repetitive. However, traditional caching methods cannot be used
as they are for LLM-based applications. The reason is that
queries handled by Al-based conversational assistants are
unstructured, i.e., free-flowing user-generated text, and will not
always be context-free. In other words, end users tend to query
from their point of view. Existing solutions like GPTCache work
well for context-free questions, but caching context-sensitive
user queries needs an evolved design. In this paper, we shall
explore a novel design that, by exploiting the power of context,
shall provide effective caching solutions to user-generated
queries (both context-free and context-sensitive) that offer
improved performance without compromising on the quality of
response.

Keywords— LLM, Large Language Models, Semantic cache,
Natural Language Processing, Artificial Intelligence, Generative
AI, Conversational Assistants, Chatbot.

1. INTRODUCTION

Designing a caching layer for an application that uses
structured data is straightforward. The cache is typically an in-
memory layer that can hold the request and the response as
<key, value> pairs. For instance, a Social Media application
that needs to refer to the user’s information frequently might
cache the user attributes when the user logs in. This will help
accelerate the application's performance by minimizing
database calls. Here, the user's identifier could be the key, and
the set of user attributes could be held as a document (aka
value) in the caching layer. What needs to be noted here is that
both key and value are structured data, which the application
will not have an ambiguity to deal with.

The situation is quite different when designing a caching
layer for an Al application that leverages an LLM. The request
is a user-generated query, and the response is Al-generated.
The user-generated query is unstructured text and caching that
unstructured text as a key will not yield the same benefit as in
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the earlier scenario. There are multiple challenges here. We
will see them one by one.

The first challenge is handling the semantics of the user-
generated text. The following two questions mean the same:
‘How far is NYC from Seattle?” and ‘What’s the distance
between NYC and Seattle?’. For the caching layer to be useful,
what needs to be matched during retrieval is the intent behind
the text. GPTCache has tried addressing this gap through a
semantic caching solution. We shall see the details in the next
section.

Handling semantics is only part of the problem. Some
queries involve spatial data, especially those originating from
moving entities like mobile phones. Response to questions
like ‘Find good restaurants near me’ cannot be cached until
they originate from the exact geolocation. Caching queries and
responses involving spatial data require a strategy different
from semantic caches.

Some queries could be specific to the individual.
Responses to questions like ‘Suggest training that I should
invest in’ must be personalized for the individual, fully
considering the individual's context.

In summary, caching user-generated queries and their
responses is not a trivial problem and is much more than
semantic caching. The caching solution should consider the
user’s context and perform similarity checks on the user’s
query before responding.

In this paper, we will present a design of a caching solution
for LLM applications that not only addresses the
aforementioned challenges but also seamlessly adapts to any
user-defined context. This innovative design is called the
Context-based semantic caching solution and is built on the
foundation of the semantic caching design of GPTCache. We
will review the semantic caching solution before moving on
to the Context-based design.

II. RELATED WORK

We will begin with a review of the GPTCache design
articulated by Fu Bang and De Beng in their article!.
According to this design, the query text is not held as a key
but kept as an embedding in a vector database. Before
responding to any user query, the query is first converted to an
embedding, and the nearest match (based on cosine distance
or other methods) from the semantic cache is checked. If a
match is found, the response is retrieved through the cache.
When there is no satisfactory match, the LLM is leveraged to
generate a response, which will be cached for future questions.
This logical flow is shown in the Figure 1.
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Fig. 1. Flow of semantic caching solution

III. CONTEXT-BASED SEMANTIC CACHING DESIGN

In the introduction section, we saw multiple scenarios, i.e.,
queries where semantic caching fell short. That’s because, in
all scenarios, the context of the source of the query was not
considered. In other words, these queries typed by the end user
are not context-free. An end user is a moving entity, and it is
normal for them to query from their point of view (queries like
restaurants near me), and their coordinates change over time.
By coordinates, we are not referring to geolocation alone.
Apart from the user’s geolocation, many dimensions can
pinpoint a user. For instance, dimensions like the country,
organization, role, and title can pinpoint the user’s coordinates
in their respective worlds.

In summary, the user’s context can be any set of
dimensions, and for a caching solution to be effective, it is
inevitable to handle the user’s context along with semantic
matching. We shall cover the design of the context-based
caching solution in four parts. In the first part, we shall review
the foundational constructs we will need to capture and
manage context. In the second part, we shall go over the data
structure of the caching layer. We will then go over the
algorithm. Finally, we shall review the design of the context-
based semantic caching solution.
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A. Context Model

The design of the caching solution we are about to
deliberate needs six foundational constructs to capture and
manage the context of the moving entity. The moving entity
is the end user. We shall define these constructs both formally
and informally. To better grasp these constructs, we shall take
an example of an Al-based conversational assistant
(Employee Al app) that caters to the queries of employees in
a company. Employees are the end users or the moving entities
from the standpoint of the Al application. Here are six key
constructs that we shall make use of in the design:

e Context Dimension (CD): A Context Dimension is an

attribute of the moving entity. In our example, the
following could be relevant Context dimensions -
Employee ID, Employee Base Location, Employee
Role, Employee Department, GeoLocation, etc.

Context Universe (CU): The context universe is a
complete set of all context dimensions. We shall
formally define a Context Universe as follows:

CU={Ri: 1 <=i<=n}

R; is a Context dimension belonging to a context
universe of size n.

Context Value (CV): A Context Value is a value that a
particular context dimension could hold. A specific
context dimension could have any number of distinct
values. For instance, as per our earlier example, “New
York, NY”, and “Seattle, WA” could be different
Context values of the Context dimension ‘Employee
Base Location’. Formally, we define a Context Value
as follows:

Ri= { Vj: 1<=j<=m}, where 1<=i<=n

Here, ¥} is a specific context value that the context
dimension R; can hold. The size of the context
dimension R; is m.

Context instance (CI): The Context Instance is a
collection of tuples. Each tuple comprises a context
dimension and a specific value that dimension could
hold. The size of the context instance cannot exceed
the size of the context universe, and a context
dimension cannot repeat across tuples within a Context
instance. Formally, we define a Context Instance as
follows:

CI = {I, 1<=k<=n}, where I =<R;, V>

Here is an example of a context instance from our
employee chat application:

{
” Employee Base Location™: “Seattle, WA”,

” Employee Role”: “Software Engineer”

}

Context Hashkey (CH): A Context Hash Key is a hash
value of a specific Context Instance.

Context Store (CS): The Context Store is a document
data store that holds all context values of a moving
entity. In our example, the Context Store holds the
complete context of the employee.



B. Context Model

In this section, we shall detail the data structure of the
Caching layer for an Al application that leverages LLMs. The
cache data structure will have five elements at the minimum.
This will help perform three kinds of matches: exact match,
semantic match, and context-based matches of cached queries.
The five elements are detailed below:

e Question raw: This text field will hold the
unstructured question as typed by the end user (or
moving entity).

e Answer raw: This is the final response produced by
the LLM application for the input question.

e Question_embedding: This vector field holds the
embeddings of the input question. This shall be
utilized to find similar questions that semantically
match new user queries.

e  Context HashKey Query: This is a hash value of the
context instance derived from the user query. The
relevance of this element will be made clear in the
next section (Algorithm). This context instance will
include every context attribute relevant to the entity
referred to in the query. This instance will not include
the Geolocation context alone, which will be held
separately.

e Context Location Query: This field is a Point
datatype and will hold the entity's GeoLocation
context value if it is referred to in the query.

C. Algorithm

We are now ready to review the algorithm of the context-
based semantic caching solution. The algorithm uses the
constructs detailed in the earlier section and involves the
following core steps while handling the end-user query.

e Capture the entity's identity (through the relevant
identifier), current geolocation, and the query text
from the request. In our example, the identifier could
be any natural key of the employee. A good choice
would be the Employee Id.

e  Convert the user query into a vector embedding.
e Detect the context dimensions referred to in the query.

e  Extract the context values for each context dimension
(detected in the earlier step) from the query payload
or the context store for the specific entity. Prepare a
context instance from the context values (all besides
geolocation) along with the context dimensions.
Maintaining a context store for all moving entities is
a prerequisite.

e  Prepare a context hash key from the context instance
prepared in the earlier step.

e Perform a lookup on the caching layer based on the
following attributes that we just derived:

o Context hash key: This must be compared
for an exact match when the context hash
key is not null. In other words, this
comparison is optional for queries that are
context-free. For instance, the question,

‘What is the capital of my country?’ is
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context-sensitive compared to the query,
‘What is the capital of Canada?’

Question_embedding: The query's vector
embedding must be matched based on
cosine distance or another relevant
algorithm. The match must be greater than
a preconfigured threshold.

Geolocation: The geo-location needs to be
close to the geolocation of the entry in the
cache. In other words, the Euclidean
distance between the two points must be
greater than the predefined threshold.
Again, this comparison is relevant only
when the input query is location-sensitive.
Questions like ‘restaurants around me’ and
‘hotels near me’ are geolocation-sensitive
queries.

e If the previous step yielded a match, the response to
the input query is returned from the cache. If the
lookup fails, the LLM is invoked to respond, and that
response will be added to the caching layer (with the
relevant keys) for subsequent queries. The flow of the
above algorithm is depicted in Figure 2.

IV. DESIGN

We are now ready to walk through the design of the
context-based semantic caching solution. The core
components of the design include the following:

A. Cognitive Gateway

As the name suggests, this component acts as a gateway to
any touchpoint that is a source of a user-generated query. The
touch point will likely be a UX widget that manages the
conversation with the end user. The cognitive gateway
performs the necessary pre-processing, core processing, and
post-processing steps of the user request. Pre-processing
includes implementing the algorithm's first five steps, detailed
in the previous section. Pre-processing includes capturing
details from the request payload, embedding generation,
context detection, context extraction, and context hash key
generation. During the pre-processing step, the gateway will
interact with the other components (Context Store, Context
detector) as appropriate. The core processing step involves
working with the cache manager to perform a lookup. When
the cache manager finds a match, the cognitive gateway
returns the match as a response. When the cache manager
cannot find a match, the cognitive gateway invokes the LLM
and moves to the post-processing step. At the post-processing
step, the LLM’s response is written to the cache through the
cache manager and returned to the caller.

B. Context Store

The context store is implemented on a document store or
NoSQL database to hold the context values for each moving
entity, i.e., the end user. The context store helps serve two
functionalities. First, it asynchronously gathers the different
entities' context values for the dimensions relevant to the
application’s universe. It maintains them in a document and
indexes the document by the entity’s unique identifier. In our
example, the context store will hold one document for an
employee, and the key will be the Employee Id. The document
will contain the specific values for the employee’s role,
location, etc. When invoked by the cognitive gateway to



extract a particular set of context values for an entity, it shall
retrieve and return the available context values from the
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Fig. 2. Flow of a context-based semantic caching solution

C. Context Extractor

The context extractor is a multi-label classifier trained to
identify context dimensions. It takes the user query as input
and retrieves the context dimensions referenced in the query
text. Here are a few examples from our Al application that
caters to employee queries.

Example 1:

Query input: Find good restaurants near me
Output: {‘Geolocation’}

Example 2:

Query input: Find details of colleagues from my
department near me

Output: {‘Employee Department’, ‘Geolocation’}

D. Cache Manager

The cache manager interfaces the cognitive gateway and
the caching data layer. Apart from the core functions (cache
eviction, time to live), the cache manager supports two key

364

functions that the cognitive gateway will invoke: lookup and
write. The cognitive gateway will invoke the lookup function
to check if the input query can be retrieved from the cache.
The lookup function takes two parameters as input. The first
parameter is a compound key, a collection of two pairs. The
first pair is the Geolocation context dimension and its
corresponding value (lat-long). The second pair is the context
hash key of all dimensions (excluding Geolocation) referred
to in the input query. Remember, the two values can be null if
the input query is context-free. The second parameter is the
raw input query text. Here are the parameters passed by the
cognitive gateway to the cache manager for the two queries
mentioned in the above section:

Example 1:
Query input: Find good restaurants near me
Input to cache manager:
{
‘Key’: {
‘Geolocation’:<lat long of the entity>,
‘Context Hash Key’:null
}s
‘Query’ : ‘Find good restaurants near me’
H
Example 2:

Query input: Find details of colleagues from my
department near me

Input to cache manager:

{

‘Key’: {
‘Geolocation’:<lat long of the entity>,
‘Context Hash Key’:<context hash key of the

Employee Department dimension>

}s
‘Query’: ‘Find details of colleagues from my department

near me’

}

The write function will be invoked when the cognitive
gateway must invoke the LLM. The write function takes the
compound key along with the response from the LLM for the
cache manager to persist it in the data layer for subsequent
requests.

E. Cache Data Layer

The cache data layer is any database, preferably an in-
memory database platform, that supports the datatypes part
of the cache data structure articulated in the earlier section.
Here is the complete list of datatypes that need to be
supported by the platform: text, vector embedding,
dictionary, and point datatypes (for geolocation).



F. LLM

LLMs are either Large Language Models (open or closed)
or applications that leverage a Large Language Model to
process user-generated queries. The complete design is
shown in Figure 3.
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Fig. 3. Context-based semantic caching design for LLM applications
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V. EXPERIMENTAL RESULTS

In this section, we will capture the experimental details of
the Context-based semantic caching solution. Through the
experiments, we will quantify both the benefits and the
tradeoffs involved.

e Benefits will be measured through Performance
Testing, where we will show the reduction in average
response time of an LLM application that has the
Context-based semantic caching solution
implemented.

e Every performance enhancement will have a cost
associated with it and we will discuss this detail i.e.,
tradeoffs in the later part of this section.

A. Performance Testing

We will Performance Test our design on a dataset with two
sets of questions. The first set comprises a set of distinct
queries, and the second set is a collection of questions similar
to the first set. In other words, every question from the second
set is semantically different but means the same as one of the
questions in the first set. The second set of questions was
programmatically created for this experiment using a
Generative Open Al model (GPT 3.5). The two sets are
shuffled and shared as input to two instances of the Al
application. In the first instance, the Al application invokes
the LLM for each question, i.e., no caching is enabled here.
The second instance of the Al application leverages the
caching solution for a match before formulating the response.
For a cache hit to succeed, the similarity score must be over a
pre-configured threshold. The similarity score is the cosine
similarity between the input string’s embedding and the
embedding of the cached query. For each instance execution,
we will calculate the average response time. A lower response
time would indicate two things:

1. The LLM was invoked on fewer occasions.

2. The response time was less when retrieved from the
cache.

The outcome of the data experiment on a test size of
10,000 queries is shown in Figure 4. In the enhanced solution,
the latency due to an LLM call is replaced with the following
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additional steps introduced by our caching solution: context
extraction, context value lookup, hash key generation, and
performing the cache update (and lookup). Even with these
many steps, we clearly see an 80% reduction in the average
response time on average. This is shown in Figure 4. This
indicates that the AI application's response is far better
(quicker response) and less expensive (fewer calls to LLM)
with the implementation of the context-based semantic
caching solution.

Average Response
time (ms)

3262 ms

580 ms

o
0°°‘;‘o\eé

©
0
0 o
N o\

«
Fig. 4. Average Response time for user queries

B. Cost of Quality

Reducing the average response time doesn’t necessarily
mean the caching solution works holistically. We must ensure
that performance improvement does not come at the cost of
quality. To quantify quality, we performed a subtle variation
of the same experiment. The change involved how we handled
our original data set. The first set of questions in the input data
set is now split (60:40) into two sections. The first section
(60% subset) is marked for caching, and the second section
(40% set) is marked not to be cached. The Al application is
now made to process the entire data set. The expected outcome
is that, as the Al application processes the first set of distinct
questions, it would cache the ones marked for cache, not the
remaining ones from the first set. With this, when the Al
application starts processing the second set of similar
questions, it is expected to either leverage the cache or invoke
the LLMs to find the response for questions that did not find a
match. The idea is to check for occurrences of false positives
or negatives. Three instances of this experiment with varying
thresholds for similarity scores were performed on a test size
of 10,000 queries. The results of these experiments are
captured across three confusion matrices below.

Actual
Cache Hit

Actual

Actual Actual Actual ' Actual
Cache Miss Cache Hit Cache Miss. Cache Hit Cache Miss.

fovese 54% 6% Sxprctee 1% 19% ftesn 32% 28 %
Cacnomiss | 17 % 2% Cotnories | 0% 0% | e | 0% 40%

Sconario 1 Scenario 2 Scenario 3
Similarity Threshold: 0.85 Similarity Threshold: 0.95 Similarity Threshold: 0.98

Fig. 5. Confusion Matrices

If the caching solution works to perfection, we will find
these values (false positives and false negatives) to be zero in
the confusion matrix. As you might see in the confusion
matrices, the choice of threshold is crucial to achieving a
balance, and our focus should always be to prioritize avoiding
false negatives compared to avoiding false positives. As
shown in the above figure, setting a similarity threshold of .95
(Scenario 2) helped achieve that balance. In scenario 2, the Al
application correctly found a match from the cache for 67% of
the scenarios. In 33% of scenarios, it invoked the LLM,



although the cache had a semantically similar record. The
good news, however, is the second row of the confusion
matrix. While a threshold of .95 led to occurrences of false
positives, it did prevent the occurrence of false negatives
completely. In other words, the AI application did not
incorrectly identify a match in the cache even once.

For the above experiment, we stored the context details of
the moving entities in a MongoDB database instance. The
number of context dimensions extracted from the queries were
between 1 and 10 and the size of the Context Universe was
100.

VI. POTENTIAL ENHANCEMENTS

The crux of context-based semantic caching solution is
manufacturing a structured counterpart (context) of the
unstructured input query and caching that combination
(context + query) as a key in the caching layer. There are
different ways this can be extended. One possible extension
would be storing a modified version of the original query with
the context values embedded also in the cache. For example,
when someone asks, ‘Good Thai restaurants in my
hometown’, we can also cache ‘Good restaurants in
Milwaukee’, where ‘Milwaukee’ is the resolved context value
for the context dimension ‘hometown’ for the user.

VII. CONCLUSION

Al applications, i.e., conversational assistants that use
LLM:s to respond to user queries, can benefit from a caching
solution, owing to the high cost and latency they are likely to
incur. Caching user queries that involve unstructured text
needs a different approach from traditional caching solutions.
While introducing a semantic layer between the Al application
and the LLMs works to some extent, they break when the user
queries are context-sensitive. In many scenarios, end users
will query from their point of view, and it is only natural for
the user to expect the system to be able to discover the context
before the query gets processed. The context based semantic
caching solution detailed in this article addresses this white
space of caching responses to context-sensitive questions.
Besides managing the user-generated text as a vector
embedding, the semantic caching layer has additional steps to
resolve and persist the end-user context. Even with these steps,
we observed the context-based semantic caching solution to
reduce the average response time by over 80% without
compromising the quality of the responses, as captured in the
data experiment. To summarize, we see clear evidence of
value created by the context-based semantic caching design
when augmented by an LLM-based Al application.
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