
 

Continually Learning Planning Agent for Large 

Environments guided by LLMs 

Swarna Kamal Paul 
Tata Consultancy Services 

 Kolkata, India 

swarna.kpaul@gmail.com 

Abstract— Sequential planning in large state space and action 
space quickly becomes intractable due to combinatorial 
explosion of the search space. Heuristic methods, like monte-
carlo tree search, though effective for large state space, but 
struggle if action space is large. Pure reinforcement learning 
methods, relying only on reward signals, needs prohibitively 
large interactions with the environment to device a viable plan. 
If the state space, observations and actions can be represented 
in natural language then Large Language models (LLM) can be 
used to generate action plans. Recently several such goal-
directed agents like Reflexion, CLIN, SayCan were able to 
surpass the performance of other state-of-the-art methods with 
minimum or no task specific training. But they still struggle with 
exploration and get stuck in local optima. Their planning 
capabilities are limited by the limited reasoning capability of the 
foundational LLMs on text data. We propose a hybrid agent 
“neoplanner”, that synergizes both state space search with 
queries to foundational LLM to get the best action plan. The 
reward signals are quantitatively used to drive the search. A 
balance of exploration and exploitation is maintained by 
maximizing upper confidence bounds of values of states. In 
places where random exploration is needed, the LLM is queried 
to generate an action plan. Learnings from each trial are stored 
as entity relationships in text format. Those are used in future 
queries to the LLM for continual improvement. Experiments in 
the Scienceworld environment reveals a 124% improvement 
from the current best method in terms of average reward gained 
across multiple tasks.  

Keywords—sequential planning, POMDP, generative AI 
agent, LLM, state space search 

I. INTRODUCTION 

Sequential planning in an environment is to find a sequence of 
actions or a policy that can meet an objective. As the state 
space size of the environment increases it becomes 
increasingly difficult to find a workable plan to a point such 
that the problem seems intractable with traditional graph or 
tree based search algorithms. On top of that due to partial 
observability, the complete state space of the environment 
may not be determined completely. In such scenario model 
free reinforcement learning (RL) can help tackle the problem 
to a certain extent. Model free RL is like a trial-and-error 
based learning where an optimal policy is learnt through 
rewards provided by the environment. Monte-carlo tree search 
[1] is such an effective method that can tackle very large state 
spaces. However, its search space can also explode if the 
action space is large. It will require too many trials to converge 
to a near optimal policy. This is true for all other pure RL 
based approaches, that solely relies on reinforcements to 
determine a policy. In a delayed reward environment, the 
challenge becomes significant. Due to absence of frequent 
reward signals the search becomes mostly random for a 
significant amount of time and that adds to the combinatorial 

explosion. Pure RL based approaches also face challenges in 
adapting to sudden changes in the environment.  

Humans can adeptly handle intricate planning tasks in real-
world scenarios with large state space, large action space and 
even in partial observability. Suppose a person wants to drink 
water while she visited her friend’s place. She didn’t know the 
water source, but predicts that it might be in the kitchen. Once 
she finds it, she knows that she came closer to her goal. After 
that, she needs to find a way to dispense water into some 
container, such as a cup, and drink it. There can be lot of 
actions she might take in an unknown home layout, but she 
would usually achieve her goal in handful number of trials or 
steps. Human does that as they have extensive knowledge on 
how common things work, how different objects are related 
and what actions causes what changes. 

Large language models or LLMs, pretrained on large amount 
of real-world text data, captures meaningful correlations of 
words. With sufficiently expressive representation of the 
problem environment in natural language, the LLM can 
generate fairly accurate shallow plans. With proper 
prompting, LLMs can predict sequence of actions in text 
format that may meet the objective in the environment. 
However, LLMs are not reasoning machines. They can 
generate shallow plans reasonably well but may fail to do deep 
reasoning and generate a lengthy policy. They also get stuck 
in local minima due to their greedy approach and fails to 
explore significantly. For example, if initially the human starts 
from outside, she doesn’t observe there is a kitchen in the 
home. To find a drinkable water source she needs to explore 
and find the kitchen and then the water source. A LLM based 
agent might instead try to locate irrelevant water sources in its 
current observation range, like wet clothes tied outside.  

In short, pure RL based approaches face the problem of 
combinatorial explosion. Pure LLM based approaches face the 
problem of shallow reasoning and lack of exploration. We 
propose to combine the best of two approaches in a novel way 
to alleviate both the problems. We propose to build a state 
space model of the environment by trying out different 
actions, recording observations and rewards. The model 
would provide an anytime best policy, based on what is known 
at any moment. Wherever random exploration of actions is 
needed, the LLM is used to predict the best sequence of 
actions. We incrementally build a memory of learnings about 
the environment based on all previous trials. The accumulated 
learnings help the LLM to more accurately predict the 
sequence of actions in future. Building a state space model 
guarantees the exploration of the environment and keeps a 
balance between exploration and exploitation. The use of 
LLM helps to dampen the combinatorial explosion of action 
space and state space where random exploration is needed.  

367

2024 IEEE Conference on Artificial Intelligence (CAI)

979-8-3503-5409-6/24/$31.00 ©2024 IEEE
DOI 10.1109/CAI59869.2024.00076



We tested our method in Scienceworld [2] environment. It is 
a collection of scientific tasks, all represented in natural 
language. The environment has huge number of possible 
actions and objects, making it a huge state space. The 
environment is partially observable, such that the state 
information is not explicitly available. The latent state needs 
to be derived from the observations. The full environment is 
not visible initially. Experimental results reveal our developed 
agent completed or nearly completed all tasks and surpassed 
all prior state of the art methods by a wide margin. 

II. RELATED WORKS 

There is a rich literature on sequential planning in large 
environments. DRRN [3], KGA2C [4] and CALM [5] are 
deep reinforcement learning based approaches to solve large 
text-based environments. They usually require very large 
number of interactions with the environment before coming 
up with a workable plan. Delayed reward in the environment 
amplifies the problem further. There is another class of 
planning algorithms for large POMDPs, called as direct search 
algorithms [11,12,13]. They don’t rely much on the state space 
information but do a search in solution space. But they also 
can have very high complexity if the action space or solution 
size is large. LLM based agents like SayCan [6], ReAct [7], 
Reflexion [8], CLIN [9] exploits the large pretraining of an 
LLM with real-world semantic knowledge and uses it to 
suggest next best actions without further significant training. 
These approaches use intelligent step-by-step prompting 
tricks and maintains problem specific memories to be used by 
the LLM to optimize action selection. However, these 
methods are susceptible to premature convergence to 
suboptimal pathways and struggle with exploration. These 
methods are limited by the depth of reasoning needed to 
choose an action as LLMs have limited capability of reasoning 
on text at one go.   

III. APPROACH 

The problem environment – ξ, is modelled as deterministic 
Partially Observable Markov Decision Process (POMDP) 
[10]. Many real-world problems can be formulated in this 
model. The environment can be modeled as the following 
tuple: . 

 a finite set of states,  a finite set of actions,  a 
finite set of observations,  initial state,  goal state, 

 set of rewards,  
deterministic state transition function after applying an action, 

 deterministic observation 
function after applying an action, 

 reward function for getting reward after applying an 
action,  policy or sequence of actions that might meet the 
objective. 

Fig.1 illustrates the state space model building and searching 
for the optimal policy. The agent starts from some initial state 

. As states are not directly accessible from the environment, 
the observations can be encoded in certain way to derive the 
latent state. Each state is assigned a value augmented with an 
exploration term, similar to one used in UCB1 [14]. The agent 
chooses the path to maximize the upper confidence bound of 
the value of states. The action plan is generated based on the 
selected pathway. If a leaf node is reached or a random 
exploration needed in a node that is yet to be fully expanded, 
a foundational LLM is prompted to generate rest of the action 
sequence. 

 

Fig.1 Illustration of learnt state space model and planning by LLM where 
random exploration is needed 

Once an action plan is generated, it is executed in the 
environment. The perceived observations, states and rewards 
are used to update the state space graph and the value of the 
nodes. The observations and rewards are also used to update a 
consolidated learnt memory in text format that can be further 
used by the LLM for future action planning. Instead of random 
selection of actions for exploration, the LLM can provide a 
better educated guess on the actions required to reach the goal 
state, thereby damping the search space.  

IV. STATE SPACE GRAPH BASED PLANNING 

The agent takes actions in the environment and based on the 
perceptions received, it builds a state space graph of the 
environment. The rewards are used to update the values of the 
states. The values of the states are updated using Temporal 
Difference (TD) learning. The state space graph is eventually 
used to determine the optimal policy. The complete planning 
process can be divided into following major steps. Namely, 
plan selection, plan exploration, simulation, state space 
learning.  

A. Plan selection 
Each state in the state space graph is assigned a value  

based on the future rewards it receives from the current state. 

Thereafter an augmented value is calculated for each state by 

adding an exploration term to , where  is a constant,  

is total number of simulations of all the parent states of  and 

 is total number of simulations of state . 

          (1) 

From current state the action is selected that produces a valid 

child state with maximum in the state space graph. This 

selection continues until a leaf node is reached or maximum 

of the child state is less than the default exploration or 

a closed loop is detected. The selected path is converted to 

sequence of actions, that serves as the first part of action plan. 

Along with the action plan, a list of actions to be avoided from 

the current state (if any) is also returned. If the final state in 

the returned action plan has other child nodes, then the 

actions corresponding to those edges are returned as actions 

to be avoided. Those actions can be avoided because they 

might either be invalid actions or lead to states that are 

already explored and have not enough values to be explored 

further. The list of actions to be avoided and the current state 

are properly annotated in text format and returned as 

368



additional instructions (  for the LLM to guide the search 

through action space.  

B. Plan exploration 
The formula of as stated in equation 1, captures both the 

metrices for exploitation and exploration. The value of a state 

depicts how much the state can be exploited to reach towards 

the goal state. The second term in  measures how less a 

state and its children states have been explored. maintains 

a balance between exploration and exploitation in the state 

space graph. But this will work only for the visited or known 

states that are available in the state space graph. As the agent 

starts to interact with the environment, most of the states 

remain unexplored. There needs to be a way to select actions 

and explore the unexplored states. A simple random policy 

may quickly become intractable if action space is large. To 

explore the unexplored states, the LLM is prompted to 

generate an action plan from the current state. For each state, 

a default explore is calculated by the following formula, 

where  is default value of an unexplored state,  is a 

default exploration factor for state . 

        (2) 

For each state , a child state  is selected that has the 

maximum value of the following metric. 

               (3) 

If  then the subsequent action plan is 

generated using the LLM from the current state . 

The factor  estimates amount of exploration needed from 

the current state based on how many un-tried actions are left. 

 is calculated as following, where  is total number of 

possible actions from state ,  is total number of actions 

already taken in state  and  is a non-linearity factor greater 

than 1. 

                       (4) 

 ensures that exploration gets reduced as greater number of 

actions are tried from a state and eventually drops to 0 if all 

actions are tried out. 

C. Simulation 
Once an action plan is generated it is executed in the 

environment in sequence. For each action, the corresponding 

observation is recorded as action-observation sequence ( ) 

and state information is recorded as action-state sequence 

( ). The corresponding reward for each action and total 

number of available actions from a state is also recorded in 

. Eventually this sequence is used to update the state space 

graph.  is used to update the learnings in text format. If an 

action is invalid then it is marked as invalid in the .  

D. State space learning 
After simulation the state space graph is updated using . 

For each action-state sequence the start state and end state are 

searched in the state space graph. If an edge between the 

states does not exists, the edge is added. If the state nodes do 

not exist, the nodes are created. If the edge already exists then 

corresponding state visit count is incremented. Each node in 

the state space graph stores the following items. 

 encoded description of the state,  value of the 

state,  number of visits in the state,  total possible 

actions from the state.  

Each edge contains the following items.  

 action name,   reward obtained by taking the 

action,  start node,  end node. 

If an action is invalid then the sink of the edge goes to a fixed 

invalid node ( ) in the graph. The graph starts with a fixed 

root node and the initial state is connected to the root node.       

Once the required nodes and edges are created from  the 

values of all nodes are updated using TD learning. The 

following TD(0) update is applied for each state in the state 

space graph to update the value, where  is a constant step 

size parameter and  is constant decay factor. 

        (5) 

This update is carried out for  iterations, in the expectation 

that the values of the states would converge. The update is 

interrupted in between if the average change in values of all 

states is below a threshold in an iteration. After completing 

the value update process, the gets updated for all states as 

per equation 1. The factor  also gets updated for each state 

as per equation 4. 

V. USING LLMS AS PROBABILISTIC ORACLE 

Large language models or LLMs are deep neural networks, 

mostly based on transformer architecture, are trained on large 

corpus of text data. They can be used for text completion for 

a given input text snippet. Recently, LLMs like GPT4, was 

able to generate human like responses for many input texts on 

wide variety of subjects. Due to its rigorous and extensive 

 
Fig. 2 Architecture of the planner. 

real-world training data, it is able to capture lots of real-world 

semantics in its model, in the form of correlation among 

words. Even though it just does next word prediction, but due 

to attention mechanism the predicted next words are 

369



generally semantically aligned with the whole meaning of the 

prior text.  

If everything about the problem environment can be 

represented in text form (states, actions, observations, 

feedback), LLMs can be used to generate a sequence of 

actions. Fig. 2 represents the architecture of the agent. As 

mentioned in Section IV, the LLM is used to generate an 

exploration plan where a random exploration is needed in the 

state space graph, due to unavailability of no further state 

space information. The action plan is generated by the action 

plan generator. Before generating an action plan, it queries 

the state space graph to select the best plan as per the method 

mentioned in section IV-A. The rest of the action plan is 

generated from the final state of the selected action plan. The 

generated action plan is appended with the selected action 

plan from the state space graph. The final action plan is 

executed in the environment by the action plan executor. It 

carries out the simulation step mentioned in Section IV-C. 

The action plan generator and action plan executer are run for 

several iterations in sequence, after which the environment is 

reset. Each reset marks end of an episode and beginning of a 

new one. After each episode, the recorded action-observation 

sequence along with previous learnings (if any) are fed into a 

Learner agent. It generates a set of learnings about the 

environment in free text format.  

A. Action Plan Generator 
The action plan generator generates a sequence of actions that 

might meet the objective ( ) in the environment from the 

current given state. It takes the objective, a prior description 

of the environment ( ), current state description ( ), 

previous learnings about the environment ( ), action-

observation trace ( ), list of actions to be avoided from the 

current state, as parameters, and generates a text prompt. The 

text prompt is sent to LLM to get an action plan ( . If the 

output is not generated in correct format it is resend to the 

LLM again. The objective and prior description of the 

environment is set during initialization of the task. 

Intermittently, the task objective is replaced with the 

following text (exploration objective - ) to promote 

exploration and enrich the learnings.  

“Create a long sequence of actions to explore and know more 
about the environment”. 
In each run of action plan generator, the task objective is 

replaced with exploration objective with the following 

probability, where  is a constant and ,  is 

total number of times exploration objective has been run. We 

set . 

Algorithm 
procedure solve( ) 
   initialize  as state space graph 
    while True 
        if goal reached 
            break 
         
         
       for i in 1 to j: 
            

            
            
            
            
           = +   
        
        
       reset( ) 

 
procedure  

    set parent state   

    while True 
          

        if  
            break 

         

         

         

           

        if   

            add actions leading to , as list of actions to be avoided 

in  

            break 

        if state space loop detected by adding in  

            break 

        add in ; set  =  

    add  in  

    return  

        

procedure  

    extract , ,  from  and add in  

     

    update  in  by  with probability  

    add  in  

     

    return  

 

procedure  

    for  in  

        add  as node in  if not present 

        add or update   as edge in  

    for 1 to  

        for  in all nodes in  

             for  in all valid child nodes of  

                  

                  

    for  in all nodes in  

         

        

procedure  

    extract reward set  from  

     

     

    return  

 
procedure  
    initialize  as learner prompt 
    extract ,  from  and add in     

    add  and  in  
     =  

    set  as updated learnings in  

370



                (6) 

The current state description is obtained from the state-space 

graph. The current state is the final state of the selected action 

plan from the state space graph. The list of actions to be 

avoided is also obtained from the state space graph.  

B. Learner 
The learner is an LLM agent that generates learnings about the 
envirnoment. It takes the  trace of an episode, the previous 
learnings, feedback after running the last episode, as 
parameters and creates a prompt for the LLM. The LLM 
generates updated learnings as list of text. The learnings are 
generated in the format “X Y Z”, where X and Z are entities, 
subject, object, events from  trace and Y is relation 
between X and Z. This captures all the important 
relationships of entities in the environment that can be used 
to meet the objective.  

VI. EXPERIMENTAL RESULTS 

We opted for ScienceWorld [2], an interactive text-based 
environment that demands intricate interactive reasoning 
processes for resolving a multitude of science-theory-based 
tasks across various classes, such as thermodynamics, 
genetics, friction, and more. This virtual space encompasses 
ten sub-locations: foundry, greenhouse, outside area, art 
studio, workshop, kitchen, living room, bedroom, bathroom, 
and a hallway connecting internal spaces. The complexity of 
the environment, characterized by multiple objects, their 
respective states, and action templates, results in an intractable 
search space for any agent. Both the action space and state 
space is huge. The complete state space of the environment is 
not visible at the beginning. There is no state information 
available from the environment. It needs to be derived from 
the observations.  

We developed neoplanner in Python3 [15]. We tested the 
agent in 7 different environments. For each environment the 
agent runs for several episodes. At the start of each episode, 
the environment is reset and agent is initialized at the same 
start location. During an episode the agent tries multiple 
actions and cumulative reward is calculated. The total reward 
is transformed into natural language feedback in same way as 
done in [9]. The reward is log transformed before adding into 

, that is eventually used to update state space graph. We 
used the GPT4-turbo model as LLM. Table I shows the total 
reward gained by different methods across multiple 
environments. Our proposed method surpasses all state of the 
art methods by wide margin. #interactions for neoplanner 
depicts the total number of interactions done with the 

environment. The metrices for all state of the art methods have 
been taken from [9].   

A. Discussion 
Pure RL methods can be effective sometimes, but as they 

focus mostly on the reward signals, the number of training 

trials required can be enormous. The problem amplifies in 

delayed reward setting, where a reward is obtained only after 

performing several actions towards the objective. For 

example, the “boil” task is a delayed reward task. It receives 

very infrequent rewards and rewards are obtained only after 

performing several actions towards boiling water. The RL 

methods performed poorly for this task as they barely found 

any signals to traverse through large state space. The 

generative language based agents performed better in these 

tasks. As they capture lot of real-world semantics, with 

proper description of the environment, and continual 

learnings, they are able to select better action plans. However, 

these methods mostly ignore the numerical reward signals 

and rely on textual feedbacks. This causes rapid convergence 

to suboptimal plans and the agent struggle with exploration 

[9]. Our proposed agent uses both generative language based 

action planning and policy generation through state space 

graph search. This helps to keep a balance between 

exploration and exploitation without drowning into 

combinatorial explosion during exploration. 

Most of the generative language based agents generate action 

plans by finding the next best action. Thus, they have to query 

the LLM every time an action needs to be taken. On a 

contrary, neoplanner queries the LLM to find a sequence of 

actions at one go, such that the number of calls to the LLM 

can be reduced. This potentially reduced the cost of 

generating the action plan.  

The agent started with a blank memory with no learnings. 

While solving a task it generated several task related 

learnings about the environment. For example, in the “use-

thermometer” task it generated following learnings among 

many other. 

“thermometer in kitchen can be moved to inventory”, “agent 
can move between kitchen, living room, hallway, art studio, 
greenhouse, bedroom, workshop” 

The same set of learnings are used to bootstrap for the next 

task. For solving the next task “measure-melting-point-
known-substance” some of the learnings are useful, but many 

are not useful. While solving this task it updated its learnings 

related to the current task. It generated some learnings like 

“picking up chocolate from fridge and focusing on it is part 
of the task”. Thus, the agent is capable of adapting its 

learnings. 

TABLE I. Comparing neoplanner against SOTA 

Task RL Methods Generative Language Agents NeoPlanner 
(#interactions) DRRN KGA2C CALM SayCan ReAct Reflexion CLIN 

use-thermometer 6.6 6.0 1.0 26.4 7.2 5.9 25.2 85 (390) 
measure-melting-point-

known-substance 

5.5 11.0 1.0 8.0 6.1 28.6 58.2 100 (192) 

find-plant 15.0 18.0 10.0 22.9 26.7 64.9 100 100 (227) 
chemistry-mix 15.8 17.0 3.0 47.8 51.0 70.4 51.7 100 (693) 

biology-identify-life-stages-1 8.0 10.0 0.0 16.0 8.0 8.0 32.0 92 (515) 
boil 3.5 0.0 0.0 33.1 3.5 4.2 16.3 100 (81) 

freeze 0.0 4.0 0.0 3.9 7.8 7.8 10.0 82 (154) 
Average Reward 7.8 9.4 2.1 22.6 15.8 27.1 41.9 94 

371



B. Scope of improvements 
Though the agent completed the objective for many of the 

tasks and received maximum possible reward (100), yet for 

few tasks, it didn’t follow the ideal shortest action plan. 

Several irrelevant actions (that didn’t cause changes in 

reward) are chosen as part of the action plan. For example, in 

the “boil” task, the actions “pick up sodium chloride” and 

“mix sodium chloride” are part of the plan but they are 

irrelevant. This is because it just moved from states to states 

during exploration, and followed the rewards. The actions 

that yielded rewards came after the above 2 actions. A state 

space pruning strategy may be used to handle this scenario. 

Irrelevant states within the action plan maybe identified in the 

states space graph and pruned.  

The plan generated is not the ideal and shortest one. In the 

“boil” task, the agent turned on the stove containing metal pot 

with water, waited for several iterations, and directly focused 

on the steam. The ideal plan would be to measure the 

temperature of the water every certain interval. If it exceeds 

C then the task is complete. This problem can be tackled 

by representing policies as programs in a programming 

language instead of just sequence of action texts. 

Representing policies as programs would allow to implement 

all type of logical and mathematical constructs in the policy. 

That would allow implementation of reasoning within the 

policy.  

As the agent starts solving a new task with learnings from 

previous task, the LLM generates action plans tuned for the 

previous task and it takes a while to update the memory and 

adjust the generation of action plan for new task. This 

happens due to presence of irrelevant learnings for the current 

task (relevant for the previous). For the “boil” and “freeze” 

tasks, this problem was prevalent and the action plan was not 

converging. So, we took the memories from “chemistry-mix” 

and ran few episodes of “boil” and “freeze” alternately to 

come up with a common relevant memory. This problem can 

be alleviated by a better memory management strategy, so 

that only relevant memories for the current task are fetched. 

VII. CONCLUSION  

Combining RL method of searching state space and querying 

LLM to generate an action plan have proven to be effective 

in solving large environments with a relatively smaller 

number of interactions with the environment. Neoplanner 

constructs the state space graph and updates the value of the 

states as it interacts with the environment. The same state 

space graph is exploited to find action plans progressively. It 

also generated learnings about the environment in text format 

as it continued interaction. The learnings helped in 

continuous improvement of the action plan. The agent 

demonstrated adaptability of the learnings as the task 

changed. The learnings also generalized as the number of 

trials progressed. Neoplanner was able to completely solve 

several tasks and nearly solve rest of them. With better 

memory management of the learnings, the agent could 

converge towards the objective even faster. Also representing 

the plan as a program can help to reduce the plan size and 

make it more general to apply on other similar tasks. 

REFERENCES 

 

[1] Gelly, S., & Silver, D. (2011). “Monte-Carlo tree search and rapid 
action value estimation in computer Go”. Artificial 
Intelligence, 175(11), 1856-1875.  

[2] Ruoyao Wang, Peter Alexander Jansen, Marc-Alexandre Côté, and 
Prithviraj Ammanabrolu., 2022, “Scienceworld: Is your agent smarter 
than a 5th grader?”, In Conference on Empirical Methods in Natural 
Language Processing,. URL 
https://api.semanticscholar.org/CorpusID:247451124. 

[3] He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., & Ostendorf, M. 
(2015). “Deep reinforcement learning with a natural language action 
space”. arXiv preprint arXiv:1511.04636.  

[4] Prithviraj Ammanabrolu and Matthew J. Hausknecht.,2020, “Graph 
constrained reinforcement learning for natural language action spaces”. 
In ICLR, 2020.  

[5] Shunyu Yao, Rohan Rao, Matthew J. Hausknecht, and Karthik 
Narasimhan., 2020, “Keep calm and explore: Language models for 
action generation in text-based games.” ArXiv, abs/2010.02903, URL 
https://api.semanticscholar.org/CorpusID:222142129  

[6] Michael Ahn et. al., “Do as i can, not as i say: Grounding language in 
robotic affordances,” In Conference on Robot Learning, 2022. URL 
https://api.semanticscholar.org/CorpusID:247939706 

[7] Shunyu Yao et. al., 2022,  “React: Synergizing reasoning and acting in 
language models”. ArXiv, abs/2210.03629,. URL 
https://api.semanticscholar.org/CorpusID:252762395.  

[8] Noah Shinn, Beck Labash, and Ashwin Gopinath., 2023,  “Reflexion: 
an autonomous agent with dynamic memory and self-reflection” . 
arXiv preprint arXiv:2303.11366,. 

[9] Majumder, B. P. et. al., (2023). “CLIN: A Continually Learning 
Language Agent for Rapid Task Adaptation and Generalization”. arXiv 
preprint arXiv:2310.10134. 

[10] Bonet, B. (2012). “Deterministic pomdps revisited.” arXiv preprint 
arXiv:1205.2659. 

[11] Schmidhuber, J.,2004, “Optimal ordered problem solver”. Machine 
Learning, 54(3), pp. 211-254, 2004 

[12] Steunebrink, B. R., & Schmidhuber, J., “Towards an actual gödel 
machine implementation: A lesson in selfreflective systems”. 
Theoretical Foundations of Artificial General Intelligence, pp. 173-
195, 2012 

[13] S. k.  Paul & P. Bhaumik, (2023) “Solving Partially Observable 
Environments with Universal Search Using Dataflow Graph-Based 
Programming Model”, IETE Journal of Research, 69:9, pp. 6137-6151 

[14] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). “Finite-time analysis 
of the multiarmed bandit problem”. Machine learning, 47, 235-256. 

[15] https://github.com/swarna-kpaul/neoplanner 

 

372


