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Abstract—Domain adaptation (DA) has emerged as a promis-
ing approach to address the domain shift problem in deep
learning for automated medical diagnosis. However, current
approaches often overlook the imbalanced nature of different
categories and primarily focus on aligning the distributions of
the source and target domains globally. This oversight leads
to suboptimal performance on imbalanced target datasets, as
the alignment process becomes dominated by the majority class
during adaptation. To tackle this limitation, this paper proposes
a novel domain adaptation method called cost-sensitive distri-
bution alignment (CSDA), which aims to enhance deep learning
performance on target data. The proposed approach involves
collecting a limited-sized dataset from the target domain and
utilising CSDA to bridge the domain gap between the source
and target domains. Specifically, to address class imbalance, cost-
sensitive learning is incorporated into the distribution alignment
process, giving more emphasis to the misalignment cost associated
with minority class samples. More importantly, CSDA aligns the
cross-domain projection distribution in the feature space with
the ideal geometric distribution derived from the ground-truth
labels. Unlike existing methods that directly minimise or em-
ploy adversarial learning to reduce the distribution discrepancy
between the source and target domains, our proposed CSDA
method focuses on minimising the semantic relationship mis-
alignment among cross-domain samples. Experimental results on
the detection of high myopia and myopic macular degeneration
(MMD) demonstrate the superiority of CSDA over state-of-the-
art methods. The results provide empirical evidence of CSDA’s
efficacy in enhancing automated medical diagnosis.

Index Terms—Domain adaptation, distribution alignment,
medical image analysis, retinal fundus photography
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I. INTRODUCTION

Vision, as the primary means of perceiving the world,

is essential in all facets of life. Regrettably, eye conditions

and vision impairment are prevalent and pose a significant

challenge to eye care, particularly in low- and middle-income

nations. The World Report on Vision by the World Health

Organisation (WHO) indicates that globally, at least 2.2 billion

individuals suffer from vision impairment, and of these, at

least 1 billion cases could have been prevented or remain

unaddressed [1]. Early diagnosis and treatment are crucial

in preventing widespread vision conditions and impairments.

Fundus retinal photography, a non-invasive imaging method

for capturing colour images of the interior surface of the eye,

is widely used for detecting eye disorders and monitoring their

progress over time, as it is quick to complete and does not

require any invasive procedures. However, the interpretation

of fundus photographs is dependent on the expertise of expe-

rienced specialists to identify disease pathology. To increase

speed and scale in interpretation, artificial intelligence (AI),

particularly deep learning [2–4], has been applied to detect

major ophthalmic diseases from high-quality retinal fundus

images.

(a) SEED (b) UEMS

Fig. 1. Two example images from the SEED dataset and the UEMS dataset,
which are captured on Malay and Russian ethnic groups using cameras of
CR-DGi with 10 SLR back and VISUCAM 500, respectively.

The application of deep learning in automated medical diag-

nosis has shown promising results. However, achieving a high
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level of accuracy in predictions relies heavily on a substantial

amount of labelled data. In the medical field, obtaining such a

large sample size is often hindered by the high cost of medical

data collection and annotation, resulting in limited availability

of samples from a single institution. Furthermore, even with

a significant collection of fundus photographs for AI model

training, its performance may still decrease when applied to

fundus images from diverse ethnic groups or captured using

different imaging cameras and protocols. This discrepancy

between the training and test data distributions is commonly

known as the “domain shift” problem [5]. To illustrate the

domain shift problem, we consider the example of high myopia

detection using the Singapore Epidemiology of Eye Disease

(SEED) study dataset and the Ural Eye and Medical Study

(UEMS) dataset. As depicted in Fig. 1, the image samples

from SEED and UEMS exhibit a significant difference, origi-

nating from diverse ethnic groups and cameras. This leads to a

decline in the performance of AI models trained on SEED, as

indicated by a reduction of 10%−17% in the AUC score when

tested on UEMS. To address this issue, two common solutions

exist: (1) merging all available datasets into one for training, or

(2) fine-tuning pre-trained deep models with annotated target

samples. However, both solutions necessitate a considerable

amount of high-quality, well-annotated, and clinically verified

data, which is often time-consuming and costly to acquire from

multiple domains.

In recent years, domain adaptation (DA) has emerged as

a promising solution for tackling the domain shift prob-

lem. Nevertheless, existing approaches frequently disregard

the imbalanced distribution across various categories, instead

prioritising the alignment of source and target domain distri-

butions on a global scale. Unfortunately, this oversight results

in subpar performance when dealing with imbalanced target

datasets, as the adaptation process becomes heavily influenced

by the majority class. In this paper, to tackle this limitation,

we present a novel domain adaptation method, cost-sensitive

distribution alignment (CSDA), to enhance the performance

of models for imbalanced target data. Specifically, we tackle

this problem in two-fold. On the one hand, we integrate cost-

sensitive learning [6] into the distribution alignment process,

assigning higher importance to the misalignment cost asso-

ciated with minority class samples. On the other hand, we

align the cross-domain projection distribution in the feature

space with the desired geometric distribution derived from the

ground-truth labels. Since the ideal geometric distribution is

constructed using the category labels of the data samples, it can

accurately represent the relationships of the samples across the

two domains from a semantic perspective. Consequently, our

proposed distribution alignment enforces the deep neural net-

work to learn a feature space where their semantics across the

two domains measures the relationships of the samples. The

novelty and main contributions of this work are summarised

as follows:

• A novel domain adaptation strategy is proposed to en-

hance the performance of models on imbalanced target

data. We construct a two-branch neural network that

utilises fundus photographs for automated medical diag-

nosis. The entire network can be trained end-to-end using

the stochastic gradient descent (SGD) algorithm.

• In contrast to existing domain adaptation methods that

minimise the distance between the distributions of the two

domains directly or employ adversarial learning, our pro-

posed method focuses on minimising the misalignment

of semantic relationships among cross-domain samples.

Additionally, we integrate cost-sensitive learning into the

distribution alignment process to address the issue of

class imbalance in domain adaptation.

• Extensive experiments have been conducted to evaluate

the performance of CSDA. The experimental results for

detecting high myopia and myopic macular degeneration

(MMD) demonstrate that CSDA surpasses the current

state-of-the-art methods. This confirms the effectiveness

of CSDA in improving automated medical diagnosis.

II. RELATED WORK

Our proposed method is closely relevant to domain adapta-

tion and cost-sensitive learning. In this section, we discuss

some of representative algorithms in these two areas and

highlight the key difference between our method and existing

ones.

A. Domain adaptation

A common problem when applying deep models to han-

dle medical images is the lack of large-scale well-annotated

dataset [7, 8]. Moreover, changes in distributions between

different datasets even thorough they are for the same task

can occur due to several reasons [9], such as different imaging

cameras, different lighting conditions, and parameter settings.

Transfer learning [10] has shown some potential in dealing

with this challenge.

In transfer learning, one strategy is pre-training the model on

the source dataset and fine-tuning the trained model using the

target dataset. This strategy is widely used in automated med-

ical diagnosis applications [7]. For instance, Kermany et al.
applied the transfer learning of pre-training on ImageNet [11]

for age-related macular degeneration and diabetic macular

edema diagnoses using optical coherence tomography im-

ages [12]. The empirical results demonstrate that the prediction

accuracy of the fine-tuned model usually can be improved

with a considerable margin. However, this general purpose

transfer learning strategy ignores the connection between the

two domains from a semantic perspective, suffering from

the domain shift problem [13] and resulting in a significant

accuracy drop.

To solve the domain shift problem, domain adaptation, a

more effective way of transfer learning, proposes to align the

distributions of the source and target domains [9]. Pioneering

DA methods directly minimise the discrepancy between the

two domains in the feature space. For instance, Long et

al. proposed to minimise the maximum mean discrepancy
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(MMD) [14] or the Joint MMD [15] between the two do-

mains. Conjeti et al. proposed a supervised DA method to

adapt decision forests in the presence of the distribution

shift between the two domains [16]. Recently, adversarial

learning has been applied to mitigate the domain gap between

the two domains. The basic idea is to use the generator to

mitigate the domain gap and fool the domain discriminator to

classify which domain the input comes from. For example,

Conditional Domain Adversarial Networks (CDAN) [5] is

proposed to exploit discriminative information implicitly in the

classifier predictions to achieve adversarial adaptation. Thomas

et al. [17] developed a class-aware unsupervised domain

adaptation (UDA) method by estimating the label hypothesis

of target samples via clustering. Thomas et al. proposed the

Test-time Unsupervised Domain Adaptation (TTUDA), which

contains two training phases [18]. All of these DA methods

have achieved promising performance for image classification

tasks. Our proposed CSDA considers the domain adaptation

from a different perspective compared with existing DA meth-

ods. Specifically, CSDA conducts domain adaption by min-

imising the misalignment of the semantic relationships among

the cross-domain samples instead of directly minimising the

distance between the distributions of the two domains.

B. Cost-sensitive learning

Cost-sensitive learning [6] considers the different costs

associated with majority-class and minority-class data sam-

ples, which is a high-performing strategy for handling

class-imbalance data. The pioneering cost-sensitive learning

work [19] provides some foundations of cost-sensitive learn-

ing. Various studies have demonstrated the effectiveness of

cost-sensitive learning for class-imbalance classification prob-

lems. For instance, Kukar and Kononenko proposed to apply

the cost-sensitive modification to the probabilistic estimate of

the neural network in the testing stage [20]. It can maintain the

original structure of the network and strengthen the original

estimates on the minority-class samples with cost considera-

tion. Also, Kukar and Kononenko explored applying the cost

modifications to the outputs of the network during the training

stage, to the learning rate, or to the expected cost for the

misclassified samples [20]. The empirical results show that all

these four ways of cost modifications can improve the base

classifiers’ accuracy. The cost-sensitive learning strategy also

has been applied to algorithms of decision trees by conducting

cost-sensitive adjustments to the decision threshold, the split

criteria, or the pruning schemes [21], Bayesian classifiers [22],

and support vector machines [23]. Unlike these methods, our

CSDA considers the cost-sensitive learning in the domain

alignment instead of in the classification loss or the output of

the network. The domain alignment quality has a high impact

on effective knowledge transfer.

III. OUR PROPOSED METHOD

A. Problem formulation

Assume that we have a source dataset that includes ns sam-

ples Xs =
[
xs
1,x

s
2, . . . ,x

s
ns

]
and the corresponding data labels

as Ys =
[
ys
1,y

s
2, . . . ,y

s
ns

]
. Specifically, each data sample xs

i

in Xs has a semantic label vector ys
i , where ys

i ∈ {0, 1}cs and

cs is the number of source data categories. The target dataset

includes nt samples Xt =
[
xt
1,x

t
2, . . . ,x

t
nt

]
. We denote its

associated label matrix as Yt =
[
yt
1,y

t
2, . . . ,y

t
nt

]
, where

yt
i ∈ {0, 1}ct and ct is the number of target categories. In

this paper, we consider the scenario where each sample xt
i

is labelled as a positive or negative case: yt
i = [0, 1]T or

yt
i = [1, 0]T . By denoting the probability distributions of the

source and target domains as Ds(xs,ys) and Dt(xt,yt), we

have Ds �= Dt if there is a domain gap. The goal of domain

adaptation is to align Ds and Dt in the feature space according

to their underlying semantics in an interactive way.

B. Framework of CSDA

Fig. 2. The framework of CSDA. It contains two branches that share the
weights of convolutional feature extraction layers. The whole network can be
optimised jointly by minimising the entropy losses of classifying the source
and target samples and the distribution misalignment loss simultaneously.

To solve the above problem, we propose a novel method

CSDA to mitigate the domain gap and present a framework, as

shown in Fig. 2. From the figure, we can see that our proposed

framework contains a two-branch neural network. One branch

is to classify the source photographs, and another is to classify

the target photographs. The two branches share the weights of

the convolutional feature extraction layers, which makes the

network mapping input samples of the two branches into a

shared common space. Note that we explicitly improve the

compactness of intra-class samples and the separability of

inter-class samples according to their underlying semantics for

both two domains. Unlike the existing methods, the proposed

method adjusts the compatibility of the data distributions of

the two domains based on the ideal geometric distributions

obtained from the data labels in an interactive way. As shown

in Fig. 2, during the training, we compute the conditional dis-

tribution P between the samples across domains and an ideal

geometric distribution Q. Then we minimise the discrepancy

between the two distributions by the KL divergence function

with cost-sensitive learning. In summary, we impose a new

distribution alignment constraint on the two domains explicitly

besides minimising the prediction errors of the two classifiers.

In this manner, we can learn compatibility features for the two

domains, thus improving the model’s performance for target

data.
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C. Objective function

For automated medical diagnosis, we design and minimise

the following objective function:

L(Θ|Xs,Xt,Ys,Yt) = Lt + λ1Ls + λ2LD, (1)

where Θ denotes the model’s weights. Ls and Lt stand for the

classification losses for source and target data, respectively.

LD is the cost-sensitive distribution alignment loss, and λ1

and λ2 are the hyper-parameters that control the contributions

of the three terms. The details of Ls, Lt and LD are as

followings.

By considering the imbalance issue of the datasets of the

two domains, we use the weighted cross entropy loss (WCEL)

for the two classifiers. Specifically, for each target training

sample xt
i, the loss is defined as:

Lt(x
t
i, y

t
i) = −

(
yt1i log(ŷ

t
1i) + utyt2i log(ŷ

t
2i)

)
, (2)

where ut is a manual re-scaling weight to emphasise the

positive class in the target dataset, and we set ut as the ratio

of the numbers of negative and positive target samples. ŷt
i is

the output prediction for xt
i.

For the whole target dataset, we sum up the losses for all

the training samples and obtain the classification loss

Lt =

nt∑
i=1

Lt(x
t
i, y

t
i). (3)

Similarly, for a training sample in the source domain, we

have

Ls(x
s
i , y

s
i ) = − (ys1i log(ŷ

s
1i) + usys2i log(ŷ

s
2i)) , (4)

where us is a manual re-scaling weight of the source domain,

ŷs
i is the output prediction of the network for xs

i .

Thus, we compute the classification loss of the source

domain as

Ls =

ns∑
i=1

Ls(x
s
i , y

s
i ). (5)

The CSDA loss is proposed to improve the compatibil-

ity of the distributions Ds and Dt by performing iterative

interactions between the two domains. Specifically, we in-

troduce the cross-domain projection to learn discriminative

source-target representations. CSDA aligns the cross-domain

projection distributions to the corresponding ideal geometric

distributions by minimising their Kullback–Leibler (KL) di-

vergence. Mathematically, by giving a batch with n source

samples Xs and another batch of n target samples Xt,

we compute their representations Zs = [zs1, z
s
2, . . . , z

s
n] and

Zt = [zt1, z
t
2, . . . , z

t
n].

For each source sample, we construct source-target cross-

domain pairs as {(zsi , ztj), lij}, where lij indicates whether

zsi and ztj is a matched pair. The conditional distribution of

matching zsi and ztj is defined as

pij =
e(z

s
i
T zt

j)∑n
k=1 e

(zs
i
T zt

k)
. (6)

For the above equation, we can see that the higher inner

product of zsi and ztj , the larger probability they will be

matched.

In the most optimistic case, if xs
i and xt

j are intra-class

samples, (for example, both of them belong to the positive

class), zsi and ztj should be overlapped; otherwise, they are

infinitely far away. Based on such a observation, we define an

ideal geometric distribution of matching zsi and ztj as

qij =
lij∑n
j=1 lij

, (7)

where lij is calculated based on the data labels, lij = 1 if

zsi and ztj is a matched pair, i.e., they share the same class

label; otherwise lij = 0. Since there may exist more than one

matched target samples for zsi , we normalise the true matching

probabilities.

Obtaining the conditional distribution pi =
[pi1, pi2, . . . , pin] and the ideal distribution qi =
[qi1, qi2, . . . , qin], we compute the matching loss. By

considering the class imbalance issue, we minimise the

weighted Kullback Leibler (KL) divergence of the two

distributions as

Ls2t(z
s
i ) = DKL(pi‖qi) =

n∑
j=1

αijpij log
pij

qij + ε
, (8)

where

αij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

usut, if ys
i = [0, 1]T and yt

j = [0, 1]T ;

ut, if ys
i = [1, 0]T and yt

j = [0, 1]T ;

us, if ys
i = [0, 1]T and yt

j = [1, 0]T ;

1, otherwise,

(9)

and ε is a small number to avoid numerical problems [24]. In

this work, we minimise DKL(pi‖qi) instead of minimising

DKL(qi‖pi) to select a pi that has low probability where

pi has a low probability [24]. If we minimise DKL(pi‖qi),
it makes it difficult to distinguish matched and unmatched

pairs when multiple positive pairs exist in a mini-batch [25].

The distribution alignment loss from the source domain to the

target domain for the whole mini-batch is calculated as

Ls2t =

n∑
i=1

Ls2t(z
s
i ), (10)

Similarly, we can calculate the distribution alignment loss

Lt2s from the target domain to the source domain for the

whole batch samples by exchanging zsi and ztj . Adopting the

bi-directional distribution alignment, we have the distribution

alignment loss as

LD = Ls2t + Lt2s. (11)

By conducting CSDA, we constrain the samples in the same

classes close to each other while those in different classes

appear far away from each other even though the samples

may be from different domains. The objective function in

Equation (1) can be optimised with a stochastic gradient

descent (SGD) algorithm, such as Adam [26].
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IV. EXPERIMENTAL STUDY

A. Datasets

1) SEED: The Singapore Epidemiology of Eye Disease

(SEED) study dataset contains 18, 835 retinal images of 9, 083
patients. In addition, it contains the annotations for high

myopia and myopic macular degeneration diagnoses. The

images are captured with digital retinal cameras (CRDGi with

10 D single-lens reflex camera back [Canon, Tokyo, Japan])

from three major ethnic groups (Malay, Chinese and Indian)

in Singapore.

2) UEMS: The Ural Eye and Medical Study (UEMS)

dataset contains 7, 781 retinal images of 4, 391 patients for

high myopia detection. The images are captured with another

comprehensive fundus platform (VISUCAM 500, ZEISS, Jena,

Germany) from individuals of Russian ethnicity in Russia.

3) SNEC-HMC: The Singapore National Eye Centre-High

Myopia Clinic study dataset contains 350 retinal images of

180 patients for myopic macular degeneration detection. The

images are captured with digital retinal cameras (CRDGi with

10 D single-lens reflex camera back [Canon, Tokyo, Japan])

from three major ethnic groups (Malay, Chinese and Indian)

in Singapore.

TABLE I
STATISTICS OF THE THREE DATASETS USED IN OUR EXPERIMENTS.

Dataset Ethnicity # patients # images
SEED Malay, Indian, Chinese 9, 083 18, 835
UEMS Russian 4, 391 7, 781
SNEC Malay, Indian, Chinese, and others 180 350

TABLE II
STATISTICAL RESULTS OF THE SEED, UEMS AND SNEC DATASETS USED

IN OUR EXPERIMENTS, WHERE nTRAIN AND nVALID ARE THE NUMBERS OF

TRAINING AND PRIMARY VALIDATION SET, RESPECTIVELY.

Datasets Category ntrain nvalid Total

SEED
Negative 12, 629 5, 413 18, 042
Positive 548 235 783

UEMS
Negative 5, 347 2, 292 7, 639
Positive 99 43 142

SNEC
Negative 113 38 189
Positive 97 32 161

Some details of the three datasets are summarised in Tab. I.

We randomly split the dataset into the training, validation, and

test sets, without overlap of patients from different subsets.

The statistics of the three datasets are shown in Tab. II, from

which we can find that it includes many more negative cases

(Non-myopia) than positive cases (Myopia), leading to an

imbalanced classification problem. The SEED dataset is used

as the source dataset for high myopia detection and MMD

detection. The UEMS dataset is used as the target dataset for

high myopia detection, and the SNEC dataset is used as the

target dataset for MMD detection.

B. Experimental settings

In this work, we evaluate CSDA with different back-

bones, including the ResNets [27], DenseNets [28] and VG-

GNet [29]. We connect a fully-connected layer with the

Softmax activation function to the feature extractor for the

source and target branches. We initial the weights of our

model’s backbone with the weights from a model pre-trained

on ImageNet [11]. We adopt Adam [26] with the learning

rate as 10−5 and set the batch size as 32. The optimal

values of λ1 ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10} and λ2 ∈
{0.0001, 0.001, 0.01, 0.1, 1, 10} are selected by using the grid

search, and we select the best model on the validation set

for evaluating the model’s performance on the test set. The

entire network is trained on two NVIDIA GeForce RTX 3090

Graphics Processing Units (GPUs) in PyTorch.

Fig. 3. Comparison of CSDA and five peer methods for the detection of high
myopia and MMD in terms of the AUC scores.

C. Comparison with the peer methods

To evaluate the effectiveness of CSDA, we compare it (with

the backbone of DenseNet121) with five peer DA methods,

namely beyond sharing weights (BSW) [30], CDAN [5],

DANN [31], margin disparity discrepancy (MDD) [32], and

minimal-entropy diversity maximisation (MEDM) [33]. We

also implement each compared DA method with the supervised

(-S) learning setting.

Fig. 3 reports the AUC scores of CSDA and the peer

methods, from which we observe that:

• Supervised domain adaptation methods (our CSDA,

BSW-S, CDAN-S, DANN-S, MDD-S, and MEDM-S)

perform better than unsupervised domain adaptation

methods (BSW, CDAN, DANN, MDD, and MEDM) with

a large margin. For example, the gap for BSW on high

myopia detection can be up to 9.98%, and the gap for the

MDD method on the detection of MMD can be 14.76%.

It indicates that the labels of the target data are essential

for model’s learning.

• 2) For MMD detection, the target dataset contains a small

number of training samples. The AUC scores achieved

by the domain adaptation methods are higher than 76%.

The score obtained by CSDA can reach 92.43%. This

result implies that a large-scale source dataset can be

instrumental in improving model’s performance on small-

scale datasets.

• 3) CSDA outperforms all other domain adaptation meth-

ods in detecting high myopia and MMD, which verifies

our method’s effectiveness. By comparing with other
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TABLE III
THE AUC SCORES OF CSDA AND ITS THREE VARIANTS UNDER THE SETTINGS OF USING DIFFERENT BACKBONES FOR HIGH MYOPIA DETECTION.

Model DenseNet121 DenseNet201 ResNet50 ResNet101 ResNet152 VGG19
w/o Lt 0.8344 0.8153 0.8507 0.6182 0.6927 0.7401
w/o LD 0.9224 0.8980 0.9163 0.9343 0.9258 0.9144
w/o Ls 0.9321 0.9229 0.9230 0.9223 0.9197 0.9273
CSDA 0.9535 0.9435 0.9366 0.9431 0.9407 0.9385

TABLE IV
THE AUC SCORES ON THE UEMS DATASET UNDER THE SETTINGS OF USING EIGHT DIFFERENT BACKBONES WITH FOUR DIFFERENT TRAINING

STRATEGIES FOR HIGH MYOPIA DETECTION.

Method DenseNet121 DenseNet201 ResNet18 ResNet34 ResNet50 ResNet101 ResNet152 VGG19
S1 0.8204 0.8127 0.8035 0.8306 0.8711 0.8526 0.8347 0.8577
S2 0.9322 0.9295 0.9201 0.8949 0.9298 0.9153 0.9184 0.9204
S3 0.9156 0.8962 0.9154 0.8871 0.9347 0.8984 0.9135 0.9323
CSDA 0.9535 0.9435 0.9354 0.9264 0.9366 0.9431 0.9407 0.9385

supervised domain adaptation methods, CSDA obtains

an improvement of 4.15%, 3.37%, 4.75%, 4.28%, and

3.21% over BSW-S, CDAN-S, DANN-S, MDD-S, and

MEDM-S, respectively, in terms of the AUC score for

high myopia detection. For MMD detection, CSDA im-

proves the AUC score by 6.94%, 6.53%, 3.86%, 1.81%,

and 2.76% compared with BSW-S, CDAN-S, DANN-S,

MDD-S, and MEDM-S, respectively.

D. Impact of different loss terms

The objective function of CSDA includes three terms: the

classification losses for the two domains and the distribution

alignment loss. To investigate the impact of these three terms

on CSDA’s performance, we construct and evaluate its three

variations: the model without Lt (w/o Lt), the model without

LD (w/o LD), and the model without Ls (w/o Ls).

Tab. III reports the results of CSDA and its three variants

for high myopia detection, from which we can see that:

• The full CSDA achieves the highest AUC score under the

settings with different backbones, which indicates that

every term is essential and can contribute to the final

performance.

• CSDA improves the AUC score of the model w/o Lt

on the UEMS dataset with a large margin. For example,

CSDA can improve the AUC score by 12% when we

adopt DenseNet121 as the backbone. For the setting with

the backbone of ResNet152, the improvement can up to

32.49%. It demonstrates that the annotation for the target

dataset is essential for achieving a high AUC score.

• The CSDA model outperforms the model w/o Ls under

the setting with all different evaluated backbones. We

notice the model w/o Ls can achieve a high AUC score,

e.g., 93.21% for the backbone of DenseNet121. The

potential reason is that the label information has been

used in the distribution alignment loss LD.

• The CSDA model outperforms the model w/o LD. It

indicates the importance of the distribution alignment

loss in the objective function. It means the iterative

distribution alignment in model training is a valuable

strategy for transferring knowledge.

E. Impact of backbones and training strategies

We compare CSDA under settings with eight different back-

bones and four different training strategies for high myopia

detection. Specifically, we evaluate the performance of our

model under the settings with Densenet121, Densenet201 [28],

ResNet18, ResNet34, ResNet50, ResNet101, ResNet152 [27]

and VGG19 [29]. We also evaluate three different training and

test strategies: training on the SEED training set, then testing

the trained models on the SEED test set and extending the test

on the UEMS dataset (S1); training on the UEMS training

set, then testing the trained models on UEMS test set and

extend test on SEED dataset (S2); combining the training set

of both SEED and UEMS datasets as a new training set and

test on SEED and UEMS test set, respectively (S3). For S1,

S2 and S3, we adopt the weighted cross-entropy loss (WCEL)

as the objective function term Ls (or Lt) in Equation (2) (or in

Equation (4)) by following the same setting with our CSDA.

The AUC scores for high myopia detection are reported in

Tab. IV, from which we can see that:

• From the S1 strategy, the models trained on the SEED

dataset significantly outperform the extended test on the

UEMS dataset for all the different backbones. From the

S2 strategy, the models trained on UEMS outperform the

extended test on SEED for all the different backbones.

These observations indicate that the two datasets have a

large domain gap.

• The models trained on the combined dataset (S3) obtains

a lower AUC score when compared to S2:UEMS for

most of the different backbones, which demonstrates that

merely combining the datasets can not help improve the

performance in our task.

• Our method outperforms the other three strategies under

the settings of using different backbones. It implies

that CSDA can transfer knowledge effectively with the

iterative distribution alignment.

V. CONCLUSION

In this paper, we proposed a novel domain adaptation

method called CSDA to address the domain shift problem for
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imbalanced target data in automated medical diagnosis using

fundus photography. Our approach integrated cost-sensitive

learning into distribution alignment, effectively mitigating the

domain gap for both majority and minority classes. Further-

more, we introduced an ideal geometric distribution based on

data labels and computed a condition distribution using data

representations. Through an iterative bi-directional alignment

process, we aligned the condition distribution with the ideal

distribution. It is worth noting that the domain shift problem

and imbalanced data issue are common challenges in medical

diagnosis. Our CSDA framework was designed to simultane-

ously tackle these two challenges. The experimental results

demonstrated the effectiveness of CSDA in detecting high

myopia and myopic macular degeneration.
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