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Abstract— Dynamic pile load tests are essential for verifying 
the ultimate limit state for pile design in geotechnical 
engineering. However, conventional methods for monitoring 
these tests, such as strain gauges and accelerometers, are 
expensive and labor-intensive. This paper proposes a novel 
method that uses computer vision and artificial markers to 
measure pile head movement during dynamic pile load tests, 
and a transformer-based deep learning model to predict pile 
capacity from the movement data. The proposed method is low-
cost, easy-to-use, and accurate, with a mean absolute error of 
2.4% for pile capacity prediction using K-fold cross-validation. 
The paper also presents a sensitivity analysis of the transformer 
model with respect to the number of heads and layers, which 
indicated the optimal settings to avoid overfitting of the training 
data. The paper discusses the limitations of the proposed 
method, such as the dependency on the camera position and 
suggests future directions of the research, such as incorporating 
other features and improving the data quality. The proposed 
method can be applied in real cases of dynamic pile load tests to 
increase the number of tests on site and to ensure the safety and 
reliability of pile design. 
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I. INTRODUCTION 

 Pile foundations are a type of foundation that transfer loads 
from the building to the firm layer of soil. The pile capacity 
needs to be verified by pile load tests to ensure the safety and 
correctness of the calculation from the geotechnical engineer. 
Dynamic pile load testing is a popular method for testing pile 
capacity. Its results can be used directly as the pile capacity 
for certain projects with a factor of safety. It involves applying 
a load to the pile by a drop hammer. The load applied to the 
pile is measured directly by the strain gauge and accelerometer 
installed on the pile itself. However, the cost for installing 
such instruments as well as the data acquisition unit to obtain 
data is high when testing a large number of piles. Therefore, 
an alternative method that is cheaper and faster for testing is 
strongly needed. This study will use the application of 
computer vision and machine learning to predict the pile 
capacity by dynamic pile load test. 

 Artificial markers are effective methods for measuring the 
deformation of a target. By using a calibrated camera, the 

vector from the camera to the target and the pose of the target 
relative to the camera can be estimated. One type of artificial 
marker is ArUco[1], which is a library for Augmented Reality 
applications that uses OpenCV [2] to detect and estimate the 
pose of binary square fiducial markers. ArUcoO markers 
have several advantages, such as being easy to create, robust, 
fast and simple to use. They can be applied to various 
computer vision tasks, such as camera calibration and pose 
estimation. ArUco markers have been widely used in 
applications that involve locating the position of robots [4] 
and flying vehicles [5]. This study hypothesizes that ArUco 
markers can be used to detect the pile movement in dynamic 
pile loading tests. 
 The load capacity of a pile from dynamic pile load test 
can be determined by several methods: 1) using the Case 
method [6],which is a direct calculation, or 2) using the Case 
Pile Wave Analysis Program [7] (CAPWAP). The CAPWAP 
method is widely used around the world [8]. The force 
developed during dynamic pile load test is back-calculated by 
the CAPWAP method to determine the pile capacity. Several 
researchers have attempted to predict the pile capacity by 
using machine learning [9]–[12]. They applied a simple fully 
connected neural network (FNN) to predict the capacity, end 
bearing and vibration of the pile. However, there was still a 
high error from the test results. Therefore, it is necessary to 
apply the current architectures of machine learning to extract 
features from the results of dynamic pile load test. The 
sequential type neural network architectures such as 
convolutional neural network (CNN), long short-term 
memory (LSTM) and transformer should be evaluated for 
their effectiveness in predicting the ultimate pile capacity.  
 The main objective of this study is to propose a method 
for monitoring dynamic pile load tests with the application of 
artificial markers, called ARUCO. The displacement of the 
pile during testing was utilized to predict the pile capacity and 
compared with the result of the CAPWAP method. The 
prediction method used different types of neural network 
architectures, such as CNN, LSTM and transformer with self-
attention. The comparison of the results of these architectures 
was discussed in the paper. The proposed workflow can be 
applied in real cases of dynamic pile load tests. The amount 
of dynamic pile load tests on site can be increased or possibly 
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tested with every pile on site with only installing the ARUCO 
target without any expensive instrument and monitoring 
system 

 
Fig. 1 The concept for calculate of the pile deformation 

 
 

 
 

Figure 2 The error for deformation measurement from ARUCO target 

II. COMPUTER VISION  

This study applied the artificial marker call ArUco  
attached to pile head to monitor the movement of pile head. 
ArUco [2] detection is the process of finding and identifying 
ArUco markers in an image or a video stream. ArUco 
markers are square-shaped patterns that have a black border 
and a binary code inside. The binary code determines the 
marker’s unique identifier, which can be used for various 
applications such as camera pose estimation, augmented 
reality, and robot navigation. ArUco detection is performed 
by using the OpenCV library[13], which provides a module 
called cv2.aruco that contains functions and classes for 
creating, detecting, and refining ArUco markers. The 
detection from the liberally was provide the coordinate of the 
corner for the target of ArUco. The movement of the 
coordinate coordinate of target can be converted to pile head 
movement during pile driving. 

A GoPro 10 camera was employed in this study to capture 
high-resolution images (2048 × 1080 pixels) at a high frame 
rate (240 frames per second). This camera was selected for its 
commercial-grade performance, low cost ($250 USD), and 
easy applicability in the construction site. A checkerboard 
pattern (9x7 grid) was used to calibrate the camera and 
correct the lens distortion[14]. Camera calibration is a 

technique to estimate the camera parameters that relate a 3D 
point in the real world to its 2D projection in the image plane. 
These parameters include the intrinsic matrix, which contains 
the focal length, optical center, and skew of the camera, and 
the distortion coefficients, which account for the radial and 
tangential distortion of the lens. The OpenCV library was 
used to perform the calibration by capturing several images 
of the calibration chessboard from different angles, finding 
the 2D coordinates of the chessboard corners in the images, 
and computing the camera parameters [15]. Approximately 
50 images were taken with varying camera poses, and the 
translation and rotation vectors were calculated from the 
calibration. The camera matrix and distortion coefficient 
were calculating form the camera calibration. 

The displacement of the pile head and the hammer during 
dynamic pile testing was measured using a 5x5 ArUco target 
with a size of 150 mm. The target size was chosen to match 
the pile diameter and to fit into an A4 paper. For larger piles, 
larger targets could be used. The target was attached to the 
pile head and the hammer with IDs 0 and 1, respectively. The 
displacement was computed by tracking the movement of the 
target relative to the previous frame. The coordinates of the 
upper left and lower right corners of the target were used as 
reference points for detection, as shown in Fig. 1 and 
Equation 1. The displacement in pixels was converted to the 
real distance in millimeters by multiplying with a distance-
to-pixel ratio factor, F (Equation 2). The F value was obtained 
by dividing the real width of the marker (150 mm) by the 
measured distance (in pixels) between point 1 and point 2 of 
the target. The camera accuracy was tested by moving the 
target up and down by 100 mm. The calibration results are 
shown in Fig. 2. The error increased with the distance to the 
target due to the reduction of the target size in pixels. The 
error could be caused by the pixel detection error with the 
small distance. The smaller size of the target seemed to be 
difficult to detect and estimate the pose of the marker [16]. 
The distance measurement error also increased with the 
obliqueness of the camera to the marker. This is because the 
translation vector that represents the position of the marker 
relative to the camera is affected by the rotation vector that 
represents the orientation of the marker relative to the 
camera[17]. 

 (1) 

   (2) 

 

III. FIELD EXPERIMENT 

A 23 pile was installed with an ArUco target and a 
dynamic pile driving equipment (Fig. 3). The dynamic pile 
driving equipment consisted of 2 strain sensor and 
accelerometer for monitoring the pile testing. The force and 
velocity data measured during the pile driving were analyzed 
by the Case Pile Wave Analysis Program (CAPWAP) [18]. 
The soil layer parameters were varied until the simulated load 
matched the measured data at each time step. This approach 
is the conventional method to determine the pile capacity in 
civil engineering projects. The pile capacity from CAPWAP 
approach will be used as a label for trained the machine 
leaning for the next part. 
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Fig.  3 The ARUCO target installation during testing 

 

 
Fig. 4 The value of SPT-N value VS Depth 

 

 
 

Fig. 5 Feature and label characteristics 

 

 
 

Fig. 6 Pile head deformation from ArUco target 

 
 The soil profile from Borehole in this area consists of 
medium clay from 0 to 4 m (SPT from 5 to 20) and very stiff 
clay from 5 to 10 m (SPT from 40 to 90) (Fig. 4). The pile 
penetration depth from pile driving was estimated to be 6.5 m 
from the ground surface based on the soil profile. The pile 
could not penetrate further than 6.5 m into the very stiff clay 
layer. A pile with a diameter of 0.3 m was driven into the soil 
profile using a hammer with a weight of 5 tons and a height 
of 2 m from the head of the driven pile. The results from the 
dynamic pile load test are shown in Fig. 5. The penetration 
depth of the pile was almost constant, ranging from 6.8 to 
6.65 m. The applied load during the dynamic pile load test 
varied from 60 to 100 tons. The final displacement also varied 
from 5 to 20 mm. The lower final displacement indicated a 
higher pile resistance than the higher final displacement. 

 
 Figure 6 illustrates the pile head deformation measured by 
the ArUco target during the pile driving process. The hammer 
impact induced a rapid variation in the pile head deformation, 
which ranged from 5 to 20 mm for the first strike. A 
noticeable rebound of the pile head occurred after each 
hammer impact. The subsequent oscillation of the 
deformation value resulted from the wave reflection and 
vibration in the pile. The camera location, which was close to 
the pile, might have also introduced some noise in the data 
due to the camera vibration. The length of the data sequence 
for measurement varied, so it was padded with zero values to 
ensure the same sequence length for training a deep learning 
model. 

 

IV. MACHINE LEARNING 

 
 This study applied a deep learning sequential model based 
on the transformer architecture to estimate the load capacity 
of piles. Unlike the original transformer model, which was 
designed for classification tasks, this study formulated the 
problem as a regression task. The final activation function of 
the final neuron was Linear instead of the activation type for 
classification. The model architecture consisted of a 
transformer layer with a multi-head attention mechanism, a 
dropout layer, and a residual connection, followed by a 
multilayer perceptron (MLP) (Fig. 7). The input vector was 
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transformed into a one-dimensional vector by flattening, and 
then passed through the MLP. The MLP gradually reduced 
the dimension of the vector until it produced a single output 
value, which represented the load capacity of the pile. 
 The attention mechanism [19], [20] is a technique  that 
enables a neural network to selectively focus on the most 
relevant parts of the input or output sequence, depending on 
the task. It is widely used in natural language processing 
(NLP) to improve the performance of encoder-decoder 
models, such as machine translation, text summarization, and 
speech recognition. The attention mechanism works by 
projecting the input vector onto a trainable vector at the 
attention head, which consists of query, key and value vectors 
(Q, K, and V) (Fig. 8). These vectors can be learned during 
the neural network training. The attention mechanism can be 
viewed as a function that takes a query vector, which 
represents the current state of the decoder, and a set of key-
value pairs, which represent the encoded input sequence, as 
inputs, and returns a weighted sum of the value vectors as 
output. The weights are computed by measuring the 
similarity between the query vector and each key vector, 
using a scoring function such as dot product, cosine 
similarity, or a neural network. The weights are then scaled 
by the inverse square root of the key dimension to reduce the 
effects of high sequence dimension (Eq.3). The weights are 
then normalized by a Softmax function to form a probability 
distribution. The result from the Softmax function is then 
multiplied with the value vector to obtain the output. The 
output from the attention mechanism is then added with the 
initial input vector, known as residual connection, to mitigate 
the effects of gradient descent. 
 

   (3) 

 

where q is the query, k is the key,  v  is the value and  is 
the scaling factor 

 
Fig. 7 The architecture of transformer-based model  

 

 

Fig. 8 The diagram of attention mechanism 

 

 

Fig. 9 Input vector of the model 

 The deformation at each time step was used as a token 
input for the transformer, as shown in Fig. 9. The first 
dimension was the deformation at each time step recorded 
from the ArUco target. The value was normalized by dividing 
by 20 to set it close to one and prevent gradient explosion 
during the training of the neural network. The other 
dimensions of the vector were embedded with features of the 
pile, such as pile section area, pile length, penetration length, 
and weight of hammer. For the same pile test case, the 
feature-embedded vector was similar throughout the 
sequence of deformation data. It changed with different pile 
specimens for testing under different conditions, such as 
different lengths and penetration depths. The features of each 
pile were normalized by a standard scaler [21], which 
computed the difference between the value and its mean and 
divided by its standard deviation. 

 

TABLE 1 MODEL ARCHITECTURE FOR TRANSFORMER 

 
Transformer  

Multi-head attention head_size=5, 
num_heads=1, dropout =0.2 

 
2 layers 

Residual connection  

Multi-layer perceptron 

Flatten 
Dense(200) 

Dense(50) 

Dense(10)[4], [5] 

Outout(1) 

 

TABLE 2 MODEL ARCHITECTURE FOR CNN AND LSTM 

 
CNN LSTM 

CNN1D -Filter=256 LSTM (200) 

Max pooling-pool size =2  

CNN1D -Filter=256  

Max pooling-pool size =2  

CNN1D -Filter=256  

Max pooling-pool size =5  
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The hyperparameter settings of the transformer 
architecture are shown in Table 1. The first layer consists of 
a multi-head attention layer with a head size of 5, which 
matches the dimension of the input token vector. The number 
of heads is set to 1 to avoid overfitting the model. The 
transformer architecture relies heavily on self-attention, 
which can capture long-range dependencies but also be 
sensitive to noise and outliers. A regularization layer with a 
dropout rate of 0.2 is applied to reduce the overfitting of the 
transformer model. 

To evaluate the model architecture, this study applied the 
K-fold cross-validation method [22] , which is suitable for 
small data sets. The data set was divided into eight equal folds, 
and one fold was used as the test set while the rest were used 
as the training set. This procedure was repeated eight times, 
each time using a different fold as the test set, to assess the 
generalization performance of the model on unseen and varied 
data. The mean absolute percentage error (MAPE) was the 
metric used to measure the prediction accuracy of the model. 
The hyperparameters were set as follows: batch size = 8, 
epochs = 400. The model with the lowest mean squared error 
(MSE) loss on the training set was selected as the 
representative model. MSE was chosen as the loss function 
because of the regression nature of the problem. The proposed 
mode was also evaluate with the other type of sequential 
model, which are convolution neural network (CNN) and log- 
short time memory (LSTM). The architectures of the models 
are shown in Table 2. 

 

 
Fig. 10 The mean absolute error (MAPE) from different model architecture 

 

V. RESULTS AND DISCUSSION 

 
 Fig. 10 shows the comparison of mean absolute 
percentage error (MAPE) between different types of models. 
The proposed model varied the hyperparameters of the 
number of heads and the number of transformer layers. The 
MAPE value initially increased with the number of heads, but 
then decreased as the number of heads increased further.  
Then, the MAPE trend to reduce again when increasing 
number of head (head-= 40). A higher number of heads also 
increased the training resource consumption and the tendency 
to overfit the data, resulting in a higher MAPE value 
compared to the proposed model. The number of transformer 

layers also increased the MAPE value of the model, 
indicating overfitting of the training data. The model could 
not generate accurate predictions for the unseen data. The 
proposed transformer-based model outperformed the other 
types of sequential models, such as convolutional neural 
network (CNN) and long short-term memory (LSTM). The 
MAPE of CNN was the highest among the other models. It 
seemed that it could not capture the overall sequential data, 
especially the data that had abrupt changes during pie driving. 
CNNs use convolutional filters that operate on small regions 
of the input data, which can limit their ability to capture 
global patterns and long-range dependencies. Transformers, 
on the other hand, use self-attention mechanisms that can 
access the whole input data and weigh the importance of 
different parts. Transformers can process the entire input 
sequence in parallel, while LSTMs have to process it token 
by token. This makes transformers faster and more efficient 
than LSTMs, especially for long sequences. 
  

 
Fig. 11 The workflow of the proposed method 

 
 This study proposed a transformer-based model that 
integrated computer vision to predict pile capacity from 
ArUco target images. The model outperformed other 
sequential models, but it was limited by the data from one site 
and a few pile variables. To improve the model’s 
generalizability, more data from diverse sites and features are 
needed. The model can be applied to site-specific conditions, 
but it requires calibration with conventional dynamic pile 
load tests with full instrumentation (Fig. 11). The calibration 
process involves two steps: (1) calibrating the hybrid 
computer vision and machine learning model with the real 
dynamic pile load test results, which are obtained by the 
CAPWAP method using the velocity and load on the pile 
measured by the instrument installed on the pile dynamic test; 
and (2) training the transformer model with the ArUco target 
images and pile capacity labels from the dynamic pile load 
tests. The ArUco target is a low-cost tool that can be used for 
quality control and pile capacity estimation for every pile on 
site, ensuring the ultimate limit state for pile design. Future 
work should use higher resolution and frame rate cameras to 
obtain more accurate and sequential data for the transformer 
model. 
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VI. CONCLUSION 

 
This paper presents a novel method for monitoring 

dynamic pile load tests using computer vision and artificial 
markers attached to piles12. The pile head movement detected 
by the markers is then used as an input for a deep learning 
model based on the transformer architecture to predict the pile 
capacity. The main findings of this study are: 

• The proposed computer vision method for measuring pile 
head movement with ArUco targets achieved a satisfactory 
performance with an error of 2% when the camera was set 2 
m from the target. 

• The transformer model outperformed other sequential 
models such as CNN and LSTM in terms of accuracy and 
robustness for predicting pile capacity from dynamic pile load 
test data. The mean absolute error for prediction using K-fold 
cross-validation was as low as 2.4%. 

• The mean absolute error of the prediction  of pile capacity 
from dynamic pile load test by using transformer model 
increased with the number of heads and layers of the 
transformer, indicating overfitting of the training data. 

• We proposed a work flow that uses a hybrid computer 
vision and transformer model for pile driving supervision. The 
transformer model requires training before it can be applied to 
the supervision task. 
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