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Abstract—In this paper, we address the challenge of developing
advanced motor control systems for modern washing machines,
which are required to operate under various conditions. Tra-
ditional system designs often rely on manual trial-and-error
methods, limiting the potential for performance enhancement. To
overcome this, we propose a novel continual offline reinforcement
learning framework, specifically tailored to improve balance
maintenance during the dehydration cycle of washing machines.
Our approach introduces a delayed online update mechanism
that leverages accumulated transition data from certain periods
of online interaction. This method effectively circumvents the
distribution shift problem commonly encountered in offline
reinforcement learning. Our empirical results demonstrate a
substantial improvement, with an average increase of nearly
16% in load balancing efficiency across various tasks, including
those involving different types of laundry. This research not only
enhances the applicability of reinforcement learning in industrial
settings but also represents a significant step forward in the
development of smart appliance technology.

Index Terms—Washing Machine, Offline RL, Industrial AI

I. INTRODUCTION

A washing machine is one of the most ubiquitous home ap-

pliances, globally essential for everyday life. Modern washing

machines are expected to perform efficiently across various

washing cycles-regular, heavy-duty, and delicate-catering to

different fabric types. They must effectively clean and remove

stains, consume minimal energy and water, and be gentle on

fabrics. Additionally, with growing consumer demands, there

is now an increasing expectation for these machines to operate

noiselessly and with quicker washing times.

In response to these diverse requirements, home appliance

manufacturers have been innovating in washing machine de-

sign, especially in the area of motor control systems. Tradition-

ally, these systems are developed through extensive trial-and-

error experiments using real machines, often following a ‘user-

in-the-loop‘ approach. However, this method is increasingly

showing its limitations in enhancing performance, primarily

due to the complex nature of washing machine dynamics

and the absence of a comprehensive simulator for accurate

modeling.

Recognizing these challenges, our research explores the

application of deep reinforcement learning (RL) techniques,

successful in other fields such as robotics [16], [20], [27], to

the realm of washing machine motor control. This approach

Fig. 1: Structure of Delayed Online Update workflow. Each

step is described in IV and the overall figure shows example

of update iteration, including data collection and deployment.

is a significant departure from traditional methods, offering a

potential solution to the complexities that current development

processes face. However, constructing real-world evaluation

models essential for RL algorithm design is challenging.

[7] There are no simulator that can accurately represent the

intricate dynamics of washing machines, including multi-body

modeling and vibration analysis, which is a critical aspect of

this research.

Applying reinforcement learning to identify optimal policies

for motor control is inherently time-consuming. Moreover,

models trained with offline data often fail to perform ade-

quately in online settings, a phenomenon known as the "Data

Distribution Shift" problem.

In the context of household appliances, post-deployment

performance enhancements are further complicated by the

low-power Micro Controller Units (MCUs) that manage these

devices, posing a barrier to on-device learning. By harvesting

and utilizing data from appliances operating in diverse real-

world conditions, there is an opportunity to improve device

performance post-deployment without requiring additional

computational resources.

To that end, our approach is to expand our training datasets

with real-world environmental data, an effort that not only

aims to bridge the divide between theoretical modeling and
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practical application but also enhances the practical viability of

our solutions. This strategy also holds the potential to provide

the adaptive capabilities of household appliances, offering a

new paradigm in smart appliance development.

In this paper, we investigate the problem of how to construct

offline deep reinforcement learning models to maintain balance

of laundries during dehydration. Consumers of washing ma-

chines often complain about banging sounds during the spin

cycle and this is mainly due to an unbalanced load that has

caused significant imbalance. When dirty clothes are put into a

washing machine, these are not evenly distributed in the drum.

In other unexpected instances, heavy items mixed with lighter

ones can cause it to spin unevenly. Even though our proposed

offline deep reinforcement learning models are motivated by

other previously studied reinforcement learning problems like

[14], [16], [21], [28], to our knowledge, this is the first instance

of applying offline reinforcement learning not only in the

washing machine domain but also in the broader field of

household appliances manufacture. Our problem domain is

distinctive enough from other domains in such a way that we

had to design an original, yet unique reward function for RL

and carefully modify and adapt state-of-the-art RL approach

to our problem. More specifically, our contributions can be

summarized as:

• We conduct the first formal investigation, to the best of

our knowledge, into maintaining the balance of laundries

during dehydration in washing machines using a Markov

Decision Process (MDP) model with discrete actions. Our

model considers the operational information of motor

control gathered from washing machines.

• Our experiments demonstrate that our studied offline RL

model effectively improves the success rate of dehydra-

tion and corresponding Time-to-Success (TTS) in real-

world washing machine settings. Specifically, we ob-

served that our delayed online update mechanism leads to

performance enhancements as more data is incorporated.

The rest of the paper is organized as follows. In Section II,

we formally formulate the problem of maintaining balance

during dehydration in washing machines as Markov Decision

Process (MDP). In Section III, we present other use-cases

for applying AI technology in washing machine and previous

works related to offline RL algorithms that are relevant to our

problem. In Section IV, we introduce our iterative delayed

online update process to solve our offline RL problem. In

Section V, we present our experimental results, showing that

our proposed approaches are highly effective in improving the

balance maintenance of load during dehydration in washing

machines, which surpasses traditional human-derived methods.

And we conclude our approach in Section VI.

II. PROBLEM SETUP AND BACKGROUND

In this section, we formally define our problem of main-

taining balance during dehydration in washing machines.

Fig. 2: Structure of Front-Loader Washing Machine. Most

of the commercial washing machines have a similar hardware

structure, consisting of drums, suspension systems and sensors.

A. Dehydration in Washing Machines

In this paper, we investigate the problem of maintaining

balance of laundries during the dehydration process. General

front-loader (FL) washing machines have the drum installed

inside the cabinet as seen in Figure 2. The drum, whose

purpose is to wash and dehydrate its laundry load, is controlled

by the motor in the washing machine. The centre of mass of

the laundry load will not usually lie on the axis of symmetry of

the drum and thus there will be an out-of-balance load (OOBL)

when the drum rotates, causing its motion to be eccentric.

This eccentric motion can cause unexpected vibrations due

to the friction between the drum and the cabinet, resulting

into unpleasant banging noise in washing machines. One

method to reduce these vibrations during the dehydration

process is the installation of a suspension system in the drum.

However, adding such a mechanism incurs additional costs.

Another approach to mitigate vibrations is to evenly distribute

the laundry within the drum during the dehydration cycle.

While this method may not completely eliminate vibrations in

OOBL situations, it can effectively reduce them. This approach

presents a cost-effective solution to address the vibration issue,

leveraging strategic laundry distribution within the drum to

counteract the effects of imbalance.

B. Markov Decision Process (MDP) Framework

Most of the RL research works heavily depend on the

quality of the simulator that is integrated with the given

RL environment [6], [26], [37], [40]. For most of the real

world cases, there is no reasonably well functioning simulator

(like our case) or an approximated model to properly emulate

the corresponding dynamics [7], [8]. Hence, for our problem

of maintaining balance of laundries during dehydration in

washing machines, we design a specific Markov Decision

Process (MDP) [35] to train its optimal motor control during

dehydration. We represent our MDP as a 5-element tuple

M = (S,A,P, γ,R), where S is state space; A is action

space; P is latent dynamics, and γ ∈ [0, 1) is a discount factor;
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Reward function r(s′|s, a) is the reward for transitioning from

a state s to next state s′ when take action a. The objective of

our problem is to find the optimal policy π∗ that maximizes

the cumulative sum of the expected reward, i.e., Q∗
π(s, a) =

maxπ Qπ(s, a). Qπ(s, a) = Eπ[
∑∞

k=0 γ
krt+k|s, a].

1) State Space: We design the state space S of our MDP

to represent the internal dynamics of a washing machine. As

mentioned before, there are lots of unknown variables that

may affect the dehydration process. So we assume that our

environment is laid into Partial Observable Markov Decision

Process and select features to represent its dynamics: (a)

displacement of 3 axis on the front and rear sides, (b) gyro of

3 axis on the front and rear sides, (c) acceleration of 3 axis on

the front and rear sides (d) motor state in terms of its rotational

speed and force. Displacement is defined as the distance from

its axis center and it is used as an amplitude of vibration. For

example, if the drum is rotated with unbalanced circumstance,

displacement value is large and occur huge vibration. When

the drum rotates, the displacement must be lower than the

minimum boundaries, let’s say from 10 mm to 100 mm, in

both the front and rear sides. Note that, every state in our

MDP is captured from a physical sensor installed in washing

machines to monitor washing status.

2) Action Space: The action space A of MDP is designed

for a low-level motor control to change revolution per minutes

(RPM). The agent can request one of two actions: UP or

DOWN. When the UP action is taken, RPM is increased with a

specific value, let’s say 5 RPM, otherwise decreased. Similar to

other real world problems [8], this RPM value is different from

the actual RPM since the response time and system delays

exist during the motor’s function in practice. One property of

event handling in washing machines that is peculiar is that it is

polling in nature. That is, event interactions occur periodically,

as opposed to instantly, because every washing machine action

is taken with fixed time boundaries.

3) Reward Function: Our objective is to rotate the drum to

the target RPM while ensuring that the displacement values

stay within a predefined range. We assume that our MDP

model is characterized by long-horizon and sparse rewards.

If the drum reaches the target RPM within the given time

while keeping its displacement within the set range, the agent

receives a +1 reward. Conversely, if the drum fails to maintain

balance during the RPM increase, leading to displacement

values outside the predefined range, the episode ends with

a −1 reward. Furthermore, if the drum maintains balance but

fails to reach the target RPM within the allotted time, this is

classified as a ‘timeout‘, resulting in a 0 reward. In this case,

there might exist a sub-optimal trajectory and hence we cannot

assess its goodness. More specifically, the reward function R
for our MDP is defined as:

R =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1, Successfully reach the target RPM within

the allocated time
−1, Fail to maintain the balance during RPM

increase
0, Not reach the target RPM within the

allocated time

When the motor control is sub-optimally controlled, we

cannot guarantee the quality of a trajectory at a given timestep.

This is because it may result in unexpected outcomes. There-

fore, we have designed our reward function with a sparse

setting.

4) Dynamics: Based on our understanding, the type and

weight of laundry loaded into a washing machine significantly

influence the displacement changes and the load on the motor.

Consequently, we have approached each laundry item as

a distinct problem. In reality, laundry used in households

typically consists of various items mixed together. Therefore,

we have conducted experiments on several representative types

of individual laundry items as well as on their combinations

to simulate real-world scenarios.

III. RELATED WORKS

AI in Washing Machine Numerous attempts have been

made to leverage sensor data from washing machines for the

application of artificial intelligence techniques. One notable

example involves using deep learning to estimate the load

weights and fabric softness, subsequently selecting optimal

wash motions for different fabric types [10]. Additionally, deep

learning has been utilized to detect abnormalities in washing

machine operations [5], [33]. The fundamental motivation for

applying AI to washing machines stems from the vast array of

environments in which they operate, making it impractical to

manually address every possible scenario. Our research builds

upon existing studies [4] that apply reinforcement learning to

washing machines, especially on the dehydration step. We aim

to enhance load balance efficiency by utilizing offline datasets

collected in various settings.

Offline RL. Offline RL [15], [24] is an off-policy RL

approach that uses offline data. The effectiveness of offline RL

has been shown in various application domains such as robot

manipulation [20], [27], [31], natural language processing

[18], [19], and healthcare [32], [38]. Offline RL usually

suffers from distribution shift or extrapolation error as the

learned RL model takes out-of-distribution actions during

testing, especially when it encounters unseen offline data. As

a consequence, there approaches have been proposed to deal

with extrapolation errors with policy constraints [3], [15], [23],

[41] and uncertainty control [1], [34]. In this paper, we tries

to find the proof-of-concept of offline RL approach in real

world application, so we choose naive batch RL approach for

the offline baseline. Our approach is similar with works in

[3] that evaluation process is happened just once with online

setting. This process is probably abstract of policy iteration

[35] in offline setting, or "Growing Batch Learning" concept

from [24].
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One emerging topic in offline RL is Offline-to-Online

Learning [2], [39], [42], which incorporates online fine-tuning

to address these challenges. However, such fine-tuning requires

significant computational resources and online interaction,

making it impractical for deployment in real-world settings.

IV. FRAMEWORK OVERVIEW AND PROCEDURE

The general workflow is illustrated in Figure 1. The de-

velopment and deployment process of our model takes place

primarily in two locations: the offline and the online. Initially,

we gather a dataset at the offline place such as the manufac-

turing site and use it to train the offline RL model. This model

is then deployed into washing machines, usually installed

in households. In this (online) setting, the model gathers

additional data, which likely includes previously unseen states

such as various types of laundry and operational information

like installation status. This new dataset is then utilized for

further refining and re-training the model.

The procedure for learning iteration has the following steps

which are described in following section:

A. Data Collection

B. Train model with Offline RL

C. Delayed Online Update

A. Data Collection

Constructing high-quality training data is essential for the

success of an offline RL algorithm, particularly when it

comes to capturing the diversity of environments for effective

generalization. Unlike the multitude of washing machines

installed in households, the number available at manufacturing

sites for data collection is limited, resulting in a constrained

amount of training data. The data can originate from various

sources, including manual experiments conducted by humans

and certification tests. To highlight the diversity and quality of

our dataset, we employed an online RL strategy with a specific

exploration approach for data collection, ensuring a rich and

varied dataset.

B. Train model with Offline RL

In our framework, we primarily utilize the state-of-the-art

Rainbow DQN algorithm [17], adapted for an offline setting.

Rainbow DQN integrates several DQN extensions: Double

Q-Learning, Prioritized Experience Replay (PER), Dueling

Network, Multi-step Learning, Distributional RL, and Noisy

Net. However, in our adapted model, PER and Noisy Net

extensions are omitted due to their incompatibility with our

settings. While the agent cannot explore and collect new

experience in offline RL, it has the risk of overfitting to the

fixed dataset. PER might exacerbate this if the prioritization

mechanism overly focuses on a subset of experiences, leading

to a lack of generalization. And Noisy Net might increase the

complexity of environment. The specific design choices of our

network are detailed in Table I.

Policy selection in offline RL is crucial, involving the

careful choice of hypothesis classes and hyperparameters for

function approximators to learn policies. This selection is vital

Hyperparameter Value
Layers [1024, 512, 256, 256]
Double Q-learning Enabled
PER Disabled
Dueling Network Enabled
N-step 3
Distributional RL C51
Noisy Net Disabled

TABLE I: Hyperparameters used in the Rainbow DQN.

to prevent overfitting and ensure overall performance quality

[22], [29]. Traditional off-policy evaluation methods, such as

Fitted-Q Evaluation [25], Doubly Robust Policy Evaluation

[36], and Importance-Sampling based Method [30], are not

effective in our offline RL setting as they fail to accurately

represent the real-world behavior of the RL algorithm. To

address the challenge of policy selection, we employ a simple

heuristic: selecting an epoch value that demonstrates the high-

est average success rate. Mathematically, this is represented

as:

argmax
epoch∈{E1,...}

1

N

N∑
t=1

success_ratet(epoch)

where success_rate indicates the success rate for each laun-

dry load, N is the total number of laundry loads, and E is

candidate epoch for the policy selection.

C. Delayed Online Update

Mentioned in III, achieving generalization across diverse

scenarios in offline RL is a formidable challenge. This dif-

ficulty stems from the need for high-quality data that can

accurately represent a wide range of environments. So far,

recollecting such data post-deployment has been nearly im-

possible due to the connectivity.

Algorithm 1 Delayed Online Update

� Initial Data Collection

1: Doff → ∅
2: for task i = 1, 2, . . . do
3: Collect Di in various ways

(e.g. Online RL with exploration)

4: Doff ← Doff ∪ Di

5: end for
� Delayed Online Update

6: for phase = 1, 2, . . . do
7: Train the π from Doff with Rainbow DQN

8: Deploy π in real environment with Dedge = ∅
9: for task i = 1, 2, . . . do

10: Evaluate π with online manner

11: Store (S,A,S′,R) into Dedge

12: end for
13: Wait until Dedge has specific data amount

14: Doff ← Doff ∪ Dedge

15: end for

Recently, several manufacturers have begun to introduce

Internet-of-Things (IoT) frameworks [9], [13] that facilitate
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communication between users and devices. This development

opens up the possibility of continuously enhancing model

performance by iteratively retraining with data collected from

varied environments and redeploying the updated models. This

approach is particularly promising for household appliances,

which are ubiquitous in homes and thus can generate a vast

amount of data for performance improvement.

A key element in this process is the Delayed Online

Update (DOU) mechanism. This mechanism, described in

Algorithm 1, refers to the overall process of intermittently

transmitting collected data through the framework and up-

dating the model, even in the absence of constant online

interactions. In this context, the term ’delay’ refers to the

period during which the washing machine collects data in the

real environment until a sufficient amount has accumulated to

justify transmission. This strategy is particularly advantageous

in the context of household appliances, which typically have

limited computing power. As long as the data transmission and

model redeployment processes are well-defined, there is sub-

stantial potential for application, even with the computational

limitations of these devices.

V. EXPERIMENT

We conducted experimental evaluations of our RL frame-

work on actual washing machines. For these experiments, we

utilized standard commercial washing machines, modifying

their control boards to enable motor control via our RL models

and to collect data on drum status. These modifications were

necessary as the machines lacked inherent network function-

ality for model interaction.

(a)
Jean

(b)
T-Shirt

(c)
Towel

(d)
Jeans
Towel

(e)
Towels

Jumper A

(f)
Towels

Jumper B

Fig. 3: Laundry types. 6 representative laundry types are

considered as the set of problems. Each laundry has unique

fabric, shape, and weight.

Our tests focused on six representative types of laundry

loads, as depicted in Figure 3: a) Jean, b) T-shirt, c) Towel,

d) 3 Jeans + Towel, e) 3 Towels + Jumper A, and f) 3 Towels

+ Jumper B. In each experiment, we loaded one of these

laundry types into a machine, gradually increased the drum’s

rotation speed from zero to its maximum, and then controlled

the rotation level for dehydration using our RL algorithm.

We considered the RL algorithm successful if it completed

an episode with a reward of +1, and −1 otherwise.

The performance of our model was assessed based on the

overall success rate for each washing machine, defined as the

ratio of successful trials to the total number of trials. To ensure

consistency and minimize bias, each washing machine was

configured identically. Additionally, as the water absorption

in the laundry could influence dehydration, we conducted a

rinse process in each episode to standardize water content.

A. Efficacy of delayed online update

In our study, we evaluated the performance of our RL

framework after each update iteration against a baseline model

trained with data collected from a manufacturing site. To

efficiently assess the selected model in an actual washing

machine, we shortlisted six candidate models through policy

selection. Following the evaluation of these candidates, the

data from the model with the highest success rate was merged

into the existing offline dataset for retraining from scratch.

This process was repeated twice in our experiment, with the

results illustrated in Figure 4.

The data presented in Figure 4 clearly demonstrates that

the average success rate of the models, post-application of

the Delayed Online Update (DOU) mechanism, consistently

surpasses that of their predecessors. Specifically, after two

iterations of updates, the model exhibited an average success

rate increase of 16% compared to the initial offline RL model.

Notably, the success rate for T-shirts improved by 21% after

two rounds of the DOU process. These findings underscore

the effectiveness of the delayed online update approach, as it

significantly enhances the performance of the basic offline RL

framework. This outcome aligns with our expectations, as the

iterative use of high-quality evaluation data broadens the ex-

ploration capabilities of the RL algorithms. While this method

may not capture every possible dynamic of washing machine

operation, it effectively extends the model’s generalizability

and performance.

B. Model Performance Against Human-Defined Standards

We further investigated the performance differences using

the average Time-to-Success (TTS) metric – the average dura-

tion it takes to escalate from the starting RPM to its maximum.

TTS is the formal metric of dehydration in manufacture

process. Typically, lower TTS correlates with a higher success

rate.

For this, we deployed our final model, identified as the best

candidate from DOU_2, and compared its performance with

a human-defined rule. It is important to note that the human-

defined rule (Human in Table II), developed through extensive

trial-and-error experiments by domain experts, is widely used

in mass production. The comparative experimental results are

presented in Table II.

Although the TTS for some laundry types was slower

compared to the human-defined rule, these results clearly

show that the best candidate model from DOU_2 generally

outperforms the human-defined rule by 15.2%. Notably, the

laundry type ’3 Towels + Jumper B’ showed a significantly

larger improvement margin compared to others. This specific

load had previously posed considerable challenges for hu-

man experts, who attempted to find an ideal control through

repetitive experimentation. However, through the application

of the DOU process, we managed to enhance performance

significantly. This result demonstrates that even tasks which
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are difficult for humans to solve can be effectively addressed

through our process, showcasing the potential of machine

learning to improve performance where human efforts fall

short.

Laundries Human DOU_2 (best) Δ
Jean 1 0.71
T-shirt 0.3 0.47
Hoodie 1.43 1.98
3 Jeans + Towel 1.92 1.38
3 Towels + Jumper A 2.39 2.45
3 Towels + Jumper B 3.13 1.62
Average 1.70 1.43 -15.2%

TABLE II: Normalized TTS metric comparison. The TTS

for Jean is used as the baseline for normalization, with

other metrics divided accordingly. Hoodie is included for the

formal qualification control test. Lower scores indicate better

performance.

C. Discussion of Limitations

At the heart of our approach is the reliance on extensive and

diverse data sets. The efficacy of the reinforcement learning

model is contingent on the quality and variety of the data it

is trained on. In real-world scenarios, this poses a challenge.

Washing machines encounter a myriad of fabric types, load

sizes, and user preferences. The current model, while robust,

may not fully encapsulate the vast spectrum of real-life sce-

narios, potentially limiting its adaptability and effectiveness.

Additionally, most offline RL models are evaluated in

simulators, which takes considerably less time, but finding

an optimal model for real-world environments like washing

machines involves a significant time investment. This is why

we performed the Design of Experiments only twice, as the

time-intensive nature of this process limits more frequent

iterations.

Long-term stability and maintenance of reinforcement learn-

ing systems in dynamic and evolving real-world environments

also remain an area of concern. As usage patterns change and

machines age, the RL model would require continuous updates

and retraining to maintain optimal performance, posing a

challenge in terms of maintenance and user experience.

VI. CONCLUSION

In this paper, we address the challenge of maintaining

load balance during the dehydration cycle in washing ma-

chines through reinforcement learning (RL) algorithms. Our

experimental results demonstrate the effectiveness of our pro-

posed RL framework, which incorporates a Delayed Online

Update mechanism. This approach not only shows notable

improvements in success rate and Time-to-Success during the

dehydration process but also exhibits strong generalization

capabilities. Moreover, this framework, a practical alternative

to the computationally intensive Offline-to-Online learning

solutions recently proposed for the Offline RL problem, is

especially significant for augmenting the performance of low-

resource devices. We have successfully followed the same

steps in the production level and improved dehydration per-

formance to a real, mass-produced washing machine [11].

To our knowledge, this is the pioneering instance of apply-

ing Offline RL to a household appliance on a global scale.

Moreover, this framework opens up the potential for pro-

gressively enhancing the performance of washing machines,

leveraging their connectivity features as outlined in [12].
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