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Abstract—Pseudo-labels (PLs) generated through clustering
are extensively employed to optimize speaker embedding (SE)
networks and to train self-supervised speaker verification (SV)
systems. However, the effectiveness of PL-based self-supervised
training is contingent on the quality of the PLs, and achieving
high clustering performance often requires time-consuming and
resource-intensive data augmentation regularization. In this
paper, we introduce an efficient, general-purpose multi-objective
clustering algorithm that outperforms all other baseline methods
for clustering SEs. Our approach, named Contrastive Information
Maximization Clustering (CIMC), circumvents the need for
explicit data augmentation, enabling rapid training with minimal
memory and computational resource usage. CIMC is founded on
three key principles: (1) Self-Augmented Training, which ensures
representation invariance and maximizes the information-theoretic
dependency between samples and their predicted PLs (2) Virtual
Mixup Training, which enforces local-Lipschitzness and upholds
the cluster assumption (3) Supervised contrastive learning, which
fosters the learning of more discriminative features and enhances
robustness to natural corruptions by bringing together samples
of the same class while separating those of different clusters. We
present a comprehensive comparative analysis of our clustering
method against baselines using various clustering metrics, conduct
an ablation study to assess the contribution of each component,
and demonstrate that our multi-objective approach provides
beneficial complementary information. Furthermore, utilizing the
generated PLs to train our SE system enables us to achieve high
SV performance.

Index Terms—Speaker verification, clustering, self-supervised
speaker verification, pseudo-labels, speaker recognition

I. INTRODUCTION

Speaker Verification (SV) involves confirming a speaker’s

identity based on their known utterances. In recent years, it

has become a crucial technology for authenticating individuals

across various applications [1]. Typically, fixed-dimensional

embeddings are extracted at the utterance level from both

enrollment and test speech samples. These embeddings are

then fed into a scoring algorithm, such as cosine distance, to

measure their similarity and determine the likelihood that they

originate from the same speaker.

Traditionally, the i-vector paradigm has been one of the

most prominent approaches for speaker embedding [2], [3],

owing to its capacity to capture the distributive patterns of

the speech in an unsupervised fashion, even with a relatively

small amount of training data. This framework generates fixed-

sized compact vectors (i-vectors) that encapsulate the speaker’s

identity in a speech utterance, regardless of its duration.

Moreover, in recent years, a plethora of deep learning-based

architectures and techniques have been proposed to extract

embeddings [4]–[6]. These approaches have demonstrated

remarkable performance when a large amount of training data

from a sufficient number of speakers is available [7]. A widely

adopted architecture for this purpose is ECAPA-TDNN [8],

renowned for achieving state-of-the-art (SOTA) performance

in text-independent speaker recognition. The ECAPA-TDNN

incorporates squeeze-and-excitation (SE), utilizes channel- and

context-dependent statistics pooling, multi-layer aggregation

and employs self-attention pooling to obtain an utterance-level

embedding.

Indeed, the majority of deep embedding models are trained

under full supervision, necessitating large speaker-labeled

datasets for effective training. However, creating well-annotated

datasets can be a costly and time-intensive endeavor, prompting

the research community to explore more affordable self-

supervised learning (SSL) techniques utilizing extensive unla-

beled datasets. A typical approach for addressing this issue for

SV systems is to employ a one-stage "clustering-classification"

scheme [5], [6], [9] by utilizing clustering algorithms (e.g.,

K-means, agglomerative hierarchical clustering, spectral clus-

tering) or other self-supervised objectives to produce useful

Pseudo-Labels (PLs) such as SimCLR or MoCo [10]. Subse-

quently, the speaker embedding network is trained using these

labels in a discriminative fashion. More recently, more effective

methods have emerged and gained widespread adoption in

the SV domain. These frameworks utilize an iterative two-

stage "clustering-classification" progressive learning process

[11], [12]. Initially, SSL training (such as the InfoNCE [12]

contrastive loss) is employed to train an encoder model for

generating speaker embeddings. Subsequently, in the second

stage, the embeddings undergo clustering to produce pseudo-

labels, facilitating joint supervised training of the encoder with

a classifier. This sequential process continues until further

improvements are negligible.

Although these PL-based Self-Supervised SV schemes ex-

hibit striking performance, the efficacy of clustering continues

to impede all aforementioned approaches [12], [13], primarily

because downstream performance heavily relies on precise

PLs. However, these PLs are generally noisy and inaccurate

due to the mismatch between the clustering objective and

the final SV task. Additionally, despite the advantages of the

iterative clustering-classification framework, the persistence of
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erroneous information from incorrect PLs degrades the final

downstream task performance [12], [14]. Hence, there is a

demand for improved clustering algorithms to produce Pseudo-

Labels (PLs) that are less noisy and more precise. Instead of

relying on SOTA deep clustering models, which often require

extensive domain-specific data augmentations, these methods

typically utilize classical clustering algorithms such as spectral

clustering or K-means. These classical algorithms are preferred

due to their ease of use, faster computation, and lower resource

requirements in terms of memory and GPU/CPU utilization

during training.
In this paper, we introduce an efficient and general-purpose

multi-objective clustering algorithm, denoted as Contrastive

Information Maximization Clustering (CIMC), that outperforms

all other baselines employed for clustering speaker embeddings.

Our approach eliminates the need for explicit data augmentation,

ensuring swift training and utilization of low memory and

compute resources. The proposed approach is built upon the

combination of three principles: (1) Self-Augmented Training,

which enforces representation invariance and maximizes the

information-theoretic dependency between samples and their

predicted pseudo-labels, facilitated through the Information

Maximizing Self-Augmented Training (IMSAT) clustering

framework [15] (2) Virtual Mixup Training (VMT) [16], which

imposes local-Lipschitzness, thereby reinforcing the cluster

assumption (3) Supervised contrastive learning [17], leveraging

dynamically generated pseudo-labels, to pull samples of same

class closer and push samples of different clusters apart.
Rather than mixing up of inputs or using constrastive loss

solely to enforce smoother model responses and compactness

of embeddings, the CIMC approach effectively utilizes these

predictions as supplementary supervisory signals to enhance

the guidance for cluster assignment, resulting in more resilient,

stable, and high-performing data clustering. The resulting

algorithm shows exceptional scalability, speed, and increased

robustness to data corruptions and shifts compared to IMSAT

during online clustering. It is simple to implement, and adds

limited computational overhead to IMSAT.
We believe the proposed CIMC clustering method can signif-

icantly enhance the optimization of current self-supervised SV

frameworks by replacing the conventional clustering methods

currently in use, such as k-means and spectral clustering.

Moreover, proposed method holds promise for improving

speaker diarization performance, where clustering is a critical

module. The CIMC clustering approach is versatile and can be

effectively applied to a wide range of problems and domains

beyond speech or speaker verification. The contributions of

this paper are as follows:

• We propose CIMC, a novel general-purpose multi-

objective clustering algorithm designed for large-scale

datasets and scenarios involving a high number of clusters.

• We explore several recent state-of-the-art SSL objectives

for clustering, demonstrating that multi-objective cluster-

ing frequently offers valuable complementary information.

• Our proposed approach outperformed numerous clustering

baselines. Furthermore, by using the generated pseudo-

labels to train our SV systems, we achieved high SV

performance.

II. BACKGROUND AND RELATED WORK

Various designed clustering approaches have been introduced.

Classical approaches include models such as K-means [18],

Gaussian mixture model (GMM), BIRCH [19], CURE [20], Ag-

glomerative Hierarchical Clustering (AHC) [21], etc. However,

these methods are limited to fitting linear boundaries between

data representations. Recently, the robust representational

capabilities of neural networks have been employed to better

model the non-linearity of complex data distributions and

to scale to large datasets. As an example, Deep Embedded

Clustering (DEC) [22] employs deep models to learn feature

representations and cluster assignments concurrently. On the

other hand, DeepCWRN [23] uses an autoencoder to learn

feature representations and embeddings tailored for clustering

by promoting the separation of inherent clusters within the

embedding space. Additionally, other deep models have been

developed based on generative models [24], [25] or dynamic

architectures [26].

Although data augmentation is essential for regularizing deep

neural networks in clustering and unsupervised representation

learning to capture the invariance of learned representations, it

also increases the size of the training set, leading to significantly

longer training times, particularly for large-scale datasets and

neural networks. Additionally, using blind augmentations can

negatively impact speaker verification and recognition tasks, as

transformations like pitch perturbation or spectral augmentation

can alter a speaker’s identity, sometimes creating misleading

data samples. Moreover, for real-world tabular data applications

[27], such as genomics and clinical data, generating additional

augmented views is not straightforward and can be impractical.

III. OUR PROPOSED CLUSTERING APPROACH

A schematic diagram of the proposed Contrastive Informa-

tion Maximization Clustering (CIMC) is presented in Figure

1, which is trained via minimizing the total loss Ltotal, that

integrates three different loss functions. Given a deep neural

network-based clustering model f and a predefined number of

clusters C, the CIMC approach constrains the predictions of

the model to remain unchanged under local perturbations and

implicit Virtual Mixup Training (VMT) [16] data augmentations

LMixup. The model is trained in an end-to-end fashion by

imposing local-Lipschitzness on the learned weights to favor

the cluster assumption [28] (if samples are in the same cluster,

they come from the same class), which is a critical condition for

successful clustering. More explicitly, it optimizes the following

Ltotal objective:

Ltotal = LIMSAT + LSupCon + LMixup (1)

where LIMSAT is the loss function for the original IMSAT

clustering objective and LSupCon & LMixup represent the

supervised contrastive loss and the mixup loss terms, re-

spectively. Our main focus is to harness these objectives as
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Fig. 1: The pipeline of our proposed Contrastive Information Maximization Clustering (CIMC) method depicting the data flow

and the different losses employed for clustering.

additional supervisory signals to regularize the clustering model

to produce consistent assignments.

Now, the original IMSAT loss LIMSAT is expressed mathe-

matically as [15]:

LIMSAT = RSAT (θ, TV AT ) + λ(H(Y |X)− μH(Y )), (2)

where H(.) is the marginal entropy and H(.|.) is conditional

entropy. The loss term RSAT (θ;T ) =
1
N

∑N
n=1 RSAT (θ;xn, T (xn)) enables the representations of

the augmented samples to be drawn closer to those of the

original ones while simultaneously regularizing the network’s

complexity against local perturbations via Virtual Adversarial

Training (VAT) [29]. λ, μ ∈ R are hyper-parameters that

tune the balance between the model’s complexity regulariza-

tion (via RSAT ) and the maximization of MI, and between

the two entropy terms, respectively. RSAT (θ;x, T (x)) =
−∑C

c=1

∑1
yc=0 pθ̂(yc|x)logpθ(yc|T (x)), where pθ̂(yc|x) is

the prediction of original data point x, and θ̂ are the current

parameters of the neural network. TV AT (x) = x + r is the

augmentation function using local perturbations to enforce

invariance, where r = argmax
r′

{RSAT (θ̂;x, x+r′); ‖r′‖2 ≤ ε}
constitutes an adversarial direction.

The difference between the marginal and conditional entropy

represents the MI between sample X and its label Y that we

maximize. The two entropy terms can be calculated as:

H(Y ) = h(pθ(y)) = h(
1

N

N∑

i=1

pθ(y|x)), (3)

H(Y |X) =
1

N

N∑

i=1

h(pθ(y|xi)), (4)

where pθ(y|x) is our learned probabilistic classifier mod-

eled by parameters θ of a deep network, and h(p(y)) =
−∑

y′ p(y′) log p(y′) is the entropy function.

Essentially, increasing the entropy H(Y ) promotes uniform

cluster sizes and prevents collapsing into a few clusters. Con-

versely, minimizing the conditional entropy H(Y |X) results in

less ambiguous cluster assignments and compels the classifier
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to be confident in our training samples [30]. For more details,

please refer to [15], [29].

On the other hand, the supervised contrastive loss term

LSupCon helps to learn more discriminative features and has

the advantage of improving robustness to natural corruptions

and to out-of-distribution data [17]. Note that, the LSupCon

loss requires labels. But in this work, LSupCon loss [17] is

leveraged in an unsupervised (or self-supervised) manner

employing the online generated pseudo-labels as labels and

l2-normalized logits as feature embeddings. Therefore, the

novelty of our usage is the use of online predictions of our

clustering model as input labels, which allows us to use it in

a completely unsupervised/self-supervised fashion without

the need for ground-truth labels. As the performance of our

clustering gradually improves, the online pseudo-labels are

progressively more reliable, thus helping to generate better

and more compact clusters.

The mixup loss term LMixup can be formulated as:

LMixup =
1

N

N∑

i=1

KL(αipi + (1− αi)pri ||f(αixi + (1− αi)xri)). (5)

where N is the mini-batch size of data, ri ∈ {1, .., N} is

a random index, and αi ∈ [0, 1] is the mixup interpolation

coefficient. KL(.||.) operator corresponds to the Kullback-

Leibler divergence. pi = f(xi) ∈ R
1xC , pri = f(xri)

correspond to the predictions of data samples xi and xri ,

respectively.

Finally, inspired from VMT [16] regularization method

which encourages the model to exhibit linearity between train-

ing points, this allows us to enforce representation smoothness

during clustering and guarantee consistent predictions between

the training data points and their neighboring samples. Indeed,

mixup [31] which is a strategy to augment data by interpolating

different data samples alongside their labels, often results

in improved generalization to out-of-set samples. Mixup has

also been found by [6] to enhance the generalization of self-

supervised speaker verification systems when the clusters are

not well distanced or not compact as it can dilute label noise

and induce better class separation. In line with work [16], we

opt for mixing logits instead of directly mixing probabilities in

the LMixup loss. We find empirically that this step, followed by

a softmax operation, enhances training effectiveness and guards

against premature information loss during probability mixing.

We follow the general framework in [9, Fig. 1] for training our

clustering-driven self-supervised speaker embedding networks.

IV. CLUSTERING ALGORITHMS AND METRICS

For all our clustering algorithms, we use 400-dimensional

i-vectors as condensed input. These i-vectors, which serve as

unsupervised representations of speakers, enable more efficient

clustering and help mitigate the high dimensionality associated

with MFCC acoustic features.

Additionally, to comprehensively evaluate and analyze the

quality of the pseudo-labels (PLs) from multiple perspectives,

we employ a set of seven supervised metrics based on

both the PLs and the true labels: Unsupervised Clustering

Accuracy, Normalized Mutual Information [33], Adjusted MI

[34], Completeness score [35], Homogeneity score [35], Purity

score, and Fowlkes-Mallows index [36].

The criteria assessed by these metrics include clustering

accuracy and mutual information to evaluate the consistency

between true labels and generated pseudo-labels (PLs), as

well as the homogeneity, completeness, purity of clusters,

and precision and recall. Additionally, we calculate three

unsupervised metrics—Silhouette score [37], Calinski-Harabasz

score [38], and Davies-Bouldin score [39]—based solely on

the generated PLs and data samples. These metrics measure the

compactness or scatter of clusters, such as intra-class dispersion,

between-cluster distances, and nearest-cluster distance. We use

implementations from the scikit-learn toolkit to compute these

metrics. Further details and discussions can be found in the

study [6], which identified a strong correlation between these

metrics and speaker verification performance.

V. RESULTS AND DISCUSSION

We assess the performance of the proposed clustering method

and the resulting pseudo-labels (PLs) for self-supervised

speaker verification through a series of experiments conducted

on the VoxCeleb2 dataset [40]. We train the embedding

networks on the development subset of VoxCeleb2, comprising

1.092 million utterances from 5,994 distinct speakers. Eval-

uation follows the VoxCeleb1 trials list [41], encompassing

37,720 trials with 4,874 utterances from 40 speakers. For our

speaker verification (SV) system, we employ 40-dimensional

Mel-frequency cepstral coefficients (MFCCs) as input features

to our ECAPA-TDNN model. MFCCs are computed every 10

ms with a 25 ms Hamming window, using the Kaldi toolkit [42].

Additionally, we adopt the additive angular margin softmax

(AAMSoftmax) objective [43] to enhance generalization during

training of our self-supervised speaker embedding network. We

set the scale factor (s) to 30 and the angular margin (m) to 0.1.

Cosine similarity serves as the backend for scoring verification

between embeddings of enrollment and test speech samples.

Similarly to the IMSAT setup, we adopt the MLP-based d-S-

S-C architecture, with d = 400 and C representing the input and

output dimensionality, respectively. The network has a width

of S = 20, 800 neurons. We apply RELU activation and batch

normalization to all hidden layers and use softmax in the output

layer. λ = 0.5 and μ = 3.5. Besides, we utilize the Momentum

algorithm for optimization where momentum is set to 0.9. The

initial learning rate is 0.01 with an exponential rate decay of

0.996. We use a batch size of 10,240 i-vectors, normalizing

the inputs independently along the sample axis to a unit l2-

norm to preserve speaker information. We use α = 1 as the

coefficient of the Beta distribution used for mixup interpolation.

We ran experiments for 150 epochs using 64 CPU cores for

each clustering algorithm. Besides, all speaker verification

experiments were run over 7 days on a single RTX2080Ti

GPU, utilizing a batch size of 200 MFCC samples. All code

and methods in our experiments are based on Tensorflow.

Additionally, our clustering benchmarks from [6, Tab. 1] set,
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TABLE I: Ablation experiments of the proposed CIMC clustering system, including various SSL-based loss objectives that

do not employ data augmentation (only original data samples). C denotes the predefined number of clusters. The results are

presented in terms of clustering metrics, along with the corresponding EER (%) downstream SV evaluation performance. Our

examined SV system is trained from scratch by each time employing the generated clustering-based pseudo-labels.

Model Clustering Metrics Speaker Verification

ACC AMI NMI No. of clusters Completeness Homogeneity FMI Purity Silhouette CHS DBS EER (%)

LMixup (C: 10k) 0.013 0.016 0.432 10000 0.413 0.452 0.001 0.026 -0.019 1.001 17.633 9.767

LSupCon (C: 10k) 0.015 0.02 0.419 10000 0.404 0.434 0.001 0.027 -0.036 1.001 19.5 20.074

LV ICReg [32] (C: 5k) 0.018 0.082 0.27 4496 0.309 0.239 0.004 0.021 -0.134 1.001 18.031 11.612

LIMSAT (C: 10k) 0.621 0.754 0.844 9844 0.836 0.853 0.616 0.678 -0.122 0.999 16.897 4.438

LIMSAT (C: 5k) 0.578 0.731 0.822 5000 0.83 0.815 0.552 0.604 -0.033 1.002 26.56 4.507

LIMSAT (C: 5994) 0.600 0.743 0.833 5993 0.834 0.831 0.583 0.636 -0.074 0.999 23.915 4.295

LMixup + LSupCon (C: 10k) 0.015 0.034 0.354 9639 0.36 0.348 0.002 0.023 -0.133 0.999 15.563 12.54

LIMSAT + LMixup + LV ICReg′variance + LV ICReg′covariance (C: 5k) 0.013 0.018 0.369 5000 0.367 0.371 0.001 0.017 -0.015 1.0 25.571 19.952

LIMSAT + LMixup + LSupCon + LV ICReg′variance + LV ICReg′covariance (C: 5k) 0.014 0.02 0.36 5000 0.361 0.359 0.001 0.017 -0.022 0.999 26.667 21.84

LIMSAT + LMixup (C: 10k) 0.628 0.764 0.852 9791 0.841 0.862 0.615 0.692 -0.149 1.0 17.297 4.321

LIMSAT + LSupCon (C: 10k) 0.548 0.717 0.813 9585 0.823 0.803 0.361 0.589 -0.138 1.001 15.941 4.348

LIMSAT + LSupCon (C: 5k) 0.497 0.688 0.784 4996 0.81 0.76 0.347 0.516 -0.065 0.999 24.809 4.623

CIMC = LIMSAT + LMixup + LSupCon (C: 10k) 0.639 0.776 0.86 9685 0.847 0.873 0.642 0.71 -0.136 0.998 17.599 4.252

CIMC = LIMSAT + LMixup + LSupCon (C: 5k) 0.602 0.751 0.836 4999 0.842 0.831 0.579 0.632 -0.071 0.999 26.905 4.231

by default, 5000 as the predefined number of clusters, which

was discovered by [5] to produce the best performances.

Moreover, to follow other SV works in training the ECAPA-

TDNN-based systems, we have applied data augmentation at

the waveform level, such as additive noise and room impulse

response (RIR) simulation, as described in [7]. Furthermore,

we extended augmentation to the extracted MFCCs features,

following a similar approach to the specaugment scheme [44].

In Table I, we conducted an extensive ablation study to

assess the impact of each component within our CIMC

system and the influence of the predefined number of clusters.

We also study the VICReg method [32] which comprises

a term LV ICReg′variance that maintains the variance of

each embedding dimension above a threshold and a term

LV ICReg′covariance that decorrelates each pair of variables.

Results indicate that there exists complementary information

among all loss terms within our proposed objective. Each

term contributes to enhancing the performance of the overall

clustering framework. We also observe that choosing a much

higher number of clusters than ground truth leads to improved

clustering performance across all studied systems. Additionally,

compared to a large variety of 15 clustering benchmarks in [6,

Tab. 1], we can observe that our proposed method outperforms

all other baselines in terms of clustering metrics achieving

63.9% unsupervised clustering accuracy compared to 58.7%

for AHC which was the best performing method (8.9% relative

improvement) while having a compute time comparable to

classical clustering models (3-4 days). Using our proposed

system’s generated PLs to train our embedding system, also

enabled us to achieve a very competitive downstream SV EER

performance, surpassing all other benchmarks, except the AHC

PLs which lead to a slightly better performance.

Finally, Table II presents a comparison between our Self-

Supervised SV (SSSV) training approach, utilizing CIMC-based

PLs, and recent SOTA SSSV methods (with the ECAPA-TDNN

model encoder) employing diverse self-supervised objectives.

Instead of AAMSoftmax, using the margin-based OCSoftmax

objective loss [48] which uses one-class learning instead of

TABLE II: A comparison of several SOTA Self-Supervised

SV approaches to our simple SV system trained with our

generated CIMC PLs. All approaches employ the same ECAPA-

TDNN underlying model. Results are presented on the original

VoxCeleb1 test set (Voxceleb1_O) in terms of EER (%).

SSL Objective EER (%)

MoBY [10] 8.2
InfoNCE [12] 7.36

MoCo [45] 7.3
ProtoNCE [10] 7.21

PCL [10] 7.11
CA-DINO [46] 3.585

i-mix [47] 3.478
l-mix [47] 3.377

Iterative clustering [12] 3.09

Our approach (CIMC & AAMSoftmax) 4.231
Our approach (CIMC & OCSoftmax) 3.924

multi-class classification and which does not assume the same

distribution for all speakers (which is more realistic in our

case) enables us to enhance SV performance to 3.924% EER.

Our findings demonstrate that our approach offers highly

competitive performance compared to all baseline methods.

Moreover, they indicate that enhancing the clustering modules

of existing self-supervised speaker recognition systems could

lead to further improvements.

It is worth noting that although our approach slightly under-

performs compared to the 2-stage iterative clustering method

[12] and l-mix [47], the iterative clustering method relies on

multi-stage training and requires multiple iterations for training,

while l-mix incorporates an additional Variational Auto-Encoder

(VAE) to generate mixup-based augmentations. Our approach,

on the other hand, does not require augmentations or any

additional components, making it lightweight. Moreover, our

approach is faster, simpler, and has the potential to incorporate

both iterative clustering and l-mix to benefit from mixup

regularization and progressive clustering, further enhancing
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performance.

VI. CONCLUSION

In this paper, we introduced an efficient and general-purpose

multi-objective clustering approach, denoted as Contrastive

Information Maximization Clustering (CIMC). The proposed

approach avoids explicit data augmentation, ensuring fast

training and usage of low memory and compute resource. Clus-

tering and speaker verification experiments on the VoxCeleb

dataset demonstrated that the CIMC is robust and has better

generalization capability. Additionally, we explored various

recent state-of-the-art self-supervised learning objectives for

clustering, demonstrating that our multi-objective approach

provides beneficial complementary information. Our method

outperformed all other baselines used for clustering speaker

embeddings and delivered very competitive speaker verification

performance compared to other benchmarks.
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