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Abstract—This research project presents VirtualEYE, an ad-
vanced indoor navigation system for visually impaired individ-
uals, integrating Bluetooth Low Energy (BLE) technology and
innovative application design. The system, initially implemented
at the university premises, uses strategically placed BLE beacons
and a purpose-built Android mobile application to enhance
indoor navigation. The integration of Radio Frequency Iden-
tification (RFID) beacon localization techniques with computer
vision-based object detection provides real-time, voice-enabled
assistance. Experimental results showed a 20.48% decrease in
navigation time for visual navigation and a 37.34% decrease for
non-visual navigation across all participants, along with increased
navigational confidence. This validates VirtualEYE’s potential to
improve the quality of life for visually impaired individuals
and contributes to the broader discourse on the role of AI in
healthcare.

Index Terms—Indoor navigation systems, Bluetooth Low En-
ergy (BLE) technology, Spatial orientation, Assistive technology,
Computer vision-based object detection, Artificial Intelligence

I. INTRODUCTION

The past decade has seen a significant rise in naviga-

tion tools, particularly for outdoor localization. However, the

complex nature of indoor navigation, with signal blockages

and multi-path interferences, necessitates innovative solutions.

Existing indoor navigation systems [10] [11], despite advance-

ments, have limitations. These systems are often not diverse

and are applicable only to specific scenarios. They often rely

on hardware-dependent and environment-specific solutions.

However, these solutions may lack effectiveness in diverse

real-world scenarios. With approximately 2.2 billion visually

impaired individuals globally [14], there is a pressing need

for a robust system that can be used for a wide range of

indoor navigation scenarios. Such a system should not require

expensive and bulky hardware or installation costs, and should

be readily accessible.

A. Objective and Scope

The primary research objective is to develop VirtualEYE,

an indoor navigation system for the visually impaired. This

Android application interfaces with FUJITSU FWM8BLZ02

BLE Beacons for enhanced auditory and kinaesthetic naviga-

tion. The project integrates VirtualEYE, a Flask-based Server,

and BLE beacons, with the server handling computationally

intensive tasks for real-time responsiveness. VirtualEYE offers

features like obstacle detection, tactile and audio feedback,

beacon localization, and visual navigation. Further sections

discuss the system architecture, implementation, testing, and

evaluation of VirtualEYE’s effectiveness.

II. BACKGROUND INFORMATION

While outdoor navigation has improved with tools like

Global Positioning System (GPS) and Global Navigation
Satellite System (GLONASS), indoor environments pose

challenges for these satellite-dependent systems due to signal

obstructions and multi-path interference [7], [13]. This has led

to the development of Indoor Positioning Systems (IPS) for

indoor navigation.

A. Indoor Positioning System (IPS)

Indoor Positioning Systems (IPS) are vital for real-time

localization in complex indoor environments. They use designs

like self-positioning and infrastructure positioning, and tech-

nologies like Radio Frequency (RF), vision-based methods,

and inertial sensors [6]. Understanding these technologies is

key for system selection, considering factors such as accuracy

response time, availability, and scalability.

1) Radio Frequency-based IPS: Indoor positioning in di-

verse environments uses technologies like Internet of Things
(IoT) devices, RFID devices, and Wi-Fi networks. RF-based

IPS uses range-based and range-free methods.

• Range-based Radio Frequency IPS - Uses methods like

signal propagation time, Angle of Arrival (AoA), and

RSSI to extract geometric information from nodes. RSSI-

based algorithms calculate user-node distances using sig-

nal intensity and a log-distance path loss model (assum-

ing signal attenuation aligns with proportional distance

travel) [15]. Calibration involves collecting RSSI values

at known positions, typically using regression methods,

to estimate distances via the Maximum Likelihood Esti-

mator [17].

• Range-free Radio Frequency IPS - Uses connection data

to estimate positions without measuring the reach at a

node. Proximity algorithms determine the user’s position

based on nearby nodes [18]. The fingerprinting location

system divides the region into small cells and collects

data to establish a database, guiding the approximation of
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positions by comparing collected data to stored records.

The downside is the effort required to build the database.

2) Inertial Sensors-based IPS: Independent of physical

infrastructure, these systems use the geographic coordinate

system for absolute positioning. Real-time inertial location is

enabled by sensors in Inertial Measurement Units (IMUs),
which include accelerometers, gyroscopes, and magnetome-

ters. Despite the scalability advantage and cost-effectiveness,

especially with smartphone integration, inertial drift introduces

accuracy considerations [12].
3) Computer Vision-based IPS: These systems use cam-

eras and image processing algorithms for indoor navigation,

with users capturing and processing images or videos on

smartphones [8]. While single-sensory IPS face limitations,

hybrid systems enhance accuracy and reliability. Integrating

artificial intelligence and object detection techniques in IPS

contributes to enhanced spatial awareness. Algorithms such as

convolutional neural networks analyze visual data to identify

obstacles or landmarks, refining the IPS’s overall efficacy.

B. Bluetooth Low Energy (BLE) Beacons
These devices use Bluetooth 4.0 standard technology to

transmit radio signals with alphanumeric data at regular in-

tervals [1]. They operate at 2.4GHz with Gaussian Frequency

Shift Keying modulation, achieving a power-efficient through-

put of around 300kbps. This allows them to run on coin-cell

batteries for long periods. BLE beacons broadcast configurable

‘IDs’ and initiate a discovery process with advertising, scan-

ning, and connection. In passive scanning, devices identify

each other without feedback to the advertiser. The scanner

selects an advertiser based on advertising data like device

name and RSSI. The BLE Link Layer connection involves an

Initiator and an Advertiser, leading to data packet transmission

[9].
This section underscores the significance and challenges of

IPS in complex environments. Drawing from these insights,

VirtualEYE aims to leverage the strengths of these technolo-

gies while mitigating their limitations. By integrating RF-

based methods with Inertial Sensors and Computer Vision

techniques, VirtualEYE seeks to enhance accuracy, reliability,

and scalability in indoor positioning. Furthermore, the use of

BLE Beacons is expected to provide efficient and effective

real-time localization, thereby improving the overall user ex-

perience in indoor navigation. This endeavor aligns with the

broader goal of advancing indoor navigation systems to match,

if not surpass, the effectiveness of their outdoor counterparts.

III. SYSTEM ARCHITECTURE

This section delves into the architecture of the proposed

indoor navigation system, progressing from the initial planning

and considerations to a detailed description of the final system

architecture of VirtualEYE.

A. Initial Considerations
The Fig. 1 architecture shows components interacting via

the Android app VirtualEYE. User instructions initiate Web-

Socket communication. The smartphone’s Bluetooth manager

scans for BLE beacons, verified by the server. ImageAI API

processes image frames for obstacle detection, with identified

obstacles relayed back via the TTS engine. The system

uses BLE beacons for indoor navigation and real-time path

calculation. Challenges like unreliable audio input, insufficient

environmental data, and feedback delays necessitated architec-

ture re-evaluation.

Fig. 1: VirtualEYE’s Initial System Architecture - This diagram illustrates the user’s
interaction with the application and the server, emphasizing the use of BLE beacons for
indoor navigation and the ImageAI API and YoloV4 model for obstacle detection. The
architecture also highlights the challenges encountered during implementation, which
necessitated further refinement of this design.

B. Final Architecture

The refined architecture introduces new input and feedback

sources to address initial challenges. User interaction is fa-

cilitated through UI, audio, and shake inputs, while feedback

is conveyed visually, audibly, and tactilely. Additional magne-

tometer and accelerometer sensors complement the Bluetooth

scanner and camera for environment interaction, providing

bearing, direction, speed, and movement data for localization

during navigation. The Flask server replaces WebSocket to

enhance communication efficiency, and hosting on a Linux

Virtual Machine on Azure Cloud improves overall responsive-

ness. The final architecture is detailed in Fig. 2.

The landing screen initiates the Text-to-Speech (TTS) con-

troller and sensor manager, delivering a welcome message

and accepting kinetic or UI input (shaking or button press).

This input redirects the user to either Free Roam or Regular

Navigation mode. Regular Navigation Mode supports vision-

based navigation, integrating sensors for direction, bearing,

and distance calculations. BLE beacons enhance proximity

ranging, validating data with sensors. The beacon is considered

in range based on the distance calculation from RSSI values

(Methodology), allowing for seamless real-time navigation

updates. Free Roam Mode adds a camera stream for obstacle

detection, awaiting kinetic input for Assisted Navigation. This

mode mimics the Regular Navigation logic but prioritizes

comprehensive feedback for visually impaired users, including

distance updates, tactile feedback, and continuous environ-

mental information. To enhance obstacle detection, images

of common obstacles, including chairs, humans, and other

objects, were placed in the testing environment for the app.
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Fig. 2: Enhanced VirtualEYE System Architecture - This diagram illustrates the updated
architecture with diversified user inputs and outputs, additional sensors for environment
interaction, and an efficient Flask server hosted on Azure Cloud.

Pictures of these obstacles were taken and used to train a pre-

trained convolutional neural network model (MobileNetV2)

using transfer learning. While effective, performance may vary

with objects not seen during training. To address this, diver-

sification of the training dataset is planned. Further strategies,

such as data augmentation, are being considered to enhance

the model’s generalization capabilities. With the server hosted

on the cloud, computation became much faster, improving the

responsiveness of the app and the overall user experience.

IV. METHODOLOGY

A. Indoor Mapping

University premises being our chosen testing environment,

were mapped using SketchFab with a reference from the

university’s official map [3]. Integration into the Android

app utilized the Subsampling Scale Image View library [5],

offering efficient display of large maps and custom markers

for improved indoor mapping and navigation in VirtualEYE.

B. Beacon Detection and Distance Estimation
The BLE beacons used in this project require custom code

for tailored use due to the lack of an SDK. They only advertise

MAC Address and RSSI. The hardware details were obtained

from the manufacturer’s document [2], and configuration and

testing were done to optimize indoor navigation and localiza-

tion. The Android BluetoothAdapter communicates with the

beacons. The code starts a BluetoothLeScanner if the adapter

is not null, which finds BLE devices and calls the callback

method (mScanCallback). Scan settings are set for real-time

scanning with filters based on MAC address [4].
Multiple experiments were conducted to establish a distance

estimation method for indoor localization using RSSI values.

The first experiment maintained a constant distance while

noting RSSI values at intervals, resulting in averaged values.

Various equations (Linear, Quadratic, Root) were derived from

these values, but accuracy was limited to distances under

200cm. The second experiment introduced an obstacle (wall)

for a more realistic scenario, yet accuracy remained insuffi-

cient for the project’s purpose. The final experiment applied

the literature method, using measured RSSI values to calculate

the distance d using the equation -

d =
10Tx−RSSI

10n
(1)

where Tx is the transmitted signal power, and n is the path loss

exponent. The optimized values for Tx and n were determined

through trials, demonstrating improved accuracy compared to

the previous experiments. Fig. 3 and Fig. 4 demonstrate the

beacon experiment setup and the result for the same.

Fig. 3: Experimental Setup for Proximity Ranging in Indoor Localisation - This setup,
designed to derive a custom relationship between RSSI values and beacon distance,
involved multiple experiments with constant distances and varied beacon angles. An
additional obstacle was introduced to simulate a realistic indoor scenario and account
for potential obstacles.

V. SYSTEM IMPLEMENTATION

A. Server
The server, built in Python 3.8.5 using Flask, handles

client-server communication and shortest path calculation.

Breadth-First Search (BFS) was the best algorithm among

the tested ones for its efficiency in navigating the server’s

graph structure. Cloud migration was done through Docker,

allowing deployment on Azure Linux Virtual Machine to

improve performance and internet connectivity, removing the

need for client and server to be on the same network.
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Fig. 4: Scatter plot illustrating the comparison between the Calculated Distance and
the Ideal Distance against the Actual Distance. The Ideal Distance is depicted as a
linear correlation with the Actual Distance, serving as the benchmark. The Calculated
Distances, represented by red crosses, exhibit variability around the Ideal Distance,
with the deviation captured by the error bars (to account for random errors during
measurement).

B. Client

The client-side application, VirtualEYE, created in Kotlin

using Android Studio, includes TTS control, shake input,

HTTP requests, voice input, compass functionality, and ob-

ject detection. TTS and sensor initialization provide voice

output upon accelerometer changes. HTTP requests, enabled

by Kotlin coroutines, allow asynchronous communication

with the server for path information retrieval. Voice input

functionality uses the SpeechRecognizer class, handling user

commands through speech recognition. Compass functionality

determines device orientation in relation to cardinal directions.

Object detection uses camera preview, utilizing the aforemen-

tioned trained model to identify and announce the recognized

objects as demonstrated in Fig. 5

Fig. 5: An illustration of the different functionalities of VirtualEYE

VI. EXPERIMENTATION

The controlled variables for the experiments conducted

involved visually-abled participants (combination of university

and non-university students), obstacles (chairs, people), a

predefined navigation path, and the use of an Android device.

An evaluation metric was set up to measure the effectiveness

of the indoor navigation system. This metric included the

following variables:

• Metric 1 - Time: Measured using a timer - time taken

for the participants to navigate from Landmark A to

Landmark B across all test cases. This variable evaluates

the efficiency of the algorithms used in the system.

• Participants’ Feedback: The ratings (Ratings on a scale

of 0 (Impossible) to 5 (Excellent)) and comments given

by the participants on various metrics at the end of each

test case. These metrics were:

– Metric 2 - Ease of navigation

– Metric 3 - User Interface / Non-visual Feedback /

Visual Cues (Depending on the test case)

– Metric 4 - User Experience

The experimentation involves a series of structured test

cases to rigorously evaluate the performance of the proposed

system. Each test case was meticulously designed to assess

specific functionalities and aspects of VirtualEYE. The fol-

lowing test cases were implemented:

• Test Case 1: Visual Navigation without VirtualEYE:

Participants navigated through a predefined route relying

solely on visual cues. This served as a control case for

subsequent visual navigation tests.

• Test Case 2: Visual Navigation with VirtualEYE:

Similar to Test Case 1, participants underwent visual

navigation, but with the assistance of VirtualEYE.

• Test Case 3: Non-Visual Free Roaming without Vir-
tualEYE: Participants navigated freely without visual

assistance, emphasizing the reliance on non-visual cues.

This scenario was set as a control for the non-visual

navigation tests.

• Test Case 4: Non-Visual Free Roaming with Virtual-
EYE: Building upon Test Case 3, participants engaged

in non-visual free-roaming activities with the support of

VirtualEYE.

• Test Case 5: Non-Visual Navigation without Vir-
tualEYE: Participants faced the challenge of non-visual

navigation, blindfolded and without the aid of Virtual-

EYE. This scenario assessed the inherent difficulties in

navigating unfamiliar surroundings without visual input.

• Test Case 6: Non-Visual Navigation with VirtualEYE:

Extending the previous test, participants navigated non-

visually with the assistance of VirtualEYE.

Table I and Table II illustrate the results of these test cases

across 6 participants - 3 University and 3 Non-University

students.

VII. EVALUATION OF RESULTS

Across the six test cases, VirtualEYE demonstrated superior

performance, notably reducing navigation time in both visual

and non-visual scenarios. Fig. 6 illustrates the time metric

results.

Test Case 1 and Test Case 5 were the control cases for visual

and non-visual navigations. For both scenarios, VirtualEYE
reduces the time taken for the participants. The percentage

reduction in time for the University students from Test Case 1

to Test Case 2 is 12.50%. This may not be due to VirtualEYE
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TABLE I: Summary of Quantitative Results - This table summarizes the quantitative
results for all the test cases, presenting average time measurements and ratings for both
categories of university and non-university participants.

Test Case Participants Metric-
1

Metric-
2

Metric-
3

Metric-
4

Test Case 1 University 01:12 4.0/5.0 4.0/5.0 4.0/5.0
Test Case 1 Non-University 02:03 3.0/5.0 3.5/5.0 3.45/5.0
Test Case 2 University 01:03 4.0/5.0 4.25/5.0 4.5/5.0
Test Case 2 Non-University 01:28 4.0/5.0 4.5/5.0 4.5/5.0
Test Case 3 University - 0.0/5.0 0.0/5.0 0.0/5.0
Test Case 3 Non-University - 0.5/5.0 0.2/5.0 0.0/5.0
Test Case 4 University - 3.0/5.0 3.0/5.0 3.0/5.0
Test Case 4 Non-University - 3.2/5.0 3.9/5.0 3.5/5.0
Test Case 5 University 05:32 0.6/5.0 0.5/5.0 0.13/5.0
Test Case 5 Non-University 05:02 0.3/5.0 0.2/5.0 0.37/5.0
Test Case 6 University 03:14 3.5/5.0 4.3/5.0 4.1/5.0
Test Case 6 Non-University 03:22 4.18/5.0 4.58/5.0 4.38/5.0

TABLE II: Summary of Qualitative Feedback - This table provides a concise summary
of qualitative feedback across various test cases, capturing insights from both university
and non-university participants.

Test Case Feedback - University Feedback - Non-University

Test Case 1 Following visual cues
was simple; familiar
surroundings.

Took a while to understand
directions; lack of familiarity
made it confusing.

Test Case 2 Application helped
keep track of direction
and location.

Easier navigation with regular
feedback about the current lo-
cation.

Test Case 3 Very uncertain of sur-
roundings; difficult to
roam without fear of
collision.

Afraid to take steps without
knowing what or whom walk-
ing into.

Test Case 4 Much more confident
with the application;
better understanding of
surroundings.

Process was easier, better
awareness of obstacles.

Test Case 5 Most difficult exercise;
no idea where heading;
uncertain.

Experience similar to Test
Case 3; hesitant and uncertain
of direction.

Test Case 6 Non-visual cues aided
the most in naviga-
tion; vibration and au-
dio feedback increased
confidence.

Surprised by the effectiveness;
continuous feedback made
navigation easy.

alone, as the participants could have been familiar with the

chosen university premise. The non-university students, who

were new to the premise, had a higher percentage reduction

in time for visual navigation (28.46%), hence indicating the

effectiveness of VirtualEYE. For Test Case 5 and Test Case 6

(non-visual navigation), prior area knowledge did not have a

profounding impact as the participants were blindfolded. The

percentage reduction in times for both participants from both

categories were 41.57% and 33.11%, again demonstrating the

power of VirtualEYE.

Additionally, VirtualEYE is also successful in non-visual

free-roaming scenarios (Test Case 3 and Test Case 4), as

showcased Table I and Table II. It aids in significantly boosting

participants’ confidence using computer vision and Artificial

Intelligence, highlighting its versatility and comprehensive

utility. The qualitative feedback in Table II revealed the

strengths and weaknesses of VirtualEYE. The participants

found VirtualEYE very effective in non-visual navigation and

Fig. 6: Comparative Analysis of Evaluation Metric: Time (in seconds) for Test Cases 1,
2, 5, and 6 between University and Non-University Students. The bar graph illustrates
the distinct time durations taken by both groups to complete the respective test cases.

free-roam modes. The constant feedback and interaction with

the user made it a capable navigation tool for the blindfolded

participants. Visual navigation was most effective for the

non-university students. The quantitative feedback/scores in

Table I give a statistical view of the system’s performance.

For all test cases, VirtualEYE improves user ratings across

all metrics. Fig. 7 depicts the average user ratings for both

the participant groups across all the test cases. There are

improvements in ratings in all the test cases, significantly

in vision-less scenarios. The metrics most affected by the

application are user experience and visual cues/non-visual

feedback. These ratings are good indicators for VirtualEYE’s

performance. Table III presents a comparative analysis of the

change in ratings between the controls and their respective

test cases. Standard Deviations of average participant ratings

are calculated to provide a comprehensive insight into the

variability and consistency in the responses among the two

distinct participant groups. These values range from 0.00 to

2.00, indicating the spread of the data from the mean for each

metric.

Fig. 7: Comparative Analysis of Average User Ratings across all Test Cases for University
and Non-University Students. The bar graph represents the six test cases on the x-axis
and their corresponding average ratings on the y-axis, ranging from 0 to 5.

Following the qualitative feedback, a survey based on a
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TABLE III: Comparative Analysis of User Experience Metrics for University and Non-
University Students. This table presents the standard deviations (SD) for various user
experience metrics, including ease of navigation, visual cues, non-visual feedback, and
overall user experience, segregated between university and non-university students. Each
metric is evaluated across three distinct test cases (1 to 2, 3 to 4, and 5 to 6)

Test Cases Metrics SD:
University
Students

SD: Non-
University
Students

Ease of Navigation 0.00 0.50
1 to 2 Visual Cues 0.13 0.50

User Experience 0.25 0.53
Ease of Navigation 1.50 1.35

3 to 4 Non-visual feedback 1.50 1.85
User Experience 1.50 1.75
Ease of Navigation 1.45 1.94

5 to 6 Non-visual feedback 1.90 2.19
User Experience 1.99 2.00

recorded video demonstration [16] was conducted to further

assess the system’s performance. The survey results, illustrated

in Fig. 8, showcase the effectiveness of VirtualEYE, providing

an additional layer of validation beyond participant feedback.

The following questions were asked, with the same rating scale

from 0 to 5 -

• Q1: How likely are you to use VirtualEYE for indoor

navigation in settings with high footfall such as Airports

and Malls (For Visual Navigation)?

• Q2: How effective do you think is VirtualEYE’s interface

in easing indoor navigation for its users?

• Q3: How effective do you think is VirtualEYE in navigat-

ing the visually impaired in unfamiliar indoor settings?

• Q4: How effective do you think the vibration and audio

based feedback is for the visually impaired users when

navigating indoors using VirtualEYE?

Fig. 8: Bar Graph Representing User Ratings - Survey Feedback. This figure illustrates
the average user feedback ratings for four different survey questions (Q1 to Q4). The x-
axis represents the survey questions, while the y-axis indicates the user feedback rating,
ranging from 0 to 5.

VIII. CONCLUSION

VirtualEYE, a novel solution for indoor navigation, lever-

ages BLE beacons and computer vision for landmark recog-

nition and obstacle detection. Unlike existing systems, which

often rely on specific environmental features or specialized

hardware, VirtualEYE is versatile and robust, designed for a

wide range of indoor navigation scenarios. Future develop-

ments include integrating wearable technology, enabling multi-

floor navigation, leveraging augmented reality, and enhanc-

ing obstacle detection. A crucial part of this future work

involves testing with real visually-impaired individuals. This

ensures that VirtualEYE is not only technically robust but also

practically useful and user-friendly. Furthermore, VirtualEYE,

aligning with the concept of AI in healthcare, aims to improve

the well-being and independence of the visually impaired

through techniques such as computer vision and speech recog-

nition.This positions VirtualEYE as a significant contribution

to the field, addressing the limitations of existing systems.
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